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ABSTRACT 

 

The influx of data and the advances in computing have led to calls to update the introductory 

statistics curriculum to meet the needs of the contemporary workforce. To this end, the 

COMputational Practices in Undergraduate TEaching of Statistics (COMPUTES) instrument was 

developed to measure the extent to which computation practices—specifically data, simulation, and 

coding practices—are included in the introductory statistics curriculum. Data from 236 instructors 

were used in a psychometric analysis to evaluate the latent structure underlying instructors’ 

response patterns and understand the quality of the instrument items. Responses were also 

examined to determine whether computational practices are being emphasized differently across 

institutional settings. Results suggest the latent structure was best captured using a correlated 

multidimensional model and most items were contributing information to the measurement process. 

Across institutional settings, curricular emphasis related to data and simulation practices seem 

quite similar, while emphasis on coding practices differs.  

 

Keywords: Statistics education research, computational thinking, assessment, instructional 

practices 
 

1. INTRODUCTION 
 

Paralleling the metamorphosis of Ronald Miller in Can’t Buy Me Love (Rash, 1987), statistics has 

gone from totally geek, to totally chic. Companies such as Google and Facebook have not only made a 

degree in statistics lucrative, but also made it popular (e.g., Hardy, 2012). Those in technology fields 

are not alone in their awareness of the power of statistics to understand the growing availability of data. 

Many non-tech-based companies and academic and non-profit institutions are also looking to hire 

employees with data and statistical acumen (Business Higher Education Forum and 

PricewaterhouseCoopers, 2017). As more employers come to see the ability to work with data and 

computational literacy as fundamental for those entering the workforce, colleges and universities will 

no doubt encounter more students interested in acquiring these skills (National Academies of Sciences, 

Engineering, and Medicine, 2018). 
A decade ago, Nolan and Temple Lang (2010) called for reforming the statistics curriculum to focus 

on computation and data practices. Since that time, others have echoed this sentiment (e.g., Gould, 

2017; Horton & Hardin, 2015; Kaplan, 2018) and the American Statistical Association (2017) has 
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directly addressed data and computation practices as fundamental skills within statistics curricula. There 

seems to be a growing consensus that computing and data practices are core skills for all students 

enrolled in a statistics course. Outside of the United States, educators and researchers have also been 

promoting data and computation practices in the curriculum (e.g., Engel, 2017; Engel et al., 2019; 

Ridgway, 2016, Ridgway et al., 2018). These practices have been included in several international 

curricular efforts and frameworks. For example, the Pro Civic Stat project in Europe has focused on 

promoting statistical literacy by using real world social contexts that are often multivariate (Gal et al., 

2016; Schiller & Engel, 2016). Similarly, educators in New Zealand have integrated computation and 

authentic multivariate data and visualization within curriculum materials at all levels of education using 

thoughtfully designed software such as INZight and VIT (Forbes, 2014; Forbes et al., 2014). Other 

global efforts include the International Data Science in Schools Project (IDSSP Curriculum Team, 

2019), a project to support and promote the teaching of data science in schools. This project has 

produced a set of curricular frameworks for teaching data science at the secondary level. Though efforts 

to implement more data focused statistics practices are evident in other countries, it is unclear whether 

instructors in the United States have incorporated these ideas into introductory statistics courses (Cobb, 

2015; Horton & Hardin, 2015).  

As computation and data practices become more prevalent in the contemporary workforce, it is 

important to be able to measure the degree to which instructors are introducing these ideas in the 

classroom. This is especially true given computation’s role as a gateway to STEM fields (Holdren & 

Lander, 2012) and to more lucrative employment opportunities, especially for women and other 

underrepresented groups (Melguizo & Wolniak, 2012; U.S. Department of Commerce, 2017). Given 

the large numbers of students enrolling in introductory statistics courses—nearly three-quarters-of-a-

million in the fall of 2015 (Blair et al., 2018)—including computation in these courses may help prevent 

disparities in students’ computational learning opportunities. To that end, the goal of this research is to 

present the development of an instrument that can be used to measure the extent to which computation 

and data practices are included in the introductory statistics curriculum. 
The influx of data and advances in computing have led to calls by several statisticians to update the 

introductory statistics curriculum to provide students with the computational tools and data-related 

capacity imperative for modern practice (e.g., Horton et al., 2014; Nolan & Temple Lang, 2010). Some 

instructors have already begun integrating more data and computational practices into the introductory 

course, including relational databases (e.g., Broatch et al., 2019), web scraping (e.g., Dogucu & 

Cetinkaya-Rundel, 2021), data wrangling (e.g., Hardin, 2018; McNamara & Horton, 2018), data 

cleaning (Holcomb & Spalsbury; 2005), multivariate visualization (e.g., Çetinkaya-Rundel & Tackett, 

