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ABSTRACT 

 

Data science is a new field of research that has attracted growing interest in recent years as it 

focuses on turning raw data into understanding, insight, knowledge, and value. New data science 

education programs, which are being launched at an increasing rate, are designed for multiple 

education levels and populations. Machine learning (ML) is an essential element of data science 

that requires an extensive background in mathematics. Whereas it is possible to teach the principles 

of ML only as a black box, novice learners might find it difficult to improve an algorithm’s 

performance without a white box understanding of the underlying ML algorithms. In this paper, we 

suggest a pedagogical method, based on hands-on pen-and-paper tasks, to support white box 

understanding of ML algorithms for learners who lack the level of mathematics knowledge required 

for this purpose. Data were collected using a comprehension questionnaire and analyzed according 

to the process-object theory borrowed from mathematics education research. We present evidence 

of the effectiveness of this method based on data collected in an introduction-level data science 

course for graduate psychology students. This population had extensive psychology domain 

knowledge, as well as an established background in statistics, but had gaps in mathematical and 

computer science knowledge compared with data science majors. The research contribution is both 

practical and theoretical. Practically, we present a learning module that supports non-major data 

science students’ white box understanding of ML. Theoretically, we propose a data analysis method 

to evaluate students’ conceptions of ML algorithms. 

 

Keywords: Statistics education research; Data science education; Machine learning; Process-

object duality theory  

 

1. INTRODUCTION 

 

Data science is a new field of research that focuses on turning raw data into understanding, insight, 

knowledge, and value (Skiena, 2017; Wickham & Grolemund, 2016). It is an interdisciplinary field that 

integrates knowledge and methods from computer science, mathematics, and statistics, as well as from 

the domain knowledge of the data. More than a decade ago, Conway (2010) suggested representing the 

field of data science as a Venn diagram. While no consensus has been reached regarding the 

representation of data science as a Venn diagram, and regarding Conway’s original diagram, we find it 

useful to represent the interdisciplinary essence of data science, including mathematics, statistics, 

computer science, and domain knowledge, using such a diagram (see authors’ version in Figure 1).  

The radical growth in recent years in the availability of both data and the computational resources 

required to process them has led to a corresponding increase in the demand for data scientists. As a 

result, new data science education programs are being launched at a growing rate, many of which are 

offered to undergraduate students (Berman et al., 2018). The interest in data science extends beyond 

undergraduate data science students, and so data science programs are being established in the context 

of computer science, statistics, and a variety of other domains, such as social science. Data science 

programs are also being developed for multiple education levels, from primary school children, through 

high school pupils and undergraduate and graduate students, to industry professionals and academic 

researchers.  
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Figure 1. Data science is an interdisciplinary field that integrates knowledge and methods from 

computer science, mathematics, and statistics, as well as from the domain knowledge of the data  

 

This paper focuses on teaching machine learning (ML) to graduate psychology students. ML 

modeling is a significant phase of the data science lifecycle, which represents the process of 

transforming raw data into understanding, insight, knowledge, and value (Berman et al., 2018). 

Although several models of the data lifecycle exist, some phases are common to all variants and these 

include data acquisition, data cleaning and tidying, exploratory data analysis and visualization, 

modeling, and communications. ML is one of the effective methods for modeling huge and complex 

data and is considered to be a field of research located in the intersection of statistics and computer. 

Unlike traditional parametric modeling, which presumes an underlying statistical behavior of the 

researched phenomena and aims to fit the best parameters of this model, ML models learn from 

experience (Goodfellow et al., 2016) and can learn complex data patterns directly from raw data. At the 

same time, however, not dealing with random variation and uncertainty is often considered a 

shortcoming of ML. 

Data science programs require extensive knowledge and skills in mathematics, statistics, and 

computer science (Anderson et al., 2014; Danyluk et al., 2019; De Veaux et al., 2017; Demchenko et 

al., 2016). In particular, ML requires an understanding of the algorithms themselves, as well as a broader 

view of the algorithms in the context of the domain. Such understanding requires knowledge about the 

role of ML as a component of the data science process, handling of biases in the data, the role of training 

and test data, the evaluation of ML methods and models in the context of the application, ethics, and 

social responsibility.  

