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ABSTRACT 

 
What people mean by randomness should be taken into account when teaching 

statistical inference. This experiment explored subjective beliefs about randomness 
and probability through two successive tasks. Subjects were asked to categorize 16 
familiar items: 8 real items from everyday life experiences, and 8 stochastic items 
involving a repeatable process. Three groups of subjects differing according to their 
background knowledge of probability theory were compared. An important finding is 
that the arguments used to judge if an event is random and those to judge if it is not 
random appear to be of different natures. While the concept of probability has been 
introduced to formalize randomness, a majority of individuals appeared to consider 
probability as a primary concept. 
 
Keywords: Statistics education research; Probability; Randomness; Bayesian 

Inference 
 

1. INTRODUCTION 
 
In recent years Bayesian statistical practice has considerably evolved. Nowadays, the 

frequentist approach is increasingly challenged among scientists by the Bayesian 
proponents (see e.g., D’Agostini, 2000; Lecoutre, Lecoutre & Poitevineau, 2001; Jaynes, 
2003). In applied statistics, “objective Bayesian techniques” (Berger, 2004) are now a 
promising alternative to the traditional frequentist statistical inference procedures 
(significance tests and confidence intervals). Subjective Bayesian analysis also has a role 
to play in scientific investigations (see e.g., Kadane, 1996). Formal applications of 
Bayesian probabilities are also more and more common in everyday life situations. Let us 
mention for instance the Bayesian spam-filtering techniques and the “probability of 
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precipitation” given by Canada’s weather service (explicitly defined by that organization 
as a subjective estimate of rain or snow). 

This change seriously questions the common choice in mathematics education to 
emphasize the teaching of the “frequentist” conception of probability and statistics and to 
virtually ignore the alternative Bayesian conception. Teaching the Bayesian approach 
appears nowadays both desirable and feasible (Berry, 1997; Lecoutre, Lecoutre, Grouin, 
2001; Albert, 2002; Lecoutre, 2006), as previous objections (e.g., Moore, 1997) are less 
and less defendable. This should invite us not to radicalize the opposition between the 
Bayesian and frequentist inferences but rather to consider their interplay (see Bayarri & 
Berger, 2004). However, this requires a change of emphasis in the role of probability and 
randomness. 

A recent empirical study indicates that students in introductory statistics class are 
generally confused about the different notions of probability (Albert, 2003). Clearly, 
continuing to teach only the frequentist conception cannot reduce the confusion. This  
implies to students either that there is only one “correct” conception of probability or that 
the frequentist and Bayesian conceptions are competitive, which should not be the case 
(Vranas, 2001). Moreover, an exclusive focus on frequentist notions may conflict with 
the students’ intuitions and representations about probability (see e.g., Hawkins & 
Kapadia, 1984). In any case, as emphasized by Konold (1991, p. 144), “the teacher 
cannot, by decree, enforce a normative view.” 

We assume that variants of the concept of randomness are at the heart of probabilistic 
and statistical reasoning. In frequentist inference, only the data are random. As in the 
prototypical problems used in the traditional teaching of probability (flipping a coin, 
drawing a chip from a jar…), the frequentist conception involves a sequence of repeated 
trials or an ensemble of “identically” prepared systems. There is always a well-defined 
reference set of cases. So this seems to make probability an “objective” property of the 
data (of the coin, the chip…) existing in nature independently of us. In this sense, the 
frequentist approach emphasizes an “observable randomness” that can be “produced” 
(simulated). Unfortunately, empirical frequencies are seldom available for the assignment 
of probabilities in real problems. As a result, assigning a frequentist probability to a 
single case event is not often easy, since it requires imagining a reference set of events or 
a series of repeated experiments. Considerable teaching difficulties with the frequentist 
inference come from the fact that data are considered as random even after observation. 

In the Bayesian approach, the parameters are also considered as random, while data 
after observation are fixed quantities. We need to use another conception of probability. 
The Bayesian probability is the degree of belief (or confidence) in the occurrence of an 
event or a measure of the degree of plausibility of a statement. It can serve to describe 
“objective knowledge,” in particular based on symmetry arguments or on frequency data. 
It can also be used to express a personal description of a state of knowledge, eventually 
incorporating subjective opinions (Savage, 1954; de Finetti, 1974), a notion that the 
frequentist conception rejects as being problematic. With the Bayesian approach it is not 
conceptually problematic to assign a probability to a single case event. Moreover, the 
Bayesian definition fits the meaning of the term probability in everyday language, and so 
the Bayesian probability theory appears to be much more closely related to how people 
intuitively reason in the presence of uncertainty. 

The calculus of probability has been introduced to formalize randomness. In the 
XIXth century, in accord with Laplace’s determinist conception of the world, randomness 
is the word given to the ignorance of a person in a determined universe (Laplace, 1951). 
Nature is knowable and yields to mathematical rules. Randomness is either euphemism 
for ignorance, or the expression of the limits of human perception and knowledge; it is 
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randomness when unknown. An alternative conception of randomness, that has been 
expressed as a fundamental principle in quantum physics, is that physical reality is 
irreducibly random; it is randomness per se. 

The frequentist view of probability is often perceived as related to determinism. So, 
in his preface to the re-edition of Laplace’s book on probability, Thom (1986, p. 8) wrote 
“Laplace est ouvertement ‘fréquentiste’ (Laplace is openly ‘frequentist’), comme il se 
doit de quelqu’un qui postule le déterminisme universel [as someone who postulates 
universal determinism must be)” [italics added]. However, things are not so simple and 
Laplace is also often associated with the development of Bayesian ideas. One must admit 
that the concept of randomness is ambiguous and complex (Kac, 1983) and gives rise to 
various interpretations. 

