UNLOCKING HAPPINESS: WHAT DRIVES HAPPINESS IN SOUTH AFRICA?

I EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEENEEEEEEEEEEEEEENEEEEEEEEEEEEEEEEEEENEEEEENEEEEEEEEEEEEEEEEEEENEEEEEEEEENEEEENEEEENEENRN)

T E N EEEEEEEEEEEEEEEEEEERREY
’----------

I EEEEFEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEENGRN,

O OBJECTIVE

the needs of this diverse population. By examining these factors,

a result of this diversity, there are significant disparities in how different

groups perceive their quality of life. We expect that wealth would be a factor
that is highly associated with quality of life. However, it is by no means clear

what the specific commodities are, that the people of South Africa value most.
Understanding the factors that contribute to happiness is essential in capturing

we aim to
identify what people in various communities value most in their lives.
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— INTRODUCTION —

South Africa is a nation famous for its rich diversity, with over 63 million people
belonging to a variety of cultural, linguistic, and socio-economic backgrounds. As
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Unfortunately, poverty in South Africa remains a significant issue, with over
49% of the population living below the upper-bound poverty line. It ranks

low on global happiness indices, with a 2024 ranking of 83 out of 143 countries
in the World Happiness Report, and 110" out of 193 countries in the Human
Development Index. We hope that our findings will play a small role in helping

the strategic allocation of resources and funding, ensuring that
investments are targeted where they will have the greatest impact on
improving the quality of life for South Africans.
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» Potential sampling biases due to underrepresentation in rural or

a TH E DATA SET Limitations infc?rmal settlements,

e Reliance on self-reported data
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Data Cleaning

e Removed any missing data or
non-respondents to reduce

noise in the model. response variable.

e Converted the variable of interest
from a 3-point scale into a binary
response:

1=improved happiness

O =no improvement in happiness
to enable the construction of a
logistic regression model.

certain assumptlons
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The most significant variables according

e Employed stepwise regression
to select variables with a
significant impact on

the

e Used forward selection and
backward elimination methods
to refine the predictor set.

e This approach helped identify
key variables, but is limited by

reducing accuracy.
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Summary Statistics of the Model

to the OOB Gini values
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Random Forests

Explored Random Forests: A flexible
machine learning method that handles
complex interactions between predictors
without assuming linear relationships.
Assessed variable importance using the
Gini Out-of-Bag (OOB) index.

v Important Variables: Higher OOB Gini values
Help improve the model

) Less Useful Variables: Zero or negative OOB Gini
values May cause the model to be too specific,

B

Model Refinement

e Predictors Selected: Chose those with a
positive OOB Gini value for the logistic
regression model.

e Model Comparison: Compared Random
Forest model (C-Index: 0.72) with Stepwise

>> model (C-Index 0.65)

{T - C-Index values doser to 1indicate better
° prediction accuracy
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e Final Choice: Selected Random Forest-
based logistic regression for better
predictive performance.
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© Wealth as a Primary Driver m Food Security Matters /\ Caution
Wealthier households reported higher likelihoods of improved Households facing hunger were less likely to report happiness, underscoring the Subjective data like happiness is shaped by biases, social desirability,
happiness, reinforcing the link between financial security and well- importance of nutrition in life satisfaction. and is susceptible to influence by transient emotional states, rather
being. e . than long-term life satisfaction, leading to variability in the data. This
' £ - Significance of Computer Ownership introduced complexities into achieving a model with high accuracy and
abida Geographical Impact Households owning computers were 1.2 times more likely to be happy, potentially e
Urbanized areas, such as Cape Town and Nelson Mandela Bay, showed due to enhanced access to education, job opportunities and connectivity.
higher happiness levels compared to non-metropolitan areas, @; Research Value
highlighting regional disparities in infrastructure and opportunities. ? Unexplained predictors While our findings may seem intuitive, they validate commonly held
o Fi | Burd Variables that we hypothesized to have an effect on happiness, such as the source assumptions with data, provide insight into regional dynamics and
Et inancial Burdens , , , of financial income or access to healthy food, did not show significant results in the identify potentially underexplored predictors like computer ownership.
AT U R S EACHREn T el 1 B R ey sl it R model. Although, this could also be attributed to other confounding factors not These results can inform evidence-based polices and serve as a

happiness, indicating the toll of financial pressure on well-being.
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