2020; Kaplan, 2018), reproducibility (e.g., Baumer et al., 2014), and version control tools (Beckman et 

al., 2021; Fiksel et al., 2019). 
While these curricular innovations and the increased presence of data science, at least in department 

names (e.g., Rea, 2017), are positive, whether including computational practices in introductory 

statistics courses is becoming the norm or something that is only adopted by a handful of individual 

instructors is an open question. This paper introduces COMputational Practices in Undergraduate 

TEaching of Statistics (COMPUTES), an instrument designed to measure the degree to which 

computational practices are being included in introductory statistics courses. This manuscript describes 

the development of COMPUTES and presents an analysis of its psychometric properties. Finally, 

instructors’ responses are used to provide some empirical evidence about the degree to which 

computational practices are being introduced in the classroom. 
 

2. INSTRUMENT DEVELOPMENT 
 

To develop a blueprint for COMPUTES, the literature related to the teaching and learning of 

computation was reviewed. Much of this literature is focused at the K–12 level and predominantly 

addresses programming instruction (e.g., Carver & Klahr, 1986; Clements, 1991; Futschek & Moschitz, 

2011; Marcelino et al., 2018; Sáez-López et al., 2016), or the development of computational reasoning 

(e.g., Barr & Stephenson, 2011; Benton et al., 2017; Brennan & Resnick, 2012). While this latter set of 

work helps provide a broad framework for big ideas and concepts that could be included in the 

curriculum, the components are often quite broad and hard to measure (e.g., abstraction, problem 
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decomposition) or are focused on ideas that are unlikely to be included in introductory statistics courses 

(e.g., parallelization). 
Weintrop et al. (2016) laid out a taxonomy underlying computational thinking in mathematics and 

science practices. These practices were identified through a comprehensive review of literature (related 

to computational thinking), classroom activities, and lesson plans and then validated through both 

interviews with scientists and mathematicians, and used with in-service high school teachers. The 

adopted framework categorizes computational thinking into four “distinct,...[yet] highly related and 

dependent” (Weintrop et al., 2016, p. 134) components: data practices, modelling and simulation 

practices, computational problem-solving practice, and systems thinking practices. Each component 

includes explicitly stated learning outcomes and details for mastery. The learning outcomes described 

aligned with much of the recommended content and many practices in introductory statistics courses.  
This research used the taxonomy presented in Weintrop et al. (2016) as a framework to generate a 

blueprint for COMPUTES. Because the practices in the systems thinking category (e.g., defining 

systems and managing complexity) did not seem compatible with content typically included in 

introductory statistics courses, it was not included in the blueprint. The blueprint adopted included 

domains related to Data Practices, Modeling/Simulation Practices, and Computational Problem-Solving 

Practices. These three domains were minimally different from those presented in Weintrop et al. (2016). 
 

2.1.  ITEM GENERATION AND VALIDITY EVIDENCE 
 

Fifty-one initial items were written based on the blueprint and, following the guidelines of Dillman 

et al. (2008), grouped together according to content: 20 Data Practices items, 14 Modeling/Simulation 

Practices items, 17 Computational Problem-Solving Practices items. Think-aloud interviews were 

conducted individually with three participants chosen because of their expertise in data science and 

statistics education. Each participant was administered the instrument and asked to articulate their 

reasoning as they responded to each item. When the participants had difficulty answering or 

understanding an item, they were probed for further thoughts. After completing the survey, the 

participants were asked if they thought the survey fit the current state of statistics education, was 

missing any important statistics education content, or contained unnecessary items. 
These interviews resulted in improving item clarity and updating the instrument. First, additional 

items related to curricular emphasis on multivariate data were included in the Data Practices domain. 

Second, the items corresponding to the Simulation/Modeling domain seemed to be interpreted using 

the context of simulation-based inference, so this domain was relabeled Simulation Practices. Finally, 

most of the items written to address Computational Problem-Solving Practices were removed from the 

instrument. These items tended to be overly general and the think-aloud interviews made it clear these 

items were not being interpreted as intended. After reflection and discussion, the research team decided 

the majority of this domain was not well-suited for introductory statistics courses. The only items in the 

Computational Problem-Solving Practices that did seem pertinent were related to coding and 

debugging, so this domain was relabeled Coding Practices and all items not related to coding were 

omitted. The final instrument included 23 items measuring instructors’ curricular emphasis of 

computational practices across three domains: Data Practices (10 items), Simulation Practices (9 items), 

and Coding Practices (4 items). These items are presented in Appendix A. 
 

