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ABSTRACT 

 
This exploratory study, a one group pretest-posttest design, investigated the 
development of elementary preservice teachers’ understandings of distribution as 
expressed in the measures and representations used to compare data distributions. 
During a semester-long mathematics methods course, participants worked in small 
groups on two statistical inquiry projects requiring the collection, representation, 
analysis and reporting of data with the ultimate goal of comparing distributions of 
data. Many participants shifted from reporting descriptive exclusively to the 
combined use of graphical representations and descriptive statistics which supported 
a focus on distributional shape and coordinated variability and center. Others gained 
skills and understandings related to statistical measures and representations yet 
failed to utilize these when comparing distributions. Gaps and misconceptions in 
statistical understanding are discussed. Recommendations for supporting the 
development of conceptual understanding relating to distribution are outlined.  

 
Keywords: Statistics education research; preservice teacher education; distribution; 
statistical inquiry, data comparison, teacher knowledge 
 

1. INTRODUCTION 
 
The teaching of statistics in elementary schools has received increased attention and 

priority over the past three decades. The release of the Curriculum and Evaluation 
Standards for School Mathematics by the National Council of Teachers of Mathematics 
(1989), which incorporated a strand focusing on data analysis and probability, and the 
publication of the Guidelines for the Teaching of Statistics K-12 (1991) by the American 
Statistical Association, are two important landmarks. The increased focus on elementary 
level data analysis and statistics is evident in the proliferation of curricula designed 
specifically for younger students, such as the Used Numbers Project (Technical 
Education Research Centers and Lesley College, 1989), Mathematics in Context 
(National Center for Research in Mathematical Sciences at the University of 
Wisconsin/Madison and Freudenthal Institute at the University of Utrecht, 1997-1998), 
the Investigations in Number, Data, and Space (TERC, 1998), and the Connected 
Mathematics Project (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002). We also see 
computer software, minitools, and tutorial tools developed for elementary and middle 
grade students, such as Tabletop and Tabletop Jr. (Hancock, 1995; Hancock, Kaput & 
Goldsmith, 1992), Statistical Minitools (Cobb, Gravemeijer, Bowers, & McClain, 1997), 
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Authentic Statistics Stack (Lajoie, 1997), and Tinkerplots (Konold, 1998; Konold & 
Miller, 2001).  

The focus of recent curricula and software has been on the notion of distribution and 
how to support students in understanding distribution. One area which is lacking, 
however, is an analysis of the ways in which teachers understand and are prepared to 
teach fundamental notions associated with distribution. 

 
2. SCIENTIFIC BACKGROUND 

 
2.1.  DESCRIBING DISTRIBUTION 

 
Distribution refers to the arrangement of values of a variable along a scale of 

measurement resulting in a representation of the observed or theoretical frequency of an 
event. Descriptive statistics are indices of distribution: they summarize complex data into 
measures that can be compared against each other to ascertain the nature of a dataset, and 
the degree to which two or more datasets are similar. Central elements in the 
development of a concept of distribution are notions of central tendency, variability, 
symmetry (skew) and relative frequency (kurtosis), each of which can be modeled using 
descriptive statistics.  

One way to get a handle on distribution is through identifying landmarks and trends 
(Friel, Mokros, & Russell, 1992) in data. Taken together, identifying data landmarks 
(outliers, gaps) and generating measures that index certain characteristics of the data (for 
example, measures of center and variability) provide insights into properties of any given 
distribution. While descriptive statistics are central components of any treatment of 
distribution, a focus on them alone can, as cautioned by Makar and Confrey (2005), 
“aggravate the focus on individual points” (p. 28). Graphical representations serve as 
useful tools to communicate aspects of a distribution as they facilitate a focus on aspects 
of the data that may be missed with the use of descriptive statistics alone. Graphics have 
been described as revealing data (Tufte, 1983) and as being superlative to statistical 
computations in revealing information about data. However, little is known about the 
ways in which learners use graphical representations to communicate aspects of a 
distribution. 

Research reveals an emphasis on measures of central tendency as a means to describe 
data distributions resulting in an overemphasis on centers and the corresponding neglect 
of the variation found within a given distribution (Shaughnessy, 1992, 1997). Variation is 
a critical component of, and inextricably linked to, the concept of distribution and has 
been found to play a central role in children’s thinking (Cobb, 1999; Konold & Pollatsek, 
2002; Watson & Kelly, 2002). An understanding of distribution requires an awareness of 
the propensity of a variable to vary and comprehension of how that variability contributes 
to the notion of the distribution as an aggregate rather than a collection of individual data 
points.  

 
2.2.  USING DATA COMPARISON TO SUPPORT THE DEVELOPMENT OF 
UNDERSTANDINGS RELATED TO DISTRIBUTION 

 
A critical statistical notion for learners is that of dataset as an entity, in other words 

developing a ‘statistical perspective’ (Konold, Pollatsek, Well, & Gagnon, 1997). 
Holding a statistical perspective requires a focus on the dataset as a collective rather than 
focusing on individual data values. By focusing on comparing distributions students are 
provided with a conceptual structure that facilitates a focus on aggregate (Cobb, 1999). 
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More specifically, when comparing datasets the activity leads to consideration of the 
shape, center and variability of a distribution of data, in turn, providing a context for 
examination of the distribution as an entity.  

Another reason for engaging students in the activity of comparing datasets is due to 
the focus on variability that is nurtured. Unexplained variation in data creates noise and 
the primary purpose of many statistical techniques is to unearth the signal within the 
noise (Konold & Pollatsek, 2002; Wild & Pfannkuch, 1999). Comparing datasets requires 
a learner to examine the variation both within and between distributions of data. This 
requires identifying signals or patterns within a dataset worthwhile of attention, and 
comparing these signals against those emitted by the comparison dataset. Identification 
and communication of these signals reveals aspects of an individuals’ understanding of 
the notion of distribution.  
 

2.3.  PRESERVICE TEACHERS’ UNDERSTANDING OF DISTRIBUTION 
 

Given the relatively recent election of data analysis as a focus of mathematics 
instruction at the K-12 level, it is conceivable that many teachers may be teaching 
statistical content that they themselves have little experience with as learners. Lajoie and 
Romberg (1998) comment that statistical concepts may be as new a topic for teachers as 
for the students they teach and recommend that “teachers must be provided with 
appropriate preservice and in-service training that will give them the knowledge base 
they need to feel comfortable teaching about data and chance” (p. xv). 