Consequently, what people — students as well as instructors — mean by randomness 
should be taken into account when teaching these topics. Since the early 1950s, 
psychologists have carried out extensive research on people’s ability to produce or 
perceive randomness. In the first case, subjects were required to simulate a series of 
outcomes of some typical random process such as tossing a coin (for a review, see 
especially Wagenaar, 1972). In the second case, subjects were asked to rate the degree of 
randomness of several sequences of stimuli. One of the main conclusions of all these 
studies is that humans are not good at either producing or perceiving randomness (Falk & 
Konold, 1997; Nickerson, 2002). However, all these studies strongly involved a 
frequentist conception of probability. This is also the case for the numerous studies using 
simulations of sampling distributions in order to improve students’ statistical thinking 
processes. 

So much research remains to be done to inform the teaching of Bayesian statistics. 
Konold et al. (1991) postulated that whether what students think is random, or not 
random, had a role in understanding probability distributions. In this perspective, they 
carried out an exploratory study on people’s subjective criteria of randomness. Twenty 
psychology students and five mathematicians were asked to categorize familiar items as 
either “random” or “not random.” The authors distinguished two types of items. 
“Stochastic” items either involve a repeatable process (e.g., rolling a die) or consist of 
outcomes produced via a mechanism associated with chance (e.g., drawing from a set of 
objects); by contrast “real” items consist of outcomes defined from everyday life 
experiences (e.g., the germination of a planted seed). The study found the following 
results: (1) A higher percentage of stochastic rather than real items was classified as 
random by both students and mathematicians; (2) The subjects’ justifications showed a 
great diversity of conceptions; (3) Some mathematicians expressed their difficulty with 
having to dichotomize the items because they tended to view randomness as an entity that 
is present in degrees. 

We assume that the spontaneous criteria for assessing randomness are linked to the 
theoretical definitions of probability. So, a stochastic item implicitly involves a unique 
(well-defined) reference set of cases, and consequently can be assigned to either a 
frequentist or Bayesian probability about which it can be expected that different 
individuals agree. On the contrary, a real item describes a single case event for which a 
well-defined reference set does not exist a priori. Consequently, an individual who 
doesn’t accept Bayesian probabilities may consider that it is impossible to assign a 
probability to a real item, either because he/she has no reference set (a frequentist 
probability doesn’t exist) or because he/she considers that any reference set should 
depend of his/her personal experience (an objective probability cannot be calculated). 
Consequently, greater variability can be expected for the real items. The psychological 
effect of considering a single case rather than a set of cases was termed the “power of the 
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particular” by Kahneman (quoted in Griffin & Buelher, 1999). It seems to encompass at 
least two separate phenomena: (1) More empathy and other emotional reactions are 
aroused with the single case, because it is easier to imagine and identify with; (2) It also 
invites analysis by reasoning processes that are case-specific and deterministic, rather 
than statistical. 

With the purpose of further investigations, we devised a two-phase experiment in 
which the second phase was similar to the Konold et al. (1991) procedure, hence a 
“constrained categorization”: here, randomness was an imposed criterion. It was 
preceded by a “free categorization” task: here there were no imposed criteria. We 
assumed that this task permitted us to gather answers as spontaneous as possible which 
should partly reflect the subject’s representations and beliefs about randomness. 

We compared three groups varying in expertise in probability: lower secondary 
school pupils, psychology researchers, and mathematical researchers. Our main objective 
was to provide evidence of some internal coherence in probability judgments. 

 
2. METHODS 

 
2.1. SUBJECTS 

 
Three groups of 20 subjects participated in the experiment. 

(1) COL group: 20 pupils of the third class of a “collège” in Rouen (in France this 
corresponds to the last class of the lower secondary school) were chosen at random. They 
were of both sexes and aged 14-16 years old. They had not had a course in either 
statistics or in probability. 
(2) PSY group: 20 psychology researchers from universities in Rouen and Paris, all with 
a PhD. They were recruited if they had some training in probability and applied statistics 
and had some practical experience processing experimental data. 
(3) MAT group: 20 mathematics researchers from the university of Rouen, all with a 
PhD. They were recruited if they had training in probability theory and in mathematical 
statistics and had experience in teaching probability or statistics. 

 
2.2. MATERIALS 

 
The 16 items, reported in Table 1, were presented on individual cards. They are a 

priori categorized into four classes. Eight real items are events from everyday life 
experiences. In 4 items the subject is implied in the formulation by the use of the personal 
pronoun “you,” while this is not the case in the other 4 items. Eight stochastic items 
either involve a repeatable process or consist of events produced via a mechanism which 
is associated with chance. Four items involve two equally likely, symmetric outcomes, 
while the 4 other items involve asymmetric outcomes. 

 
2.3. PROCEDURE 

 
The subjects carried out the task individually. They were told that they would be 

taking part in an experiment aimed at assessing their spontaneous judgments on various 
familiar situations. The item cards were randomly mixed and simultaneously visible. 
First, the subjects were asked to “put together the cards which go together,” and thus to 
make piles. They were told that they could make as many piles as they wished and could 
take as much time as they wanted (free categorization). After they completed this task, 
they answered the following question: “Why did you put those cards together, and those 
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ones, and so on?” Then the cards were mixed again and the subjects were asked to answer 
the following question: “For each card, do you think that there is randomness involved or 
not; explain why” (constrained categorization). The experiment lasted from 15 to 30 
minutes. 