2.2.  RESEARCH QUESTIONS  
 

Some degree of validity evidence is necessary in order to use results from COMPUTES to interpret 

results and draw inferences about computing practices in introductory statistics courses (American 

Educational Research Association et al., 2014). The cognitive interviews, described previously, are part 

of this trail of evidence, but are not sufficient to support a set of inferences. It is also important to 

undertake a psychometric analysis to understand the latent structure of the construct, item functioning, 

and score reliability (e.g., Borsboom et al., 2004). To that end, the following research questions are 

examined: 
1. What is the latent structure underlying introductory statistics instructor’s responses to the 

COMPUTES items? 

2. How well do the items fit the adopted model and how well do they measure the underlying 

construct(s)? 
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Finally, instructors’ responses are used to provide empirical evidence about whether computational 

practices are being emphasized differently across institutional settings since these environments may 

have different resources/opportunities for their students (e.g., Kahlenberg, 2015). In particular:  

3. Does the degree of curricular emphasis of computational practices vary by institutional setting 

(two-year colleges, four-year colleges, and universities)? 
 

3. SAMPLE AND METHODS 

 

The 23 items on COMPUTES were included as additional sections on the Statistics Teaching 

Inventory (STI; Zieffler et al., 2012) and were administered September and October of 2019 via 

Qualtrics. Email invitations were sent to five statistics education-focused listservs and mailing lists in 

the U.S.: ASA community of Isolated Statisticians (IsoStat), Consortium for the Advancement of 

Undergraduate Statistics Education (CAUSE), American Satistical Association Section on Statistics 

and Data Science Education, American Mathematical Association Two-Year Colleges, and the 

Mathematical Association of America Section on Statistics Education. These invitations solicited 

participation in the STI study for any instructors of a non-calculus-based introductory statistics course 

(e.g., courses aimed at non-quantitative majors, inference-based course) A total of 293 participants 

completed the STI, which resulted in 236 usable responses. Counts and proportions for the responses 

for each of the 23 items identified in the scale are presented in Table 1. Only one item, understand 

concepts via simulation, had a large number of non-response. Additionally, most items showed a 

pattern indicating the majority of respondents had little or no curricular emphasis on these ideas. 
 

Table 1. Counts (Proportions) of responses for each item 
 

Item None Minor Moderate Major NA 

Data Practices      

Work with a codebook 166 (0.70) 44 (0.19) 11 (0.05) 7  (0.03) 8  (0.03) 

Use data stored in flat file 58  (0.25) 72 (0.31) 52 (0.22) 53 (0.22) 1  (0.00) 

Use data stored in relational database 214 (0.91) 12 (0.05) 6  (0.03) 3  (0.01) 1  (0.00) 

Collect data via web scraping 208 (0.88) 20 (0.08) 5  (0.02) 0  (0.00) 3  (0.01) 

Validate data 133 (0.56) 77 (0.33) 18 (0.08) 7  (0.03) 1  (0.00) 

Clean data 127 (0.54) 88 (0.37) 15 (0.06) 5  (0.02) 1  (0.00) 

Structure data 157 (0.67) 56 (0.24) 15 (0.06) 7  (0.03) 1  (0.00) 

Join datasets 189 (0.80) 29 (0.12) 8  (0.03) 2  (0.01) 8  (0.03) 

Produce visualizations of multivariate data 111 (0.47) 64 (0.26) 34 (0.14) 28 (0.11) 6  (0.03) 

Numerically summarize multivariate data 139 (0.58) 46 (0.19) 21 (0.09) 26 (0.10) 7  (0.03) 

Simulation Practices       

Identify real-world elements to include 153 (0.65) 38 (0.16) 29 (0.12) 13 (0.06)   3  (0.01) 

Decide what data will be produced 149 (0.63) 40 (0.17) 30 (0.13) 14 (0.06)   3  (0.01) 

Identify similarities/differences from real-

world 

140 (0.59) 40 (0.17) 36 (0.15) 17 (0.07)   3  (0.01) 

Describe impact of design on conclusions 148 (0.63) 40 (0.17) 29 (0.12) 17 (0.07)   2  (0.01) 

Understand concepts via simulation  3   (0.01) 23 (0.10) 47 (0.20) 47 (0.20) 116 (0.49) 

Evaluate conjecture about real-world 138 (0.58) 24 (0.10) 31 (0.13) 41 (0.17)   2  (0.01) 

Evaluate competing conjectures 151 (0.64) 30 (0.13) 23 (0.10) 30 (0.13)   2  (0.01) 

Generate data from model 119 (0.50) 83 (0.35) 28 (0.12) 6  (0.03)   0  (0.00) 

Generate data from sample 133 (0.56) 51 (0.22) 25 (0.11) 27 (0.11)   0  (0.00) 

Coding Practices       

Read code 167 (0.71) 23 (0.10) 27 (0.11) 18 (0.08) 1 (0.00) 

Modify code 169 (0.72) 14 (0.06) 27 (0.11) 25 (0.11) 1 (0.00) 

Debug code 178 (0.75) 39 (0.17) 8  (0.03) 10 (0.04) 1 (0.00) 

Create code 186 (0.79) 22 (0.09) 14 (0.06) 13 (0.06) 1 (0.00) 
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Two items—relational databases and web scraping, both in the Data Practices domain—were 

removed because the small amount of variation in instructor responses to these items prohibited 

estimation of the model parameters. All results are based on models fitted omitting these two items. 