Much of the current research focuses on preservice teachers’ understandings of 
measures used to index distributions of data (Canada, 2004; Gfeller, Niess, & Lederman, 
1999; Heaton & Michelson, 2002; Makar & Confrey, 2002). Many of these studies 
converge on the same finding – preservice teachers’ understanding of measures of center 
tends to be procedural rather than conceptually-based. Leavy & O’Loughlin (2006) report 
on elementary preservice teacher’s fluency in using the mean algorithm but identified 
gaps in conceptual understanding. Indicators of poor conceptual understanding were lack 
of understanding of the mean as a ratio, difficulty solving weighted means problems, and 
poor analog knowledge of the mean (a concept akin to Skemp’s (1979) concept of 
relational knowledge). The prevalence of procedural understandings is further supported 
by Gfeller, Niess, & Lederman’s (1999) finding that computational algorithms were the 
most prevalent method used by preservice teachers for solving problems related to the 
mean.  

Studies examining variability indicate that the provision of coherent and meaningful 
statistical activities can lead to gains in understandings of variability. Canada (2004) 
found that following activities involving chance and computer-generated simulations, 
preservice teachers’ predictions of variability moved from expectations of way too little 
or too much variation to more realistic expectations of variation. It has also been found 
that preservice teachers are more likely to use measures of variability to represent a 
distribution if the data are presented graphically (Makar & Confrey, 2005). This suggests 
that when choosing methods to represent a distribution of data, merely presenting the data 
graphically may draw attention to the variability of the data and make variability “ ... 
perhaps more compelling than any measure of center” (pp. 36-37). Other advantages of 
using graphical representations are identified by Hammerman and Rubin (2004) who 
reveal that having access to a visual representation of a distribution may influence the 
value(s) that one chooses to represent that distribution. The authors comment on the low 
occurrence of comparisons based on means or other measures of central tendency and 
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assert that “seeing a distribution makes it harder to accept a measure of center, especially 
a mean, as being representative of the entire distribution” (pp. 36-37). 

A recent analysis of the literature revealed that only 2% of published research in 
mathematics education was devoted to probability and statistics (Lubienski & Bowen, 
2000). Within this group, there is a visible absence of studies focusing on understandings 
of elementary preservice teachers, resulting in an inadequate picture of the preparedness 
of our elementary teachers to teach this new and emerging field of study. Unlike their 
secondary counterparts, elementary teachers are not expected to possess as strong or as 
broad a foundation in mathematics. However, given their role as primary mathematics 
educators of young children, a study of preservice elementary teacher’s mathematical 
understanding is warranted. Subject matter knowledge in the preparation of teachers has 
been identified as a fundamental component of teacher education programs (Ball & 
McDiarmid, 1990). We now understand that poor mathematics content knowledge may 
lead to an overemphasis on limited truths and procedural rules (Stein, Baxter, & 
Leinhardt, 1990), inaccurate explanations (Borko, Eisenhart, Grown, Underhill, Jones, & 
Agard, 1992), and a lack of understanding of the appropriate representations to utilize 
when supporting the development of rich mathematical understandings in children 
(Borko et al., 1992). These relationships between content knowledge and instructional 
practices make it critical that mathematics teacher educators develop a greater 
understanding of elementary preservice teachers’ statistical understanding.  
 

2.4.  PURPOSE OF THIS STUDY 
 
The purpose of this exploratory study was to investigate the development of 

preservice teachers’ understandings of distribution, expressed in the measures and 
representations used to compare distributions of data. Specific goals of interest were to: 

(i) investigate the approaches used to compare distributions of data. 
(ii) identify the statistical concepts focused on when reasoning about distributions of 

data, and examine the ways in which different understandings of these particular 
statistical concepts support or hinder the description, analysis, and comparison of 
datasets. 

(iii) explore ways to support the development of rich understandings of distribution. 
 

3. METHOD 
 

3.1.  PARTICIPANTS 
 
Twenty-three participants were enrolled in a mathematics methods course in a 

university in the USA, as part of a one-year master’s degree program leading to 
elementary teaching certification. Participants ranged in age from 22 to 55, seven were 
male. All participants held a bachelor’s degree, with majors in Art, Business, Chemistry, 
Computer Science, Criminal Justice, Early Childhood Education, Economics, English, 
History, Psychology, Public Relations, Sociology, and Spanish. Three reported taking 
Advanced Placement Statistics in high school; almost half had no formal coursework in 
statistics.  

 
3.2.  APPROACH 

 
 This study employed a one-group pretest-posttest design and involved collection of 
baseline data or pre-test, an instructional intervention, and a post-test. The study 
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represents a blend of components from two analogous research methodologies: Teaching 
experiment methodology (TEM, Steffe & Thompson, 2000) and the teacher development 
experiment (TDE, Simon, 2000). Using a blend of both methodologies supported the 
documentation of participants’ understandings of distribution on entry to the study, the 
observation of changes in understanding over time, and the focus on the process of 
student learning and the concomitant teacher actions that promoted advances in statistical 
understanding. The study departed, though, from a true implementation of either 
methodology. The dearth of research relating to distribution resulted in the absence of an 
empirical research base from which to inform the construction of hypothetical learning 
trajectories, critical components of Teacher Experiment Methodology (TEM).  

The whole class teaching experiment was conducted over a 15-week semester in 
collaboration with two teachers who were members of the four-person research team. 
Two or more research team members were present in the classroom during teaching 
sessions and were involved in the daily organization and evaluation of classroom 
mathematical practices. It was through juxtaposing these multiple perspectives that we 
gained rich and accurate insights into the development of statistical understanding. 
Weekly meetings of the research team focused around “taken-as-shared” (Cobb, 1999) 
interpretations of classroom activity, taken as shared meanings constructed as a result of 
cycles of construct development that supported the refinement of our own statistical 
knowledge. Meetings were used primarily as contexts within which to share 
interpretations of events, devise contexts in which to test these interpretations, and 
eventually refine and extend interpretations. This researcher-level data analysis supported 
the development of refined understandings of the process of statistical learning in 
addition to providing a focus on the development of teachers and their pedagogical 
understandings, an important component of the Teacher Development Experiment (TDE).  
 

3.3.  DESIGN AND TASKS 
   
 This study was organized in three parts (see Table 1): Pre-test (P), intervention with 
instructional components (I), and post-test (PT). The baseline data collection (P) was 
intended to probe participants’ understandings of distribution. Central to this phase were 
the data collection and representation phases of the bean experiment investigation.  