 
Table 1. List of the 16 items 

 
Real situations 
With an implication of the subject in the formulation of the situation 
  A You meet a friend you have not seen for 10 years 
  B You win 10000F at the lottery 
  C You say the first thing that comes to your mind 
  D You will get the flu in the next month 

Without any implication of the subject in the formulation of the situation 
  E A planted seed germinates or does not. 
  F The quotation of a stock at the Stock Exchange of Paris will go up more than 5% in 

the next three months 
  G It rained in Paris on March 15, 1936 or did not 
  H It will rain tomorrow in Paris 
 
Stochastic situations 
With symmetric outcomes 
  S An even number is obtained from a rolling of a die 
  T Heads is obtained from the toss of a fair coin 
  U Tails is obtained at the fifth flip of a fair coin that has landed with tails up on the 

previous four flips 
  V A white marble is drawn from a box that contains 10 black and 10 white marbles 

With non-symmetric outcomes 
  W Two red chips are drawn from a box that contains 1 white chip and 2 red chips 
  X A pair of socks that match is obtained from a blind draw of two socks from a drawer 

in which there are two pairs of different socks 
  Y A lemon-flavoured sweet is drawn from a box that contains 20 orange-flavoured and 

10 lemon-flavoured sweets 
  Z A white marble is drawn from a box that contains 10 black and 20 white marbles 

 
3. RESULTS 

 
3.1. FREE CATEGORIZATION 

 
The categorizations were analyzed using the additive similarity trees (AST) model 

(Sattath & Tversky, 1977). This is a valuable alternative to multidimensional scaling 
(MDS), in which each object is represented by a point in a multidimensional (usually 
Euclidean) space. In AST the objects are represented by the external nodes of a tree. 
Roughly speaking, in the first step a topology is found such that a condition called the 
“four-point condition” (Buneman, 1974) is verified at best, in a certain sense. This 
condition, stronger than the triangle inequality, is characteristic of an additive tree. The 
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distances d between any four points x, y, z, t of the tree satisfy the inequality d(x,y)+d(z,t) 
≤ max[ d(x,z)+d(y,t), d(x,t)+d(y,z) ]. Then arc-lengths are scaled so that the length of the 
path joining two nodes has a close fit to the similarity between the corresponding objects. 
The four-point condition is weaker than the ultrametric (or strong triangle) inequality that 
must be satisfied by ultrametric trees associated with hierarchical clustering. 
Consequently, additive trees are more likely to provide a faithful representation of 
proximity data than ultrametric trees. Pruzansky, Tversky, and Carroll (1982) reanalyzed 
proximity data sets from various published studies and concluded that MDS was more 
appropriate when the hypothesized structure of the objects was perceptual and that AST 
was more appropriate when it was conceptual. 

From the categorizations made by the subjects, an overall distance matrix was 
obtained; the distance between two items was the percentage of subjects who classified 
these two items into separate categories (thus the possible maximal distance between two 
items was 100). This matrix was input to the computer program ADDTREE (in the 
version by Barthélemy & Guénoche, 1991) to produce the additive similarity trees for the 
items. 

The theoretical additive similarity tree associated with the a priori classification of the 
items is shown in Figure 1. The observed trees within each of the three groups of subjects 
are shown in Figure 2. 

 

>⎯< 
A B C D

E F G H

S T U V

W X Y Z  

Figure 1. Theoretical additive similarity tree associated with the a priori 
classification of the items into four classes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Free categorization: observed additive similarity trees within each of the three 
groups of subjects. 

 
The tree-structures are quite similar for the three groups. The 16 items are first 

partitioned into two major clusters: real items versus stochastic items. The results are 
especially striking for the MAT group since all the real items (ABCEDFG) on the one 
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hand and all the stochastic items (STUVWXYZ) on the other hand are regrouped at two 
extremities of the tree. Furthermore in the MAT group, each of these two clusters is 
further partitioned into two finer clusters. The eight real items are divided according to 
the degree of implication of the subject: EFGH (without any implication) are separated 
from ABC (with implication), D (flu) being more distant. The eight stochastic items are 
divided according to the nature of their outcomes: STUV (with symmetric outcomes) are 
separated from WXYZ (with non-symmetric outcomes). For the two other groups of 
subjects, although the same first partition into two major clusters can be observed, the 
partition into finer clusters is less apparent, and the trees are more widespread, especially 
for the COL group. It can be noted that item B (lottery) is closer to the stochastic items 
than to the real items for the PSY group, and is clearly associated with the stochastic 
items for the COL group.  

The d distance of Robinson and Foulds (1981) between the trees is reported in 
Table 2. This distance is purely topologic, that is to say that it only takes into account the 
structure of the trees, while ignoring the length of the paths. It is equal to the minimum 
number of elementary operations (fusion or division of nodes) necessary to transform one 
tree into another one, and for k items lies between 0 and 2k-6, thus here 0 ≤ d ≤ 26. 

 

Table 2. The d distance of Robinson and Foulds (0 ≤ d ≤ 26) 

 MAT group PSY group COL group 
PSY group 22   
COL group 20 12  
Theoretical tree 12 16 18 

 
It is for the MAT group that the distance between the theoretical tree and the 

observed tree is the smallest. So the free categorizations of the MAT subjects are those 
which fit the best with the a priori theoretical classification. The trees of the two other 
groups are nearly equidistant. Furthermore, it can be noted that the maximal distances 
(nearly equal) are observed between the tree of the MAT group and the trees of the other 
two groups. 