 

3.1.  ANALYTIC METHOD 

 

Instructors’ response patterns were analyzed using multidimensional item response theory (MIRT). 

To account for the ordinal nature of the items, these models were fitted using a graded response model 

(GRM; Samejima, 1969). The GRM models the probability that person i endorses item j at level k 

conditional on the person’s level of the underlying latent factor (θ) using a logistic model. 

Mathematically, 

 

(1)                    

 
where D is a scale factor (typically set to 1.7), αj is an item discrimination parameter, and dj is a 

difficulty parameter for the kth response category of item j. All models were fitted to the data using the 

mirt package (Chalmers, 2012) in R. 

To answer the first research question, three potential measurement models that might represent the 

underlying latent structure in the response data were evaluated. These three models are presented in 

Figure 1. 
 

  
 

Figure 1. Latent structure for three competing measurement models fitted to explain instructors’ 

emphasis on computational reasoning. 
 

Model A posits that there is a single factor that explains all the covariance among items. In this 

model, the domains of Data Practices, Simulation Practices, and Coding Practices would not be unique, 

and instead form a single domain, say, general computational practices. In Model B, the covariance 

would be explained through three unique, yet uncorrelated, domains. The last candidate model, Model 

C assumes that the three domains are distinct, albeit correlated among one another.  

To answer the second research question, the infit and outfit statistics for each of the items based on 

Model C were examined. These statistics help identify items and response patterns that have model–

data misfit. The primary difference between these measures is that the infit measure is less sensitive to 

outlying item–person response patterns. (See de Ayala, 2009, for more technical detail.)  

Items with perfect fit would have a mean square (MNSQ) value of 1. de Ayala suggests that items 

with MNSQ values “from 0.5 and 1.5 are ‘okay’ and those with values greater than 2 warrant closer 

inspection” (2009, p. 53). Both infit and outfit statistics can be standardized (ZSTD) and a t-test can be 
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used to test the null hypothesis that there is perfect data–model fit. As such, items with “good” fit have 

ZSTD values between ±2 (e.g., Bond & Fox, 2001). With larger sample sizes, the recommendation is 

to examine the MNSQ values and if those are acceptable, ignore the ZSTD values (e.g., de Ayala, 2009). 
To answer the last research question, estimates of the latent factors (i.e., factor scores) were 

computed for the sample of instructors and the distributions of these scores were compared across 

institutional types. Of the 236 respondents, 54 were instructors at two-year colleges, 87 were instructors 

at four-year colleges, and 87 were instructors at universities. Eight respondents classified their 

institution as “Other”. The factor scores for these respondents were not included in this part of the 

analysis.  

The estimates of the latent factors were obtained using the observed item responses for each 

respondent, and the respective item parameters to compute expected a-posteriori (EAP) sum-scores. 

This assumed a multivariate Gaussian distribution for the priors (common assumption in applied IRT 

work), and quasi-Monte Carlo integration with 5000 nodes was used to determine the EAP estimates. 

(For more technical detail, see, e.g., Chalmers, 2016; Thissen et al., 1995)  
 

4. RESULTS 

 

In this section, the results of the analyses are presented for each research question. 

 

4.1. RESEARCH QUESTION 1: WHAT IS THE LATENT STRUCTURE UNDERLYING 

INTRODUCTORY STATISTICS INSTRUCTOR’S RESPONSES TO THE COMPUTES 

ITEMS? 
 

Information criteria (AICc, BIC, and SABIC) were computed for each of the competing models 

(Table 2). Based on these indices, Model C had the most empirical evidence given the data and the 

candidate models. This suggests the latent structure underlying instructors’ responses to the 

COMPUTES items is best captured using a correlated multidimensional model. 
 