During the intervention phase (I), instructional activities supported the development 
of statistical reasoning, and made use of two tasks described later in more detail, the 
Beans investigation and Popcorn experiment. Firstly, students worked together to 
compare distributions of beans grown in different conditions. Secondly, several weeks of 
instruction focused on the stages of statistical inquiry and what was involved in moving 
through a statistical investigation (also known as data modeling, see Lehrer & Romberg, 
1996). The foci of instruction were derived from analysis of the pre-test activities and 
related directly to distribution (representativeness, dataset as an entity). In an effort to 
maintain coherence between the areas of instruction, instructional themes were anchored 
within the umbrella concept of ‘carrying out a statistical investigation’. Instruction was 
related primarily to the ongoing statistical investigations with the beans; the ability to ask 
participants to examine and assess their own work facilitated us in highlighting events 
that occurred in participants’ own investigations. In preparation for the instruction, we 
had digital images of participants work (for example, the graphical representations 
constructed to compare datasets) or transcriptions of conversations or comments, which 
we then placed in our power point presentations. These records often became the focus of 
instruction and presented an opportunity for participants to reflect on and assess their 
work in light of research being examined as part of course experiences. The primary 
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topics of instruction are presented on table 1. A third component of the instructional 
phase engaged participants in making journal reflections on statistical understandings 
related to distribution. The fourth component was involvement in focus group discussions 
relating to the strategies and approaches used to analyze bean data.  

Finally, in the post-instruction phase (PT), we examined changes in participants’ 
understandings about distribution. To that end, during the penultimate class session 
participants engaged in the popcorn investigation that involved comparison of the effect 
of refrigeration on the popping of kernels.  

Engaging in statistical inquiry was a critical component of the study. From a 
pedagogical perspective, engaging preservice teachers in statistical investigation provides 
the potential to highlight statistical (and other) issues they may face when approaching 
statistical inquiry in their own classrooms. Secondly, engaging in ‘real life’ statistical 
investigation engages participants in the activities of statisticians and exposes them to 
real world ‘messy’ data. It was our goal that we set up statistical contexts that supported 
prospective teachers in learning ‘statistical concepts in an environment much like the one 
recommended for students – one that is active … involving authentic data, and offering 
plenty of opportunities to build their conceptions through experiences with data’ (Makar 
& Confrey, 2005, p. 30). Research focused on activities surrounding two investigations: 

 
The bean investigation A semester-long statistics research project, investigating 

optimal conditions for growing beans sprouts (Appendix A), was one context within 
which the research was carried out. Participants were presented with an experimental 
design to determine which growing conditions supported the best growth.  

Participants were divided into groups and provided with a bag of 25 lentil beans, a 
solution (lemon or water), a paper towel, a plastic sealable bag, and a card identifying the 
light intensity (light/dark) in which the beans would be placed. There were eight groups 
and four conditions: water/light, water/dark, lemon/light, lemon/dark. Participants were 
instructed to spray the solution on a paper towel, place the bean on the towel, fold the 
towel, and place in the plastic bag. The bags were sealed and placed in the labeled light 
intensity for seven days. The following week the beans were brought to class and the 
sprouts measured and recorded by the groups. Each group was then responsible, over the 
course of the semester, for constructing a hypothesis regarding the optimal condition for 
bean growth and determining what statistical measures or approaches they might utilize 
to test the hypothesis. Each group was instructed to analyze and compare the data 
collected by all eight groups and prepare a presentation of the findings. It was by 
engaging participants in this data comparison scenario that we established the need for 
individual distributions of data to be represented and indexed in a way that required a 
focus on distribution and in turn facilitated the comparison of the distributions. 

 
The popcorn experiment The purpose of the post-intervention statistical 

investigation, the popcorn investigation (Appendix B), was to provide a context similar to 
the bean experiment where participants were once again engaged in a data comparison 
activity. The requirements of the task were similar to those of the pre-intervention task 
thus allowing identification and examination of changes in statistical understanding. 

The investigation involved two samples of popcorn kernels (n=100 in each sample), 
one kept at room temperature and the other refrigerated, being popped in an open-top 
popcorn popper for 4 minutes. The position that each popped corn kernel landed was 
marked on the plastic ‘target sheet’ which had been placed beneath the popper. Groups 
were then presented with the data, asked to examine the distribution, and determine 
whether refrigerating the kernels influenced the distance that they reached when popped. 
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Table 1. Outline of statistical experiences over the course of the semester 
 

Phase Wk Activity Specific (teaching) experiences 
P 4 Bean investigation: 

Setting up the 
experiment–planting 

See section 3.3 

P 5 Bean investigation: 
Data collection–
measuring beans 

See section 3.3 

I 6 Instruction relating to 
asking research 
questions, collecting 
data 

Instruction focused on overview of data modeling 
(Lehrer & Romberg, 1996), supporting children in 
formulating research questions, examples/analysis of 
questions children construct, types of data generated 
from questions, overview of categorical and 
numerical data types, overview of data collection 
methods (surveys, experiments, observations), 
supporting children in choosing appropriate data 
collection methods, identifying and overcoming 
obstacles and common difficulties faced by children 
when collecting data. 

P 7 Bean investigation: 
Data representation 
phase 

See section 3.3 and Appendix A 

I 7 Bean investigation: 
Data analysis and 
comparison 

The session was considered instructional in that 
students were presented the opportunity to learn 
when working in groups. Activity focused on the 
analysis and comparison of datasets.  

I 9, 
10 

Reflection on 
statistical 
understandings arising 
from the bean 
experiment 

Revisiting the stages of data modeling in the context 
of the bean experiment: What have we learned? 
What difficulties did we face (procedural, content 
understandings etc.) and how might this apply to 
classroom teaching of data analysis and statistics? 

I 11 Focus group 
discussion relating to 
the strategies and 
approaches used 
during the bean 
investigation 

The following are examples of questions asked 
during focus group discussion which focus on 
statistical misconceptions identified in weeks 1-10: 
What do descriptive statistics not tell us about a 
distribution? What does standard deviation mean in 
the context of a distribution of data? What is the 
relationship between the mean and sample size of the 
distribution? What role did zero values play when 
comparing distributions of data? Describe why some 
groups found the mean of group means? Why did 
others not? When are graphical representations 
useful? When/why might a box and whisker plot be 
used to represent a distribution? What does relative 
size of quartiles in a box and whisker plot 
communicate about the data? When/why might you 
use (or not use) a scatter plot?  

I 11 Instruction relating to 
representing data 
(using graphical 
representations), 
analyzing and 
comparing data 

Instruction on representing data focused on 
advantages of using graphs, guidelines from research 
about elements to attend to when constructing 
graphs, relationship between graphs and the data 
they represent (categorical/numerical), features of 
specific graphical representations and inherent 
advantages and disadvantages of their use (tables, 
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pictograms, pie charts, bar graphs, line plots, stem 
and leaf plots, box and whisker plots), examples of 
graphs constructed by children, common errors 
children make when constructing graphs, 
categorizing representations of data.  
     Instruction on analyzing and comparing data 
focused on defining distribution, important features 
of distributions, examining distributional shape 
(landmarks, bumps, gaps, outliers), locating 
measures of center on a distribution of data, 
examining models of the mean (leveling out, 
balance, fair share), locating indicators of variability 
on a distribution, thinking about skew when 
examining distributions, engaging in data 
comparison (Ben-Zvi, 2003; The “basketball 
problem,” McGatha, Cobb & McClain, 2002), 
examining children’s thinking about distribution, 
common errors children make when using, 
generating, and describing measures of center and 
variability. 