The justifications given by the subjects support further comments about the 
categorizations. There is large inter-individual variability, since there are almost as many 
different sets of categorizations and justifications as there are subjects. Nevertheless, a 
striking finding is that most subjects have explicitly used the notion of randomness in the 
free categorization task, although this term was never mentioned in the instructions. The 
main criterion used in all three groups involves the opposition between the items linked 
to a probability (“computable events”) and those linked to everyday life experiences for 
which it is difficult if not impossible to calculate a probability. Other criteria are specific 
to each group. In the MAT group, we frequently observed an opposition between the 
events which are typical examples of standard models of randomness (“typical 
mathematical problems for our students”) and the events in which there is randomness 
“when unknown” (“no available standard model”). Furthermore, within this group some 
categorizations are based either on the type of probability involved – conditional or 
elementary – or on the probability value (e.g., <1/2, 1/2, 1/3,…). These criteria can be 
viewed as variants of the aforementioned main criterion. In the two other groups there is 
greater inter-individual variability. In the PSY group, some subjects differentiated the 
events that are linked to nature or the environment (yielding to some meteorological or 
biological rules) from the “purely random” events. In the COL group, some 
categorizations are specifically based either on the opposition between lucky (“that’s 
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chance”) and unlucky (“that’s fatality”) events, or to the degree of implication of the 
subject. 

 
3.2. CONSTRAINT CATEGORIZATION 

 
A mathematician systematically answered “I don’t know” to all the items and was 

eliminated from the study. Some subjects, rather than expressing a dichotomous attitude, 
rated graduated judgments such as “randomness is involved, but only a little.” 
Consequently, the answers were a posteriori classified into three main categories: R 
(Random), L (a Little bit random) and N (Not random). 

 
Trees The three additive trees for the items are reported in Figure 3. The tree-

structures are quite similar for the three groups. On the whole the 16 items are partitioned 
into two major clusters: real items versus stochastic items. Nevertheless, there are two 
main exceptions concerning items A (friend) and B (lottery) which are separated from the 
other real items and are closer to the stochastic items. 

A comparison of the trees obtained in the two phases, shows that making the notion 
of randomness explicit has three main effects: (1) For the stochastic items, the distinction 
between symmetric and non-symmetric outcomes is less apparent in the constrained 
categorization. So these two categories of items are perceived as quite similar when 
randomness is an explicit criterion of classification, while they can be perceived as 
different in the free categorization task; (2) In the constrained categorization the real 
items are much more dispersed, revealing more divergent conceptions when randomness 
is an explicit criterion; (3) The real items A (friend) and B (lottery) are relatively isolated 
and are much closer to the stochastic items in the constrained categorization than in the 
free one.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Constrained categorization: observed additive similarity trees within each 
of the three groups of subjects. 

 
The justifications given by the subjects support further comments. For the stochastic 

items, the explicit reference to a random model in the constrained categorization is so 
salient that the distinction between symmetric and non-symmetric outcomes vanishes. For 
the two real items A and B in the free categorization, the presence/absence of implication 
is the salient property for most subjects in the three groups, which led them to classify 
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these two items with other real items. In the constrained categorization, it is the extreme 
unusualness of these two events that became the salient property for most subjects. 
Consequently these two items are separated from the other real items and are closer to the 
stochastic items which are viewed in majority as events in which randomness intervenes. 

 
Inferential analyses The percentages of answers within the three groups are reported 

in Table 3. For the real items, there is no consensus except for a certain extent A (friend) 
and B (lottery), which are mainly categorized as random, especially by the COL subjects. 
For the other real items, there is no large systematic majority. However, they are mainly 
categorized as not random by PSY subjects (from 55% to 75%). Items C (first thing) and 
E (seed) are the most frequently categorized as not random (by respectively 69% and 
67% of the subjects). 

For each stochastic item, there is a large majority of COL and MAT subjects (from 
85% to 100%) who categorize it either as random or in a few cases as a little bit random. 
Nevertheless, not one item is unanimously categorized as random by all these subjects. 
By contrast, each of these items is categorized as not random by a non negligible and 
approximately constant proportion of PSY subjects (from 30% to 40%). 

Table 3. Proportions of answers for each of the 16 items within the three groups of 
subjects: COL (n=20), PSY (n=20) and MAT (n=19) 

  Real items Stochastic items 
  With implication Without 

implication 
Symmetric 
outcomes 

Asymmetric 
outcomes 

  A B C D E F G H S T U V W X Y Z 
COL .90 .90 .25 .50 .05 .50 .45 .50 .90 .90 1 .85 .95 1 .85 .70
PSY .60 .65 .20 .25 .15 .25 .25 .25 .50 .50 .45 .45 .60 .45 .45 .45

 
R 

MAT .53  .79 .16 .37 .26 .32 .16 .32 .89 .95 .95 89 .95 .89 .95 .95
 mean .68 .78 .20 .37 .17 .36 .29 .36 .76 .78 .80 .73 .83 .78 .75 .70