Table 2. Information criteria for the three competing measurement models 
 

Fit index Model A Model B Model C 

AICc 8180.5 7384.7 7317.0 

BIC 8376.9 7581.1 7514.9 

SABIC 8110.6 7314.8 7239.1 

 

Figure 2 shows the correlation structure between the three domains from Model C. This suggests 

the Data Practices and Coding Practices are quite related, and the Simulation Practices factor might be 

more distinct. To evaluate this, a correlated two factor model that combined the items from Data and 

Coding Practices into a single factor was also fitted. The fit indices (AICc = 7417.1; BIC = 7614.0; 

SABIC = 7344.6) suggest that this model does not fit better than the three-factor correlated 

multidimensional model (Model C). Thus, for the remainder of the article, we will use Model C to 

answer the other two research questions. 
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Figure 2. Correlation structure among the three latent factors 

 

4.2. RESEARCH QUESTION 2: HOW WELL DO THE ITEMS FIT THE ADOPTED MODEL 

AND HOW WELL DO THEY MEASURE THE UNDERLYING CONSTRUCT(S) 
 

The infit and outfit values for each item are presented in Table 3. 

 

Table 3. Item fit statistics for Model C. Statistics indicating item misfit have been bolded 
 

 Outfit Infit 

Item MNSQ ZSTD MNSQ ZSTD 

Data Practices     

Work with a codebook 0.72 -0.70 0.93 -0.28 

Use data stored in flat file 0.88 -1.08 0.87 -1.20 

Validate data 0.79 -0.81 0.92 -0.41 

Clean data 0.69 -1.39 0.78 -1.25 

Structure data 0.53 -0.52 0.72 -1.51 

Join datasets 0.54 -0.73 0.83 -0.64 

Produce visualizations of multivariate data 0.75 -1.55 0.81 -1.45 

Numerically summarize multivariate data 0.70 -1.34 0.80 -1.39 

Simulation Practices     

Identify real-world elements to include 0.76 -0.45 0.89 -0.75 

Decide what data will be produced 0.79 -0.46 0.93 -0.44 

Identify similarities/differences from real-world 1.02 0.17 0.94 -0.40 

Describe Impact of design on conclusions 0.81 -0.35 0.89 -0.70 

Understand concepts via simulation 0.87 -0.91 0.90 -0.72 

Evaluate conjecture about real-world 0.64 -0.90 0.76 -1.70 

Evaluate competing conjectures 0.77 -0.29 0.85 -1.01 

Generate data from model 0.98 -0.11 1.01 0.13 

Generate data from sample 0.88 -0.74 0.92 -0.69 

Coding Practices     

Read code 0.04 -4.03 0.32 -2.35 

Modify code 0.94 0.43 1.13 0.58 

Debug code 0.21 -1.96 0.72 -1.03 

Create code 0.41 -0.07 1.05 0.27 
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In examining the MNSQ values, two items show MNSQ values under 0.5. Of those, only a single 

item in the Coding Practices domain (read code) has a ZSTD value less than –2. Turning to the infit 

statistics, one item (read code) had a MNSQ value under 0.5 and a ZSTD value less than –2. Since de 

Ayala (2009) suggested items with MNSQ values under 0.5 are not degrading to the measurement 

system, albeit less productive, this item was retained in the remainder of the analyses. 
 

Item parameters. Next the estimated item parameters from Model C were examined and are 

presented in Table 4. The a- and d-parameters give the estimated discrimination and threshold values 

for the fitted model. Table 4 displays the a- parameter for each domain in a single column.  

 