I 13 Instruction on 
graphical 
representations; 
measures of central 
tendency and 
variability; means and 
weighted means 
 
 

Instruction on graphical representations focused on 
revisiting features of graphical representations (Friel, 
Curcio & Bright, 2001), relationship between box 
and whisker plots and variability, what is a quartile?, 
distinguishing between univariate and bivariate data, 
scatter plots and the data they represent, why we use 
particular graphs, thinking about our bean data and 
graphs we used to represent the data (error analysis).  
     Instruction on measures of central tendency and 
variability distinguishing between measures of 
central tendency, what research tells us about 
children’s understanding of the mean and median, 
features of the mean (e.g., Strauss & Bichler, 1988), 
revisiting models of the mean, identifying when 
measures of central tendency are most appropriate, 
examining use of the mean in the bean data 
experiment, identifying and indexing variability, 
representing variability using graphs, looking at use 
of variability in the bean experiments. 
     Instruction on the weighted mean focused on 
what is a weighted mean, examining the elevator 
problem (Pollatsek, Lima, & Well, 1981), analysis of 
responses on weighted means problems (Leavy & 
O’Loughlin, 2006), examining the GPA problem 
(Pollatsek, Lima, & Well, 1981), analysis of 
responses on the GPA problems (Leavy & 
O’Loughlin, 2006), thinking about the bean data and 
weighted means. 

PT 14 Popcorn investigation: 
Representing, 
analyzing, and 
comparing data 

See section 3.3 and Appendix B 

PT 15 Self report on growth 
in understanding 
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3.4.  DATA SOURCES 
 
Several types of data were collected: videotape data, observational data, audio taped 

data of small group interactions, and student artifacts. Weekly sessions were videotaped. 
During statistical investigations two cameras were used: One focused on the whiteboard 
at the front of the room (where groups presented the outcomes of their investigation and 
where the instructor was located); the other moved between groups and focused on 
particular students during large group discussions. Teacher and researchers observations 
were recoded during the weekly sessions. There were always a minimum of two 
researchers in the room during each session, and for four weeks three researchers were 
present. The third data source was audio taped records of small group conversations 
during the investigations. Student artifacts were the fourth data sources and took several 
forms: student journals focusing on the development of statistical understanding, small 
group reports completed during the bean and popcorn investigations, and large 
presentation posters used at the culmination of the statistical investigations. 
 

3.5.  ANALYSIS OF DATA 
  
In line with TEM and TDE there were two cycles of analysis: ongoing and 

retrospective analyses. Following each teaching episode, researchers examined the data 
and met as a group to discuss interpretations of classroom events. Each researcher had 
responsibility for examining in-depth a subgroup of students over the course of the 
semester. Discussion focused primarily on the types of understandings about distributions 
that were evident from videotape and audiotape recordings of participant activity during 
the class session. Each researcher shared the findings of her analysis and observations 
and when necessary situated the activity in relation to previous class sessions. The group 
then identified themes that emerged from the individuals’ analysis of the data and 
constructed assertions relating to the themes. Individual researchers then revisited the 
data relating to their subgroup of participants with a view to finding supporting or 
contradictory evidence for the assertions. If the assertion was found to hold for a number 
of subgroups the cumulative class data were revisited in an effort to seek out evidence to 
triangulate the data. In cases where there was no supporting evidence we constructed a 
task or activity to present in the next teaching session (or in a focus group) that would test 
the assertion. On occasions where misconceptions relating to distributions were 
identified, statistical tasks were constructed to address misconceptions. It was through 
these cycles of hypothesis construction, data mining, triangulation, and hypothesis testing 
that understanding of the participants’ understandings of distribution were developed. 
Figure 1 illustrates the interaction between data collection, analysis teaching episodes. 
 

TEACHING EPISODES 
Week 1   ………………………………………………………. Week 15 
 

DATA COLLECTION 
 
 

DATA INTERPRETATION 
 

Figure 1. The interaction between data collection and data analysis in the context of a 
teaching experiment. Adapted from Lesh and Lehrer (2000). 
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Retrospective analysis at the end of the study involved re-examining participant 
activity over the entire semester. This allowed for a reanalysis of the findings and 
identification of supporting and contradictory evidence for the major claims arising form 
the ongoing weekly analysis of data. 
 

4. RESULTS 
 

4.1.  INITIAL UNDERSTANDINGS RELATING TO DISTRIBUTION 
 

 Engaging in the bean experiment (Appendix A) provided insights into the types of 
distributional understandings held by preservice teachers. Participants compared lengths 
of germinated beans and presented their conclusions for feedback from their peers.  

A lack of attention to distributional features of the data was apparent in the 
dominance of numerical methods for making data comparisons. Three of the groups (A-
C) used descriptive statistics, alone, on which to base judgments about data. While use of 
the mean is appropriate as a comparative measure, absolute reliance on descriptive 
statistics is limiting as they provide merely one perspective on the data, that of centers, 
and do not take into account other features of the data (e.g., shape, variability). These 
groups did not invoke the use of graphical representations as a way to explore the datasets 
nor did they provide alternative perspectives not immediately apparent through the use of 
descriptive statistics. Group A’s justification of their data comparative method follows: 

 
Our hypothesis was that the beans in lemon water would grow longer than the ones in 
water. We compared means because it sort of cancelled out the real high ones and the 
real low ones [data values representing bean heights] but incorporated every single 
piece of data. The main limitation is because there are high and low values they skew 
the data. … our answer was the sprouts in water were 20.2mm and in lemon water 
were 1.7mm so we were wrong in our hypothesis.  