COL .05   .15   .05 .15       .10 .20
PSY .10 .20 .05 .15 .10 .10 .15 .20 .20 .10 .20 .15 .10 .15 .25 .25L 
MAT .26 .05 .16 .37 .42 .32 .21 .42    .05     

 mean .14 .08 .12 .22 .17 .14 .14 .26 .07 .03 .07 .07 .03 .05 .12 .15
COL .05 .10 .75 .35 .95 .50 .50 .35 .10 .10  .15 .05  .05 .10
PSY .30 .15 .75 .60 .75 .65 .60 .55 .30 .40 .35 .40 .30 .40 .30 .30N 
MAT .21 .16 .68 .26 .32 .37 .63 .26 .11 .05 .05 .05 .05 .11 .05 .05

 mean .19 .14 .69 .40 .67 .51 .58 .39 .17 .18 .13 .20 .13 .17 .13 .15

R: Random; L: a Little bit random; N: Not random 
 
In all the further analyses, the two categories “Random” and “a Little bit random” 

were grouped together and coded R (“Random”). A contrast analysis was performed in a 
three-groups ANOVA design with a four-level repeated factor, “Items,” corresponding to 
the four classes of items. The dependent variable was the proportions of items 
categorized as not random. Interval estimates are reported for each difference between 
proportions of interest. We used standard non-informative Bayesian procedures (see 
Lecoutre & Derzko, 2001) to assess either the largeness or the smallness of the 
population difference δ. Results are summarized in Table 4. 
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Table 4. Contrast analysis for the constrained categorization. The dependent variable 
is the proportions of items categorized as not random (N). D is the observed difference 

and δ is the population difference. 
 

Contrast D t [df] p Bayesian conclusion 
real versus stochastic +.29 +7.06 [56]  <.0001 Pr(δ>+.24)=.90 
real versus stochastic/COL +.38 +6.38 [19] <.0001 Pr(δ>+.30)=.90 
real versus stochastic/PSY +.20 +2.96 [19]   .0080 Pr(δ>+.11)=.90 
real versus stochastic/MAT +.30 +3.44 [18]   .0028 Pr(δ>+.18)=.90 
implication versus no 
implication/real items 

+.17 +4.78 [56]  <.0001 Pr(δ>+.13)=.90 

symmetric versus 
asymmetric/stochastic items 

+.03 +1.07 [56]    .2892 Pr(.01<δ<+.06)=.90 

PSY vs COL+MAT +.21 +2.96 [56]    .0044 Pr(δ>+.12)=.90 
 
The observed difference between the unweighted average proportions of not random 

answers for the real (.45) and the stochastic items (.16) is D=+.29, significantly different 
from 0. The standard Bayesian analysis shows that there is a 90% probability that δ is 
larger than +.24; a notably large difference can be assessed. The same conclusions are 
found within each group of subjects (see Table 3). 

Within the real items, the observed difference between the items without implication 
(.54) and those with implication (.36) is +.17 and a notably large difference can be 
assessed (Pr(δ >+.13)=.90). Within the stochastic items, the observed difference between 
the items with symmetric outcomes (.17) and those with asymmetric outcomes (.15) is 
+.03 (non significant) and a relatively small difference can be assessed 
(Pr(-.01<δ <+.06)=.90). 

The observed difference between the average proportions of not random answers for 
the PSY group (.44) and the two other groups (.26 for the COL group and .21 for the 
MAT group) is +0.21. A notable difference can be assessed (Pr(δ >+.12)=.90) This 
difference is mainly attributable to the stochastic items that are more often categorized as 
not random within the PSY group than within the two other groups. 
 
Individual patterns The individual patterns of the 16 answers given by each subject were 
further analyzed. Each pattern is a string of 16 Ns or Rs, ranked from items A to P. 
Taking into account the justifications given by the subjects, some general conceptions of 
randomness can be identified. Each identified conception defines a theoretical pattern. An 
example of a general conception is that randomness is involved whenever it is possible to 
calculate a probability; consequently, randomness is involved for stochastic items and is 
not involved for real items, hence the theoretical pattern NNNNNNNNRRRRRRRR.  

We considered that an observed pattern was compatible with a theoretical pattern if at 
least 14 out of the 16 answers were the theoretical answers. This analysis shows that three 
general conceptions allow us to account for 75% (44/59) of the observed patterns. 

(1) The majority conception is that randomness is involved whenever probabilistic 
reasoning is involved. Thus randomness is involved for all items. Thirty nine percent of 
the observed patterns (23/59) are compatible with a string of 16 Rs. This conception is 
more frequent in the MAT group (53%) than in the COL (35% ) and PSY (30%) groups. 
Note that some subjects, especially in the MAT group, explicitly refer to two kinds of 
randomness: a “mathematical” randomness and a randomness “when unknown.” 
Mathematical randomness would be linked to the events for which it is possible to 
compute a probability (typically the stochastic items); randomness when unknown would 
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be linked to all the events for which there is no possibility to easily compute a probability 
(typically the real items). For these subjects randomness is involved in all items, but 
stochastic and real items differ as to the nature of randomness. 

(2) Another frequently encountered conception is that randomness is involved for the 
stochastic items – because it is possible to compute probabilities – and is not involved for 
the real items (except A, friend, and B, lottery, for which it would also be involved) 
because determinism plays a great part and causal factors can be identified. Thirty one 
percent (18/59) of the observed patterns are compatible with the corresponding 
theoretical pattern (RRNNNNNNRRRRRRRR) which is an approximate dichotomy 
between real and stochastic items. This is the majority conception in the COL group 
(40% compared to 26% in each of the two other groups). 

(3) A conception encountered only in the PSY group is “randomness is never 
involved.” Five percent (3/59) of the observed patterns are compatible with a string of 16 
Ns. One of these three psychologists expressed a strong conviction that the world is 
entirely deterministic. The two other subjects stated that randomness is not involved 
whenever it is possible to compute a probability, or in their words “quantify.” 