Table 4. Item parameters for Model C 
 

      MDIFF 

Item a d1 d2 d3 MDISC 1 2 3 

Data Practices a1        

Work with a codebook 1.55 -1.40 -3.34 -4.52 1.55 0.91 2.16 2.92 

Use data stored in flat file 1.01 1.33 -0.31 -1.53 1.01 -1.31 0.30 1.51 

Validate data 1.92 -0.52 -3.34 -5.08 1.92 0.27 1.74 2.64 

Clean data 2.10 -0.34 -3.86 -5.77 2.10 0.16 1.84 2.75 

Structure data 3.54 -1.94 -5.38 -7.72 3.54 0.55 1.52 2.18 

Join datasets 1.76 -2.34 -4.29 -6.19 1.76 1.33 2.44 3.52 

Produce visualizations of 

multivariate data 

1.45 0.13 -1.50 -2.81 1.45 -0.09 1.04 1.94 

Numerically summarize 

multivariate data 

1.44 -0.62 -1.99 -2.92 1.44 0.43 1.38 2.03 

Simulation Practices a2        

Identify real-world elements 

to include 

3.74 -3.10 -5.79 -8.01 3.74 0.83 1.55 2.14 

Decide what data will be 

produced 

4.16 -3.16 -6.32 -8.64 4.16 0.76 1.52 2.08 

Identify 

similarities/differences from 

real-world 

3.43 -1.98 -4.42 -6.96 3.43 0.58 1.29 2.03 

Describe impact of design 

on conclusions 

3.93 -2.80 -5.60 -7.82 3.93 0.71 1.42 1.99 

Understand concepts via 

simulation 

1.82 3.21 -0.29 -2.67 1.82 -1.76 0.16 1.46 

Evaluate conjecture about 

real-world 

3.84 -2.11 -3.83 -5.92 3.84 0.55 1.00 1.54 

Evaluate competing 

conjectures 

3.88 -2.98 -5.01 -6.63 3.88 0.77 1.29 1.71 

Generate data from model 0.80 -0.18 -2.21 -4.17 0.80 0.23 2.77 5.23 

Generate data from sample 1.18 -0.78 -2.52 -3.71 1.81 0.43 1.39 2.05 

Coding Practices a3        

Read code 16.43 -6.76 -14.34 -27.69 16.43 0.41 0.87 1.68 

Modify code 4.87 -2.76 -4.10 -6.81 4.87 0.57 0.84 1.40 

Debug code 5.82 -4.15 -9.45 -10.81 5.82 0.71 1.62 1.86 

Create code 3.85 -3.47 -5.38 -6.95 3.85 0.90 1.39 1.80 
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The MDISC parameters, akin to the item discrimination parameters in a unidimensional IRT model, 

indicate how well the item discriminates among instructors of different levels of the latent factor—

higher values are indicative of stronger relationships with the latent factor. (In a factor analytic 

perspective, these are akin to factor loadings, but they are not scaled between –1 and +1.) The estimated 

MDISC values were positive for all items suggesting the amount of agreement on each item is positively 

related to each of the latent factors. All items except one (structure data) in the Data Practices 

factor/domain had MDISC values between 0.5 and 3, values typically associated with “good” 

measurement (e.g., Baker, 2001; de Ayala, 2009). The items on the other two domains had MDISC 

values higher than 3 which may indicate these items over-discriminate on the latent factors; this is 

especially true for items in Coding Practices. 
The estimated MDIFF values indicate the level of the latent factor at which a respondent is likely 

to transition to the next higher level of emphasis. More specifically, it reflects the level of the latent 

factor at which a respondent has a 0.5 probability of responding at the kth level of the item. In general, 

the thresholds should span the range of the latent variable that you intend to measure, in this case 

between –3 and +3. The MDIFF values for most of the items were positive, suggesting that the items 

provide better measurement for instructors who are above average on the latent factor. In fact, only 

three items seem to be measuring well for instructors who are below average on the latent factor. 

 

Reliability. Finally, estimates of the “marginal” score reliability for each of the measured domains 

were computed based on empirical estimates of the factor scores (Chalmers, 2012). These estimates 

give a sense of the proportion of the variance that is true score variance. For the measures, these were: 

0.795 (Data Practices), 0.836 (Simulation Practices), and 0.703 (Coding Practices). The score reliability 

for each of these measures was reasonably high. Factor scores from the Coding Practices domain had 

the lowest reliability, probably due to the smaller number of items in the scale. 
 

4.3.  RESEARCH QUESTION 3: DOES THE DEGREE OF CURRICULAR EMPHASIS OF 

COMPUTATIONAL PRACTICES VARY BY INSTITUTIONAL SETTING (TWO-YEAR 

COLLEGES, FOUR-YEAR COLLEGES, AND UNIVERSITIES)? 

 

Because of the exploratory nature of this part of the work, only a graphical analysis of these results 

is presented. Figure 3 shows the distribution of factor scores for each domain conditioned on institution 

type. The shape of the distributions for all three practices look somewhat similar across institution type 

and indicate there was variation in the instructional emphasis of these practices within each type of 

institution. The distributions for four-year college instructors, however, seem slightly shifted to the right 

relative to the other two institutions. This might indicate that a higher percentage of instructors at four-

year colleges emphasize these practices. 

Also of note, the distributions for the Simulation Practices domain seem bimodal, suggesting that 

there are subsets of teachers in all institution types who emphasize simulation practices in the 

curriculum and those who do not. This bimodality is also seen in the Coding Practices domain, but is 

more pronounced. Finally, there is almost no variation in emphasis of coding practices for two-year 

college instructors.  
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Figure 3. Factor scores for the sample of instructors for each of the domains conditioned on 

institution type; Data Practices (left), Simulation Practices (middle), and Coding Practices 

(right). The vertical dashed line at 0 indicates the average amount of the latent factor 

 

To explore whether instructors emphasize computational practices more generally or focus on a 

single practice, the interrelationships among the factor scores were also examined. Because the 

dichotomy in coding practices was so pronounced, instructors were dichotomized based on their coding 

practices factor score using a cut-point of 0, and the scatterplot of the factor scores for the Simulation 

Practices domain versus the Data Practices domain for these two groups was examined (see Figure 4).  
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Figure 4. Relationship between the factor scores for the Simulation Practices domain versus 

the Data Practices domain for the sample of instructors. This is conditioned on institution type 

and whether the instructor’s factor score indicated they had below average emphasis on 

Coding Practices (left) or above average emphasis on Coding Practices (right). The fitted 

regression line is also shown to help discern the relationship. The horizontal and vertical 

dashed lines indicate an average amount of emphasis across institutions on the Simulation and 

Data Practices domains, respectively. 