 

 
 

Figure 2. Illustration of Group A’s approach to comparing datasets 
 

The remaining five groups used a combination of graphical representations and 
descriptive statistics as data comparative tools. Interestingly, these students who used 
graphical representations in the pre-assessment did not have more statistical experiences 
with data prior to taking the course than their peers who did not construct graphs. 
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Examination of the graphical representations constructed by these groups, however, 
reveals that the graphs were used merely to illustrate summary statistics rather than 
illustrate distributional features. Four of these five groups used bar charts to represent 
group means resulting in a representation of subgroup means, rather than presenting a 
picture of the distribution of values along a scale of measurement (see Figure 3). The 
following is the response of Group D: 

 
We were interested in how lemon or no lemon affected the growth of beans in light or 
in the dark. Our hypothesis was that dark and lemon would yield the longest beans so 
… we were close in the sense that lemon was up there as number 2 and water and 
dark were number 1. So why did we do a bar graph? Cause it was easiest to show 
everything. So we got the averages for the four conditions. We didn’t count zero 
cause they didn’t germinate. The limitation is that outliers skew the average. 
 

 
  

Figure 3. Illustration of group D’s use of bar charts to illustrate sub group means 
 
There was evidence of an attempt to represent the variability of the data. This is 

illustrated in the graphical representation of group G (see Figure 4). The representation 
resembles a double bar graph consisting of eight groups arranged in pairs; each pair 
corresponds to the two sets of data collected for each of the four conditions. The height of 
each bar represents the mean height of beans within each group (rather than the frequency 
of elements within the group). The line superimposed on each bar represents the range of 
heights of beans within each sample, thus the ‘whiskers’ represented the lower and upper 
limits of bean height. Thus the graphical representation was used as an instrument to 
report descriptive measures with the bars reporting group means and the whisker lines 
reporting the range of the data; indicating an attempt to coordinate both center and 
variability. Examination of group G’s justification for inclusion of the range line reveals 
that they decided to report the variability given the large discrepancies in the sample 
statistics for beans grown under the same conditions. It seems that the unexplained 
variation in the measurement of bean heights was creating so much noise (Konold & 
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Pollatsek, 2002; Wild & Pfannkuch, 1999) that it was causing the group to refute the 
presence of a common signal across samples representing identical conditions. As Stan 
reported: 

 
We decided to go with a double bar chart cause of all the inconsistencies in 
measurement. So we did 8 groups and not 4 we also decided to do a box and whisker 
plot to show the full range … it is the orange line on the bar graph. 

 

 
 

Figure 4. Illustration of Group G’s attempt to coordinate variability and center  
 
 Analysis of pretest data did not reveal a relationship between participant’s 
experiences with statistics prior to the study and the nature of the analyses carried out in 
the pretest. 
 

4.2.  END-OF-SEMESTER UNDERSTANDINGS RELATING TO DISTRIBUTION 
 
We shift now to present some findings related to how groups coped with the Popcorn 

experiment, which as explained earlier was used to examine post-intervention 
performance of the groups. As compared to findings at the beginning of the semester 
outlined in the previous section, six of the groups shifted to using graphical 
representations to provide a picture of the distribution of data values. Groups reported 
that the selection of graphical representations to compare popcorn data was based on the 
capacity of the representations to highlight distributional features of the data, in contrast 
to the graphs used at the beginning of the semester which functioned merely to represent 
group means. This attention to global patterns in distributions of data was evident in the 
use of representations that highlighted distributional features in the data in particular the 
use of stem and leaf plots by five of the groups, and to a lesser extent box and whisker 
plots which were utilized by one group. The increased use of representations did not lead 
to the neglect of descriptive statistics. Figure 5 shows the data comparison strategy used 
by one group. Reporting the sample means and the range on the stem and leaf plots 
maintained the focus on measures of center and variability evident at the beginning of the 
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study. As compared with their previous strategy (see Figure 3) this response represented a 
coordinated and detailed approach to analyzing data.  

 

 
 

Figure 5. A comparison of distances by graphically illustrating distributional features in 
conjunction with the calculation of measures of central tendency 

 
Tom: We chose this [stem and leaf plot] cause it gives you a way to see all the 

points at the same time and it gives you a sense of the distribution while 
getting all the data points there. And em … we thought that it was pretty 
representative. We predicted our mean would be higher for the room 
temp popcorn because of the way the tail skewed and we were right 
about that (pointing to the means)… and although the refrigerated 
popcorn did get a better yield it seems like the room temp popcorn did 
fly a little farther.  

Barry: Melissa and I talked a lot about the kind of analysis we could use to 
think about the distribution curve. ... Well the curve for refrigerated has 
a bulk (pointing to the values at 10-40mm) where the curve for room 
temperature doesn’t seem to have a bump it seems to be a much 
smoother curve. And we noticed that the number of kernels that popped 
even though it was different it wasn’t all that big of a deal because the 
sizes were large enough that we could see what the curve would do if 
there were a ton more data points. You could kinda visually ... kind of .. 
visualize what the data would look like … how things would fall into 
that distribution curve. 

R:  During the discussion, you were trying to decide to do a box and 
whisker plot and you decided not to. Can you explain why? 

Barry: Cause even though I like box and whisker it is difficult for me to 
verbalize exactly what that [box and whisker plot] represents. And I like 
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how I can look at it and say “okay that’s cool” but to try and make 
descriptions about what that represents is difficult.  

Mia: With stem and leaf plots you can see gaps and bumps in the data. While 
it looks nice on the box and whisker to see where medians lie against 
the boxes, is difficult to see what numbers are in between the quartiles 
and see how the distribution looks. 

Barry: Even though in box and whisker you can see that the quartile is large 
you can’t see why. When you look at the stem and leaf you can see it is 
because 60 has the bulge. With the double stem and leaf you can see 
there is a bump coming out that skews the data one way or another .. 

 
While increased attention to the distributional features of data is a welcome finding, 

examination of the specific groups who used representations reveals a disconcerting 
pattern. Five of these groups had used graphs in the bean experiment, while the sixth 
group had used means. Two of the three groups who relied exclusively on descriptive 
statistics at the end of the study to make comparisons had not used graphs to represent the 
bean data in the initial weeks of the study. This finding indicates the development of a 
broader understanding of the functionality of graphical representations, but only for those 
who were already inclined to use such representations. Those who set out using 
descriptive statistics exclusively demonstrated stability in strategy use. Thus we were 
successful in helping participants understand the differential limitations and advantages 
of particular graphical representations, as indicated in their reflections at the end of 
semester; however the stability in strategy use for those who used descriptive statistics 
indicates that for these participants we were less successful in communicating the 
functionality of graphical representations as exploratory data analysis tools.  

Figure 6 shows the data comparison strategy used by Group A who had used similar 
descriptive statistics to support their argument in the bean investigation (see Figure 2). 

The following transcript is Group A’s reasoning for not constructing a graph: 
 

Valerie: Cause the question was more about distance and you can’t compare 
individual kernels, we weren’t concerned with how they clustered. 
That’s why we didn’t do a graph. It was more in terms of the average 
distance that we looked at it. We didn’t do the graph .. cause frankly the 
double stem and leaf is very messy for me. I understand you can see the 
bell curve but em it is very … it is too much. I’d prefer more concise 
data and more gearing towards the average. If it had asked perhaps how 
would you show the data or …  

Robyn: How would you visually represent it? 
Anne: Right. 
Valerie: That’s why we chose average cause the question wasn’t so specific. 