The 25% remaining patterns involve partial conceptions which correspond to some 
specific views of randomness and apply only to some items. We will mention three of 
these conceptions. (1) A phenomenon is random only when all the outcomes have the 
same probability (cf. the “equally-likely” justification in Konold et al., 1991). 
Consequently randomness would be involved in at least the four stochastic items with 
symmetric outcomes; a typical justification is “it’s pure random because we have 50/50 
chances.” This can be compared with the “equiprobability-bias” (Lecoutre, 1992) 
according to which random events are thought to be equiprobable “by nature” or with the 
“uniformity belief” (Falk, 1992) according to which people have a strong intuitive 
tendency to assume equal probabilities for the various available options. 
(2) A phenomenon is random when there is no prior knowledge about the outcome, and 
thus no possibility to predict nor to control the result (cf. the “causality” and 
“uncertainty” justifications in Konold et al., 1991). For instance E (seed germination) is 
“not random because one can control the soil, the wetness…”, H (rain) is “not random, 
because there is a way of predicting the weather.” By contrast, items involving a die or a 
coin are “random because one can’t control or predict anything.” These justifications can 
be compared with the theory of Piaget and Inhelder (1951) according to which the 
emergence of the idea of chance is attributed to children’s realization of the impossibility 
of predicting oncoming events or of offering causal explanations. (3) Some justifications 
reflect a conception which connects the degree of intervention of randomness to the value 
of the probability. Randomness is said to be involved more as the probability decreases. 
For instance, W (chips) is “almost not random because the probability is relatively high;” 
by contrast B (lottery) “is really random, because the probability is very weak.” 

 
4. CONCLUSION 

 
Our study has confirmed that individuals hold a wide range of meanings for the 

concept of randomness, since in the two categorization tasks taken altogether there were 
as many different classifications as there were subjects, however simple and familiar the 
16 items may be. These findings are in accordance with the results of many studies which 
have been taken as evidence that the concept of randomness leads to a lot of different 
interpretations, even by many who use it extensively in their work (Nickerson, 2002). 
Nevertheless it was possible to distinguish some general conceptions of randomness, and 
so to provide evidence of some internal coherence in probability judgments. The 16 items 
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were partitioned into two main classes opposing the real and the stochastic items which 
were perceived as different. A large majority of individuals were in agreement for the 
stochastic items and categorized them as random because it is “easily” possible to 
compute a probability. In contrast individuals were divided for the real items; they 
categorized them either as random or not random with no large majority. Two main 
conceptions have been observed for the real items: Either randomness is involved 
because a probabilistic reasoning is involved, or randomness is not involved because 
determinism plays a great part or because causal factors can be identified. These findings 
are compatible with the “power of the particular” according to which the single cases 
“seem to invite analysis by reasoning processes that are case-specific and deterministic, 
rather than statistical.” 

Another important finding was the little effect of background knowledge of 
probability theory on one’s views of randomness. In particular, the dichotomy of 
stochastic versus real items was observed within each of the three groups, including 
lower secondary school pupils without any background knowledge of probability theory. 
This is compatible with Konold’s conclusion according to which students have strong 
intuitions about probability and randomness prior to instruction (Konold, 1995). 

However the PSY and MAT groups exhibited some distinctive features. Within the 
PSY group, each stochastic item was categorized as not random by about a third of the 
subjects, while within the two other groups all stochastic items were categorized as 
random by almost all the subjects. For some psychologists an item is not random 
whenever it is possible to compute a probability. We assume that this marginal 
conception could be linked to their statistical practice. Indeed psychologists routinely use 
null hypothesis significance tests and a common presentation of this procedure is that 
rejecting the null hypothesis implies rejecting randomness and consequently could justify 
deterministic conclusions about the data. So, Tryon (2001) wrote “rejection of the null 
hypothesis implies that the results are not due to chance and that therefore they must be 
both systematic and reproductible.” Furthermore psychologists categorized real items as 
not random more often than the other subjects.  

A characteristic of the MAT group is that some subjects explicitly referred to two 
types of randomness: a “mathematical” randomness when it is easy to compute an 
objective probability (typically the stochastic items), and a randomness “when unknown” 
when it is not easy to compute a probability due to a lack of available standard 
probabilistic model (typically the real items).  

Finally, it must be emphasized that the arguments used to judge if an event is random, 
and those to judge if it is not random, were found to be of different natures. In general 
subjects considered randomness to be involved in situations when probability was also 
involved, and considered randomness not to be involved when causal factors could be 
identified. To assess randomness, a large majority of subjects argued that “it is random 
because it is possible to compute a probability.” All these subjects applied this probability 
based argument to the stochastic items, and approximately half of them to the real items 
that are consequently judged as random. It is interesting to note that, while the concept of 
probability has been introduced to formalize randomness (“randomness implies 
probability”), a majority of individuals appear to consider probability as a primary 
concept (“probability implies randomness”). By contrast only a minority of subjects 
referred to more direct arguments such as “it is random because one can’t control or 
predict anything” (“no causality implies randomness”). To assess non randomness, the 
main argument is that “it is not random because there determinism plays a great part or 
because causal factors can be identified” (“causality implies non randomness”). Only a 
weak minority (two psychologists) used a probability based argument and surprisingly 
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argued that “it is not random because it is possible to compute a probability” 
(“probability implies non randomness”). 