 

From this plot it can be seen that instructors who had higher levels of emphasis on data practices 

also seem to have had higher levels of emphasis on simulation practices, regardless of whether or not 

they emphasized coding pracices. (The only exception to this seems to be university instructors who 

had a lower than average emphasis on coding practices.) The magnitude of this relationship seems to 
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be higher for instructors who had above average emphasis on coding practices for both four-year college 

and university instructors. (With only two cases, we cannot conjecture whether this was also true for 

two-year college instructors.) These relationships are also consistent with estimated correlation 

structure (shown in Figure 2). 

 

5. DISCUSSION 

 

In this paper, the development of an instrument that can be used to provide empirical evidence about 

the degree to which computational practices are being emphasized in the classroom was described. 

Results from psychometric analyses were provided as evidence of validity to support the use of scores 

from the instrument. This research study specifically set out to answer three research questions: (1) 

What is the latent structure underlying introductory statistics instructor’s responses to the COMPUTES 

items? (2) How well do the items fit the adopted model and how well do they measure the underlying 

construct(s)? And (3) Does the degree of curricular emphasis of computational practices vary by 

institutional setting (two-year colleges, four-year colleges, and universities)? 
Based on the fit indices, responses to the COMPUTES items are multidimensional, albeit correlated, 

in nature. This is in line with Weintrop et al.’s (2016) statement that the domains are distinct, but related. 

The correlation structure among the latent factors suggests that instructors’ emphasis on data practices 

and coding practices are highly related, while emphasis on simulation practices are less related to these 

two other domains. This may be because, in introductory statistics courses, simulation is seen (and 

subsequently taught) as a vehicle for statistical inference rather than employed as a computational 

practice. If this is the case, the Simulation Practices domain would be expected to have a higher 

correlation with the other two domains if the instrument is given to instructors teaching higher-level 

statistics courses. 
The psychometric analysis suggested the items were generally productive (or at least not harmful) 

to the measurement process. The score reliability values for all three domains were reasonably high, 

suggesting the scores could be used in statistical analyses. The Coding Practices domain had the lowest 

score reliability, which is attributed to the small number of items.  
The third research question examined whether computational practices are being emphasized 

differently across institutional settings (two-year colleges, four-year colleges and universities) since 

these environments may have different resources or opportunities for students. While there may be 

differences across institutional settings, these are generally slight. While not overcommitting to the 

small nuances between distributions given the small sample size (i.e., these results should be taken as 

hypothesis generation), there are some patterns that seem to stand out. The bimodality in the factor 

scores seen in the Coding Practices domain points toward a potential dichotomy across instructional 

settings. This may be due to a difference in curricular emphasis of the course content (e.g., a traditional 

inference-based course versus a data science-based course). 

 

5.1.  LIMITATIONS 

 

There are several limitations to the research. The sampling method no doubt resulted in a biased 

sample. The listservs used to recruit participants probably drew more reform-oriented. While it seems 

reasonable to assume that reform-oriented instructors are more likely to emphasize computational 

practices related to simulation than their non-reform-oriented peers, it is unclear whether reform-

oriented instructors have different curricular emphases on computational practices related to data or 

coding practices. A second related limitation is the sample size. While all the models converged, N=236 

is somewhat small given the complexity of these models. Moreover, this sample was composed of 

instructors entirely based in the United States. 
Another limitation is related to the content covered by the instrument. It may be that by omitting 

the two items (relational databases and web scraping) the remaining items do not adequately measure 

the instructors’ curricular emphasis on data practices. It is noted that instructors’ responses on one of 

the remaining items (join datasets) was highly correlated with responses on the relational databases 

item, so these items may be measuring the same thing. 
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Lastly, the differences in the factor score distributions are only exploratory. The same sample used 

to evaluate the instrument was also used in this analysis, which may bias the results. Hopefully, a more 

detailed analysis will be carried out on a larger sample of instructors in the future. 