 
 Closer examination of the dialogue indicates that participants in Group A may have 
interpreted the Popcorn task as estimating the average distance from the refrigerated to 
the non-refrigerated kernels. This involves a comparison of averages and does not require 
the construction of a graphical representation of the data. In this case, participants may 
have decided against constructing a graph as it did not represent a useful or efficient 
strategy in the context of this particular task.  
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Figure 6. The use of descriptive statistics to describe a distribution of data 
 
Examination of the reports accompanying the popcorn experiment reveals one 

common theme underlying the choice of descriptive measures: the ability of descriptive 
statistics to include all data values in the comparison. As Group B stated “averages were 
used because it is too difficult or rather impossible to compare individual kernels between 
the two [conditions].” This comment indicates the realization that unequal sample size 
would make a one-to-one comparison of values impossible, and in any event any one-to-
one comparison of values would result in the loss of data (of the larger dataset). The 
upshot of this is twofold. On the positive side, participants understood the mean as a 
proportional measure appropriate to use in comparison of unequal size datasets. On the 
other hand it seems that the group was not prepared, or able, to examine global aspects of 
the distribution. Their comments indicate that a focus on individual data values would be 
the alternative had the datasets been equal in size. Thus it may be that this group was still 
focused on individual values in the datasets rather than possessing what Konold et al. 
(1997) term a statistical perspective.  

When analyzing these groups’ responses across the semester we can see that 
participants have demonstrated growth in several areas. Firstly, they are now attuned to 
sample size, something that they did not consider in the bean experiment. Secondly, their 
choice of descriptive statistics is now grounded in an attempt to include all data values 
particularly given the realization that datasets are different in size. It seems that this 
newfound attention to sample size disparity provided greater support for use of the mean 
and median. Finally, two groups demonstrated some awareness of the limitations of their 
approaches. Following the group presentations, the act of revisiting their own analyses in 
light of the presentations (see Step 5d Appendix A, and Step 4b Appendix B) led them to 
reflect critically on the limitations of not providing a picture of the distribution. The 
following quotes highlight the discomfort that two groups felt with the data reduction that 
takes places with the use of descriptive measures. 
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Group A: After looking at the other groups’ presentations we now see that with 

this method [using means to make group comparisons] we cannot 
determine if there are clusters of distances 

Group C: We liked our method. But the limitation of it [using the mean, median 
and mode] is that it reduces all data into one number. If we had the 
opportunity we would re-do our analysis again because seeing other 
people’s graphical representations, it is much easier to see all data 
represented and to see how much farther it popped in either scenario. 

 
4.3.  OTHER ISSUES IMPACTING UNDERSTANDING OF DISTRIBUTION 
 

The mean as a proportional measure Despite focused instruction on the concept of 
the mean, Amanda posed a question on the last day of class that revealed her difficulty 
understanding the mean as a data comparative measure.  

 
Jay:  Okay then it looks like we’ll just find the means of the refrigerated ones 

and the regular ones. Then we can see if there is any difference between 
the groups. 

Amanda: But if we have different N’s doesn’t each one [popped corn] in the 
smaller set get more significance?  

 
This comment indicates that Amanda is grappling with the issue of how to best 

compare two datasets of unequal sample size. What is evident at the same time is her 
difficulty understanding the mean as a proportional measure. At this juncture, the 
instructors recapped on a conversation held several weeks previously in which particular 
features of the mean were explored and reminded Amanda of the ways in which the mean 
deals with unequal sample size. Amanda’s final comment indicates that she has accepted 
that the mean is a measure that can be used to compare datasets of unequal sample size 
however she is of the understanding that there may be some cut-off point representing 
magnitude in sample size difference when the mean is no longer an appropriate 
comparison measure.  

 
Amanda: I wonder how big does the difference [in sample size] have to be before 

you can’t use the mean to compare them? 
 
 The role of zero values when examining and describing distributions Uncertainty 

regarding whether zero values should be included in calculation of the means for 
particular conditions surfaced during the bean investigation. During the group 
presentations Andrew stated his group had “manipulated” the data so as to generate a 
finding that supported their original hypothesis. In an attempt to further probe this issue, 
the question of whether it was valid and justifiable not to count zeros was posed in the 
focus group discussion.  

 
R:  Andrew, you said you manipulated the data – how did you do it? 
Andrew: We left out all data points that were zero – if we had included them it 

[the subgroup means] would have averaged out differently – 
R:  Did you make the decision ahead of time? 
Maria: I didn’t think it would matter if we counted [the zeros] cause the total 

number was smaller anyway. 
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R:  The number you divided by didn’t count the zeros either? 
Maria: No. 
R:  Is it valid not to count the zeros?  
Maria: It would have skewed the data so badly 
Stan: I would go back to what the original question was that we wanted to 

ask. You may care about those that don’t germinate. But there may be 
another scenario where it wouldn’t matter.  

Andrew: Yeah if you just wanted to find the longest one then yeah those that 
don’t grow don’t matter. 

 
We can see in the transcript a number of understandings related to zero. Andrew 

understands that inclusion of the zeros will change the outcomes of the comparison. 
Whereas Maria’s statement implies the initial belief that not counting zero values would 
not matter given that the denominator of the mean algorithm adjusts to reflect the number 
of values being considered. We see, however, that Maria’s second comment indicates a 
change in her thinking. Her comment on skew indicates that the inclusion of zeros will be 
influential. It was not until Stan commented on the meaning of zero within the context of 
the research question that the groups’ consideration of zero shifted from thinking of zero 
merely as a number devoid of meaning to consideration of zero as a measure within the 
context of the investigation.  

Examination of the work carried out by groups in both statistical investigations shows 
that, in general, values of zero were eliminated and not considered as valid data. This has 
repercussions for reasoning about distributions in that within the context of statistical 
investigations a measure of zero is a value and its consideration, whether graphical or 
quantitative, influences the outcome of deliberations. While we never probed the reason 
behind why zero values were considered inconsequential by a large proportion of the 
participants, two explanations come to mind. The first hypothesis suggests that a 
conflation of one type of mathematical understanding of zero and the experimental 
situation resulted in zero not being considered. From a mathematical perspective 
participants may have been considering zero as representing the absence of elements, that 
is, a set of zero objects. In the context of the bean and popcorn experiments, beans that 
didn’t grow and kernels that didn’t pop were assigned the value zero, however 
participants may not have considered the value zero as a quantity but rather as the 
absence of growth or distance, if a bean didn’t grow or a kernel didn’t pop then it has no 
measure and shouldn’t be considered. The second hypothesis suggests that participants’ 
actions resulted from over generalizing the property of zero as the identity element in 
addition. This notion, that zero as an identity element leaves a set unchanged, is true for 
addition but is not true in the context of the mean. While the numerator of the mean is an 
addition context, the quantity derived from the addition is then divided by another 
quantity – in this case zero as the identity element does not hold.  