It must be acknowledged with Shaughnessy (1992, p. 468) that “the model of 
probability that we employ in a particular situation should be determined by the task we 
are asking our students to investigate, and by the types of problems we wish to solve.” 
Conversely, the types of problems should be enlarged to go beyond “stylized situations” 
in which probability assignments are essentially based on considerations of symmetry. 
They should, in particular, include situations involving probability judgments and 
predictions about single case events. Of course, this is not an effortless avenue. Clearly, 
we must not restrict our attention to the conventional frequentist view of probability. The 
Bayesian conception allows the students to assign a probability to a wider range of 
situations (Steinberg & Von Harten, 1982). Moreover, the Bayesian definition can be 
applied to real life uncertainty situations in which it is often not possible to “easily” 
compute a probability. 

Concentrating more specifically on the teaching of the Bayesian statistical inference 
approach, instructors face the difficulty of explaining to students that the parameters, as 
well as the statistics (before observations), are considered as random. According to our 
results, this difficulty should be all the more serious in that it is not easy to assign a 
probability. On the one hand, the sampling probability distributions of statistics clearly 
refer to stochastic situations. At least, in most familiar situations, sampling probabilities 
are relatively easy to compute, and the level of mathematical justifications can be adapted 
to the students. On the other hand, Bayesian probabilities about parameters refer to single 
case events. The elicitation of the prior probabilities is precisely one of the most often 
denounced difficulties with the Bayesian approach. A possible approach, advocated by 
Berry (1997), is to place emphasis on the fact that prior and posterior Bayesian 
distributions are subjective and to force students to assess their prior probabilities. 
However , this task is not easy for the students and Berry recognized that “they don’t like 
it.” An alternative strategy, based on our teaching experience with Bayesian methods 
(Lecoutre, Lecoutre & Grouin, 2001; Lecoutre, 2006), is to avoid – at least in a first stage 
– the issue of assessing a subjective prior distribution and to focus the teaching on 
“objective Bayesian analysis” (Berger, 2004), based on noninformative priors. Such 
priors fit well with the conception of randomness when unknown. As for the sampling 
probabilities, the resulting posterior probabilities are relatively easy to compute and the 
level of mathematical justifications can be adapted to the students. Once students have 
become familiarized with their use and interpretation, the introduction of “informative” 
prior distributions at a later stage is generally well-accepted. 

A considerable difficulty in the teaching of the frequentist approach is that data 
continue to be treated as random even after observation. This seems so strange to 
students that the frequentist interpretation of confidence intervals hardly makes sense for 
them. However, according to our results, it is not so paradoxical that most statistical users 
erroneously interpret the frequentist confidence level as the (Bayesian) probability of the 
single event “the parameter lies between two fixed limits.” Indeed, since a probability is 
available for this event, these users have no doubt that it is a random event. Furthermore, 
all attempts to teach the orthodox frequentist interpretation seems to be “a losing battle” 
(Freeman, 1993). Our suggestion is to replace, as much as possible, probabilistic 
formulations about sampling distributions with formulations in terms of “proportions of 
samples.” Thus, the probabilistic formulations are mainly reserved for the Bayesian 
approach, minimizing a possible source of confusion. In conclusion, it remains a 
challenge for statistics educators to reduce students’ confusions about the different 
notions of probability. In this perspective, it is important that they become familiar with 
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the variety of meanings and beliefs about randomness. In particular, knowing what 
students think is, or is not, “random,” in relation to probability based arguments, should 
facilitate the communication between students and teachers regarding probability and 
statistical inference. Our finding that background knowledge of probability theory has 
little effect on one’s view of randomness implies that a mutual understanding is possible. 

 
ACKNOWLEDGMENTS 

 
Our special thanks go to Charlotte Détrie for improving our English. The remaining 

mistakes are ours. 
 

REFERENCES 
 
Albert, J. (2002). Teaching introductory statistics from a Bayesian perspective. In B. 

Phillips (Ed.), Sixth International Conference on Teaching Statistics Proceedings. 
Cape Town, South Africa [CD-ROM]. Voorburg, The Netherlands: International 
Statistical Institute [Online: www.stat.auckland.ac.nz/~iase/publications/1/ 
3f1_albe.pdf]  

Albert, J. (2003). College students’ conceptions of probability. The American Statistician 
57, 37-45. 

D’Agostini, G. (2000). Role and meaning of subjective probability: some comments on 
common misconceptions. AIP Conference Proceedings, 568. Melville. 

Barthélemy, J.-P., & Guénoche, A. (1991). Trees and proximity representations. New 
York: Wiley. 

Bayarri, M. J., & Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. 
Statistical Science, 19, 58-80. 

Berger, J. (2004). The case for objective Bayesian analysis. Bayesian Analysis, 1, 1-17. 
Berry, D. (1997). Teaching elementary Bayesian statistics with real applications in 

science. The American Statistician, 51, 241-246. 
Buneman, P. (1974). A note on the metric properties of trees. Journal of Combinatorial 

Theory (B), 17, 48-50. 
Falk, R. (1992). A closer look at the probabilities of the notorious three prisoners. 

Cognition, 43, 197-223. 
Falk, R., & Konold, C. (1997). Making sense of randomness: Implicit encoding as a basis 

for judgment. Psychological Review, 104, 301-318. 
de Finetti, B. (1974). Theory of probability (Vol.1). New York: Wiley & Sons. 
Freeman, P. R. (1993). The role of p-values in analysing trial results. Statistics in 

Medicine, 12, 1443-1452. 
Griffin, D., & Buelher, R. (1999). Frequency, probability, and prediction: Easy solutions 

to cognitive illusions? Cognitive Psychology, 38, 48-78. 
Hawkins, A. S., & Kapadia, R. (1984). Children’s conceptions of probability – A 

psychological and pedagogical review. Educational Studies in Mathematics, 15, 349-
377. 