 
5.2.  IMPLICATIONS AND FUTURE RESEARCH 

 

Although the psychometric analysis suggested that the items generally measured the latent 

constructs, it also pointed toward ways to refine the COMPUTES instrument. The item thresholds were 

almost all above zero. This is problematic in that the instrument may have more difficulty 

discriminating among instructors who have little of the latent factor. This suggests that the instrument 

would benefit from additional items that measure differences at the lower end of the constructs. 
The analyses also suggested the items in Coding Practices should be refined. The item statistics 

identified the read syntax item as a “bad” item, and pointed to the need for more nuanced items related 

to instructional emphasis on coding practices. For example, on reflection, perhaps the Coding Practices 

domain was too closely aligned with practices more prevalent in syntax-driven software. Future 

iterations of the instrument should include items that measure computational practices more likely to 

be included in courses that use software with a GUI (e.g., applying data moves; Erickson et al., 2019). 

There is also much this instrument does not tell us and additional work that needs to be undertaken. 

For example, as pointed out by a reviewer, “although computational practices are recommended by 

many curriculum guidelines, an instructor may choose not to use computational practices based upon 

the needs of their particular students or because those computational practices are covered in other 

courses.” Understanding why instructors are not including computational practices for particular 

audiences or in certain courses would help teachers and curriculum designers think about whether and 

how to include additional computational practices. This could also be useful for considering how 

ideas/concepts from computation might be introduced in courses that do not emphasize computation 

(e.g., in a statistical literacy course). The AP Computer Science Principles course (College Board, 2020) 

might be a good model for this. 

It would be valuable to administer COMPUTES to instructors outside the United States. Given 

some of the international efforts in addressing data and computation, it would be interesting to see if 

there are differences in the types of computational and data practices being emphasized across countries. 

This might point to ideas that could be adopted or modified to expand computing’s role in the 

curriculum more generally and for a more diverse audience. 

Another opportunity for additional insight is to study the efficacy of the teaching of computational 

and data practices. While including computational and data practices in the curriculum is a necessary 

condition for effective teaching of these ideas, it is not sufficient. Case studies of classroom teaching 

practices might be one way to begin to examine this. Ultimately, however, it will be important to assess 

and understand the extent to which students have learned these computational and data practices.  

It is exciting to have an instrument that can be used to measure curricular emphasis of computational 

practices. After adding and modifying some items, the COMPUTES instrument could be used to 

evaluate instructional changes in computational practices. As such, it could be used to evaluate how 

professional development (e.g., workshops) impact curricular change. Lastly, given the increased role 

of computation in the 21st century workforce, it is possible that the results from future administrations 

of COMPUTES could be used to call attention to potential disparities in students’ learning 

opportunities. 
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APPENDIX A 
 
All items were selected-response using a Likert scale of: No emphasis, minor emphasis, moderate 

emphasis, and major emphasis. Items with greyed out text were ultimately dropped from the scale. 
 
Data Practices 

1. How much emphasis is placed on having students work with a data codebook? 

2. How much emphasis is placed on having students use data stored in a flat file (e.g., CSV, 

TXT, SAV)? 

3. How much emphasis is placed on having students use data stored in a relational database 

(e.g., mySQL)? 

4. How much emphasis is placed on having students collect data via web scraping? 

5. How much emphasis is placed on having students validate data (e.g., range checking, variable 

type)? 

6. How much emphasis is placed on having students clean data (e.g., error coding, recoding, 

duplicate case elimination)? 

7. How much emphasis is placed on having students structure data (e.g., reshaping, filtering, 

subsetting)? 

8. How much emphasis is placed on having students join/merge multiple datasets together? 

9. How much emphasis is placed on having students produce visualizations of multivariate data 

with technology? 

10. How much emphasis is placed on having students produce numerical summaries of 

multivariate data with technology? 

 
Simulation Practices Domain 

1. How much emphasis is placed on having students identify elements of the real-world 

phenomena that will be included in the simulation? 

2. How much emphasis is placed on having students decide what data will be produced by the 

simulation? 

3. How much emphasis is placed on having students identify similarities/differences between 

the simulation and the real-world phenomenon being simulated? 

4. How much emphasis is placed on having students describe how the design of the simulation 

(e.g., assumptions, choices) impact the conclusions drawn? 

5. How much emphasis is placed on having students use simulation to advance their 

understanding of statistical concepts through interacting with a simulation? 

6. How much emphasis is placed on having students use simulation to evaluate a 

conjecture/claim about a real-world phenomenon? 

7. How much emphasis is placed on having students use simulation to evaluate competing 

conjectures/claims about a real-world phenomenon? 

8. How much emphasis is placed on having students generate data from a model (e.g., random 

sample from a Normal distribution)? 

9. How much emphasis is placed on having students generate data from a sample (e.g., 

bootstrapping, randomizing)? 

 
Coding Practices 

1. How much emphasis is placed on having students read/understand code/syntax? 

2. How much emphasis is placed on having students modify existing code/syntax? 

3. How much emphasis is placed on having students debug code/syntax? 

4. How much emphasis is placed on having students create code/syntax from scratch? 

 

 

 

 