 
5. DISCUSSION 

 
The first goal of the study was to identify the statistical concepts preservice teachers 

focus on when analyzing and comparing distributions of data. The findings of this study 
suggest that elementary preservice teachers’ focus is on summary rather than exploration 
of datasets resulting in a focus on summary statistics such as measures of central 
tendency. This overemphasis on centers and corresponding neglect of variation has also 
been highlighted by Shaughnessy (1992, 1997) in the undergraduate student population. 
The focus on summary was also evident in that participants did not use graphical 
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representations to support the description and comparison of distributions of data. It 
seems that when presented with a distribution of data participants did not attempt to 
represent the distribution in a way that highlighted structural features, thus limiting the 
accuracy of the conclusions that can be drawn from the data. Shifting attention to 
exploration prior to summarization was not an insurmountable task. Once participants 
were made aware of the merits of data exploration and their attention drawn to 
distributional shape, they were eager to utilize a number of alternative measures (for 
example variation) and representations when comparing and analyzing datasets. Our 
finding that the increased attention to graphs resulted in revealing aspects of distributions, 
supporting the findings of Hammerman and Rubin (2004) and Makar and Confrey (2005) 
who noted a particular emphasis on variability.  

The second goal of the study was to examine the ways in which different 
understandings of these particular statistical concepts support or hinder the description, 
analysis, and comparison of datasets. As mentioned in the previous paragraph, the 
overemphasis on measures of central tendency went hand in hand with the neglect of 
graphs and variability. For many participants, their lack of exposure to statistical ideas 
and statistical inquiry lead to the blanket implementation of measures they were familiar 
with – the mean invariably. However, once participants’ attention was drawn to variation, 
in concert with an emphasis on how variation is modeled in graphical representations, 
variation quickly became a central component of participants’ understanding of 
distribution. Similarly, providing experiences which highlighted the functionality of 
graphical representations, as tools to explore and reveal aspects of distributions, 
supported a focus on graphs. This resulted in a concentration on the selection of particular 
representations according to their propensity to reveal features of distributions. 

Finally, this research reveals a number of ways to support the development of rich 
understandings of distribution. Firstly, it is critical that we draw preservice teachers’ 
attention to the notion of distribution; many participants did not hold a distributional view 
of data. The use of the experimental context supported the construction of distributional 
perspectives due to the emphasis drawn by the context on the variation of data values 
along a scale of measurement (i.e., how height of the bean varied within the range of 
possible heights). Once this notion of distribution was established participants could see 
the interrelationships between measures of center and variability and the underlying 
structures of data that they emulate, and recognize the importance of graphs in revealing 
aspects of data. Secondly, a focus on the dataset as an entity was essential as it provided a 
meaning and context for the construction of representative values (see also Mokros & 
Russell, 1995) – values that were initially applied without an underlying rationale. The 
act of comparing datasets forced the entity view in that the act of comparison required the 
search for comparison values, each of which needed to be representative of the body of 
data. Finally, once the notion of distribution is established and the concept of dataset as 
an entity developed, understandings of distribution can be further nurtured though 
exposure to the range of measures and representations that support the continued effort of 
describing, analyzing and comparing distributions. It was surprising to find that many 
preservice teachers were not adept at constructing, or in some cases even aware of, stem 
and leaf plots and box and whisker plots. This lack of experience as learners with 
representations and measures that they may be required to teach in the future is a 
worrying, yet not surprising, finding as highlighted by Lajoie & Romberg (1998) in their 
call for teachers to be provided with content experiences in data analysis and statistics. In 
essence, the study highlights that once provided the opportunity to engage in statistical 
inquiry in conjunction with instruction focusing on data analytic techniques, preservice 
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elementary teachers develop understanding of statistical measures and techniques and 
utilize them in statistically sound and justifiable ways.  
 

5.1.  LIMITATIONS  
 

 There are a number of limitations of this study which are related primarily to the 
research design and the nature of the experiences presented in the class. When 
considering the research design, the research participants are not representative of the 
general population of preservice teachers. Given their undergraduate degrees this study 
may overestimate the mathematical content knowledge of the general population of 
elementary preservice teachers. Other design limitations, related to the complexities of 
carrying out research in educational settings, carry with them implications related to the 
study validity. For example, there not was random assignment of participants to the study 
and there was not a control group. These factors pose threats in terms of the internal 
validity of the findings.  
 

5.2.  IMPLICATIONS 
  
 One challenge prospective teachers face is examining the structure of their own 
mathematical knowledge in an effort to come to know what it means to understand a 
particular concept. So when thinking about teaching statistics a preservice teacher may 
ask what it means for a 6th grade student to understand the mean. This requires examining 
what it is we know about the mean, how we came to know “it,” what “it” contributes to 
our understanding, and how we might embark on supporting students in developing 
similar understandings. So, we might agree, if asked, that the mean is a value that is not 
necessarily represented in the dataset. But if asked to list all we know about the mean we 
may not list this particular piece of knowledge – so how do we know what we know? 
How do we start to decompress (Ball & Bass, 2000) our mathematical knowledge? These 
types of understandings are what Ball and Bass (2000) call knowledge packages and Ma 
(1999) calls knowledge bundles – they are the fundamental understandings, connections, 
ideas that teachers need to develop (or may already possess) so that our knowledge 
becomes more accessible as a resource for teaching. This study provides insights into the 
ways in which engaging in statistical inquiry, wherein one is accountable for justifying 
the tools used to explore a distribution of data, challenges learners to question what it is 
they know and how this knowledge can be used in ways that are mathematically sound 
and justifiable. In their current form, traditional methods of teaching the pedagogy of data 
analysis and statistics fail to engage prospective teachers in examining their own 
knowledge for teaching.  
 This study also suggests that when considering the mathematical preparation of 
teachers we cannot assume that preservice teachers have sufficient exposure to statistical 
measures and techniques, in particular the construction and selection of appropriate 
graphical representations. Even when preservice teachers demonstrate knowledge of how 
to generate particular measures; this study shows that they may not recognize situations 
in which to use these measures, their understandings were what Skemp (1979) would 
categorize as primarily instrumental with poor relational understandings. It seems that 
participants did not have an adequate picture of the landscape of data analysis – in other 
words, what measures are available, when we might use them, and why. These findings 
suggest strongly that when considering the mathematical preparation of teachers that the 
focus be placed on what Hiebert and Lefevre (1986) define as knowing how-to 
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(procedural understanding) and why (conceptual understanding) we use particular 
statistical techniques and representations.  
 There are a number of ways in which future research relating to preservice teacher 
statistical knowledge can build on and extend the findings of this study. It is important to 
investigate whether similar studies using different types of statistical investigations result 
in similar conclusions as this study. This would have implications not only for the ways 
in which we research preservice teacher’s statistical understandings but also for the ways 
in which we structure our instruction in elementary schools. An extension of this work 
would be to investigate the ways in which providing experiences in data modeling at the 
preservice level influences the teaching practices of prospective teachers when they enter 
classrooms.  