Jaynes, E. T. (2003). Probability theory: The logic of science (Edited by G.L. Bretthorst). 
Cambridge: Cambridge University Press. 

Kac, M. (1983). Marginalia: What is random? American Scientist, 71, 405-406. 
Kadane, J. B. (1996). Bayesian methods and ethics in a clinical trial design. New York: 

John Wiley & Sons. 



 34 

 

 

 

Konold, C. (1991), Understanding students’ beliefs about probability. In E. V. 
Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 139-156). 
Amsterdam: Kluwer. 

Konold, C. (1995). Issues in assessing conceptual understanding in probability and 
statistics. Journal of Statistics Education, 3(1). [Online: 
www.amstat.org/publications/jse/v3n1/konold.html] 

Konold, C., Lohmeier, J., Pollatsek, A. Well, A. D., Falk, R., & Lipson, A. (1991). 
Novices’ views on randomness. In R. G. Underhill (Ed.), Proceedings of the 
Thirteenth Annual Meeting of the North American Chapter of the International Group 
for the Psychology of Mathematics Education (pp. 167-173). Blacksburg: Virginia 
Polytechnic Institute. 

Laplace, P.-S. (1951). A philosophical essay on probability [English translation, original 
work published 1814: Essai philosophique sur les probabilités]. New York: Dover 
Publications. 

Lecoutre, B. (2006). Training students and researchers in Bayesian methods for 
experimental data analysis. Journal of Data Science, 4, 207-232. 

Lecoutre, B., & Derzko, G. (2001). Asserting the smallness of effects in ANOVA. 
Methods of Psychological Research, 6, 1-32. [Online: www.mpr-online.de] 

Lecoutre, B., Lecoutre, M.-P., & Grouin, J.-M. (2001). A challenge for statistical 
instructors: Teaching Bayesian inference without discarding the “official” 
significance tests. Bayesian Methods with Applications to Science, Policy and Official 
Statistics, 301-310. Luxembourg: Office for Official Publications of the European 
Communities. 

Lecoutre, B., Lecoutre, M.-P., & Poitevineau J. (2001). Uses, abuses and misuses of 
significance tests in the scientific community: Won’t the Bayesian choice be 
unavoidable? International Statistical Review, 69, 399-417. 

Lecoutre, M.-P. (1992). Cognitive models and problem spaces in “purely random” 
situations. Educational Studies in Mathematics, 23, 557-568. 

Loredo, T. J. (1990). From Laplace to Supernova SN 1987A: Bayesian inference in 
astrophysics. In P. F. Fougere (Ed.), Maximum Entropy and Bayesian Methods (pp. 
81-142). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Moore, D. S. (1997). Bayes for Beginners? Some Pedagogical Questions. In S. 
Panchapakesan & N. Balakrishnan (Eds.), Advances in statistical decision theory 
(pp. 3-17). Boston: Birkhäuser. 

Nickerson, R. S. (2002). The production and perception of randomness. Psychological 
Review, 109, 330-357. 

Piaget, J., & Inhelder, B. (1951). La genèse de l’idée de hasard chez l’enfant. [The origin 
of the idea of chance in children]. Paris: Presses Universitaires de France. 

Pruzansky, S., Tversky, A., & Carroll, J. D. (1982). Spatial versus tree representations of 
proximities data. Psychometrika, 47, 3-24. 

Robinson, D., & Foulds, L (1981). Comparison of phylogenetic trees. Mathematical 
Biosciences, 53, 131-147. 

Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319-345. 
Savage, L. (1954). The foundations of statistical inference. New York: John Wiley & 

Sons. 
Shaughnessy, J. M. (1992). Research in probability and statistics: reflections and 

directions. In D. A. Grouws (Ed.), Handbook of research on mathematics and 
learning (pp. 465-494). New York: Macmillan. 

Steinberg, H., & Von Harten, G. (1982). Learning from experience – Bayes’ theorem: A 
model for stochastic learning. Proceedings of the First International Conference of 



 35 

 

 

 

Teaching Statistics, Volume 2, (pp. 701-714). Sheffield, U.K.: Teaching Statistics 
Trust. 

Thom, R. (1986). Preface of P.S. Laplace, Essai philosophique sur les probabilités [Text 
of the 5th edition, 1825]. Bourgois : Paris. 

Tryon, W. W. (2001). Evaluating statistical difference, equivalence, and indeterminacy 
using inferential confidence intervals: An integrate alternative method of conducting 
null hypothesis statistical tests. Psychological Methods, 6, 371-386. 

Vranas, P. (2001). Single-case probabilities and content-neutral norms: A reply to 
Gigerenzer. Cognition, 81, 105-111. 

Wagenaar, W. A. (1972). Generation of random sequences by human subjects: A critical 
survey of the literature. Psychological Bulletin, 77, 65-72. 
 

MARIE-PAULE LECOUTRE 
ERIS, Laboratoire Psy.Co, E.A. 1780 

Université de Rouen, UFR Psychologie, Sociologie, Sciences de l’Education 
76821 Mont-Saint-Aignan Cedex, France 

http://www.univ-rouen.fr/LMRS/Persopage/Lecoutre/Eris 