 
5.3.  RECOMMENDATIONS 

 
The final paragraph of the discussion poses recommendations for ways to support the 

development of rich understandings relating to distribution. The remainder of this section 
poses recommendations for ways to support learners build conceptual understanding and 
skills.  

Firstly, while all students seemed to be good consumers of statistical information, in 
other words they demonstrated skills in graphical interpretation and comprehension 
(reading the data, reading between the data, and reading beyond the data), the majority 
exhibited difficulties constructing graphical representations. Efforts should be made to 
provide preservice teachers opportunities to work with real data and engage in activities 
related to constructing graphical representations. Secondly, of those students who 
demonstrated skills in deriving descriptive statistics and constructing graphical 
representations, relational understanding of these measures was absent. For example, 
some participants wished to construct scatter plots of the univariate data and persisted in 
trying to manipulate the data so that it would be amenable to presentation on a scatter 
plot. This again relates to their primary experiences as consumers of statistics – they have 
not been in the position of having to select appropriate statistics and representations for 
particular purposes. This finding calls for a coordinated effort to provide experiences that 
allow preservice teachers to consider the appropriateness of particular measures and 
representations for the purposes of data analysis. Thirdly, and not unrelated to the 
previous points, was the poor conceptual understanding of descriptive statistics and 
graphical representations, calling for a more conceptual focus in mathematics and 
methods courses. It also cautions teacher educators against drawing conclusions about 
conceptual understandings based on demonstrated proficiency in generating and applying 
measures (such as the mean for data comparison purposes). Finally, our observations lead 
to the conjecture that gains in understanding demonstrated over the course of the semester 
were influenced primarily by having access to strategies used by peers when engaging in 
data description and comparison activities. While classroom teaching experiences 
supported the development of skills and conceptual understanding, what they seemed not 
to do was convince participants of the utility of such measures when engaged in data 
analysis. In other words, our analysis indicated that factors other than classroom teaching 
were more influential in convincing students to apply new concepts and skills when 
engaging in statistical inquiry. It became apparent that engagement in small group 
statistical inquiry acted as a conduit whereby prospective teachers observed and gained 
access to the complex decision making processes of others when engaged in exploratory 
data analysis and then compared those decisions against their own. Such experiences 
provide opportunities for participants to learn in practice, to develop communities of 
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learners who engage in authentic statistical inquiry, and who continuously seek to find 
more efficiently and statistically justifiable ways of thinking about distributions of data. 
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APPENDIX A: SMALL GROUP REPORT GUIDELINES FOR THE BEAN 
INVESTIGATION 

THE BEAN EXPERIMENT: SMALL GROUP ACTIVITY 
 

Group members: ________________________________________________________ 
 
Step 1: Re-examine the primary research scenario and experiment design 
 

Ben likes bean sprouts in his salads and sandwiches. Lately he has been unhappy 
with the quality of bean sprouts available at the grocery store so he has decided to 
grow his own. He suspects that lighting conditions and the addition of lemon 
juice to the water may affect the length of the bean sprouts. Ben wants to grow 
the longest bean sprouts possible. Briefly describe how he could determine which 
growing conditions (Light vs. Dark, Plain water vs. Water with lemon juice) 
support the best growth.  

 Solution 
 Water Lemon

Light A B 

                
 

Light 
Intensity Dark C D 

 
Step 2: Construct research questions you may examine in an effort to investigate Ben’s 
suspicion. 
 
Step 3: What comparison method(s) would you utilize to examine the data and 
consequently answer your questions. 
 
Step 4: Construct a hypothesis describing what you will believe will be the outcome of 
the data analysis. 
 
Now use the data from the bean sprouts to answer your question. Prepare a poster to 
present your analysis and be prepared to discuss the questions below. 
 
Step 5: 

a) Explain why you chose your particular comparison method(s): 
 

b) Explain what (if any) limitations there are of this method(s): 
 

c) Present the answer to your research question. How did you come to this 
conclusion?  

 
Time to reflect! 
 

d) You have now viewed the presentations and approaches your peers took when 
approaching the same task. What would you do if you had the opportunity to 
complete your analysis again – would you change your approach? 

 
If so, why? And what would you do differently? 
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APPENDIX B: SMALL GROUP REPORT GUIDELINES 
FOR THE POPCORN INVESTIGATION 

 
USING AN EXPERIMENT TO TEST A CONJECTURE – IT’S ALL ABOUT POPCORN! 

SMALL GROUP ACTIVITY 
 
Group members: _______________________________________________________ 
 
 
There are some people who say that refrigerating popcorn kernels prior to popping 
changes certain characteristics of the kernels. In this experiment we are going to examine 
one such conjecture. 
 
 
Step 1: Make a list of factors that you think could be influenced by refrigeration.  
 

Today, we are going to investigate: 
 

Does refrigerating corn for 12 hours prior to popping influence either (a) the 
number of corn that pop over a 4 minute period, or (b) the distance that the corn 
falls/jumps from the popper? 

 
 
 
Step 2: Record the data for the first experiment: popping kernels for 4 minutes in an 
uncovered popper in the space below: 
 
Step 3: Record the data for the second experiment: popping refrigerated kernels for 4 
minutes in an uncovered popper in the space below: 
 
Step 4:  
Now use the data from both experiments to answer the research question. Prepare a poster 
to present your analysis and be prepared to discuss the questions below. 
 

a) Explain why you chose your particular comparison method(s): 
 

b) Explain what (if any) limitations there are of this method(s): 
 

c) Present the answer to the research question. How did you come to this conclusion?  
 
Time to reflect! 
 

d) You have now viewed the presentations and approaches your peers took when 
approaching the same task. What would you do if you had the opportunity to 
complete your analysis again – would you change your approach? 

 
If so, why? And what would you do differently? 

 
 