ML algorithms may therefore be a complex topic to learn in general, and particularly difficult for 

those not majoring in statistics, computer science, or data science. Sulmont et al. (2019a, 2019b) 

described non-major learners of ML as learners who lack sufficient knowledge in mathematics, 

statistics, and programming. For example, according to the results of their interviews with instructors 

of ML courses offered to such learners, Sulmont et al. (2019a) mapped the difficulties such learners 

encounter while learning ML according to the Structure of the Observed Learning Outcome (SOLO) 

taxonomy. The SOLO taxonomy, which classifies learning outcomes in terms of their complexity, 

consists of five levels: pre-structural, unistructural, multi-structural, relational, and extended abstract 

(Biggs & Collis, 2014). Sulmont et al. (2019a) found that, a) at the unistructural stage of the SOLO 

taxonomy, students’ preconception of human thinking vs. computer processing was a barrier; b) at the 

relational stage, understanding decision making in ML was a barrier; and c) in the extended abstract 
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stage, students’ difficulty perceiving the limits of ML application correctly was a barrier as well. In 

addition, both mathematics and programming were found to be barriers, and so mathematics was, in 

general, omitted from ML courses and programming was not included in all cases. Sulmont and her 

colleagues concluded that “Realizing that higher SOLO learning goals are more difficult to teach is 

useful for informing course design, public outreach, and the design of educational tools for teaching 

ML” (p. 1). Accordingly, in this paper, we present an educational tool that has the potential to support 

non-major data science students learning ML by mitigating the mathematical barrier. 

The term “black box” understanding refers to understanding the relations between the input and the 

output of an algorithm without understanding how the algorithm itself works. Taking the black box 

approach, it is possible to learn the principles of ML even without sufficient mathematical and 

computational knowledge. For example, one can understand how to use a logistic regression as a 

classifier without understanding how the algorithm works, i.e., without understanding the process 

required to find the model parameters. Biehler and Schulte (2018), however, asked “what if machine 

learning is used in a data science course: Would it be appropriate to treat it as a black box …? Probably 

not” (p. 9). One reason for this assertion was that ML algorithms require multiple human decisions and 

tuning to achieve high performance, for which white box understanding is needed. For example, one 

challenging task when designing an ML algorithm is hyperparameter tuning (Sulmont et al., 2019b). 

ML hyperparameters are parameters of algorithms that are not learned from the data, but rather are set 

by the human developer of the application. Such parameters are, for example, the number of layers in 

a neural network or K in the KNN algorithm. The hyperparameters are used to control the learning 

process of the algorithm. Hyperparameter tuning is essential for optimizing the performance of the 

learning algorithm, and at the same time, requires an understanding of the mathematical details of the 

ML algorithm. Thus, whereas it is possible to teach the principles of ML without teaching the 

mathematical and computational knowledge required to fully understand them, individuals lacking this 

knowledge may find it difficult to optimize the performance of ML algorithms. 

The term “white box” understanding, however, refers to understanding the details of the algorithm; 

that is, how it works. Using this terminology, an individual must have a white box understanding of the 

algorithm to understand its parameters and hyperparameter tuning and, as a result, is able to improve 

the algorithm’s performance. We note that the application of ML has two distinct phases each of which 

can be understood as either black box or white box: model training and model usage. However, since 

each phase may require different mathematical knowledge, each of them can be understood, 

independently, as either a black box or a white box. Our goal is to support a white box understanding 

of both phases. 

Although the importance of a white box understanding of ML algorithms is apparent, the literature 

survey undertaken indicated that pedagogical methods for teaching white box understanding of ML 

algorithms to learners who lack a mathematical and computer science background, have yet to be 

proposed. In our research, we attempted to close this gap, and in this paper, we present one possible 

pedagogical method to achieve this goal. Specifically, a hands-on pen-and-paper activity was developed 

based on theories borrowed from statistics and mathematics education research and students’ answers 

were analyzed using these theories. Thus, the research has both practical and theoretical contributions. 

The practical contribution is expressed in the presentation of a learning module that supports non-major 

data science students’ white box understanding of ML. The theoretical contribution is expressed by the 

introduction of a data collection and analysis method to evaluate students’ conception of ML 

algorithms. 

 

2. DATA SCIENCE AND STATISTICAL EDUCATION 

 

New data science education programs are being launched at a growing rate (Raj et al., 2019). Most 

of these programs are designed for undergraduate students, and vigorous discussions have been taking 

place regarding the appropriate curricula of such programs (e.g., Danyluk et al., 2019; De Veaux et al., 

2017). Undergraduate data science programs usually extend over three to four years, and they include 

learning a large body of knowledge from the fields of computer science, mathematics, and statistics. 

Some programs are designed as interdisciplinary programs and include the domain knowledge of one 

or more disciplines (Anderson et al., 2014; Havill, 2019; Khuri et al., 2017; Tartaro & Chosed, 2015).  
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The various target audiences for which data science courses are designed, do not always have 

extensive backgrounds, and so different programs have been tailored for primary school children 

(Srikant & Aggarwal, 2017), middle school pupils  (Bryant et al., 2019; Dryer et al., 2018), high school 

pupils (Fisher et al., 2019; Gould et al., 2018; Haqqi et al., 2018; Heinemann et al., 2018), and liberal 

arts students (Havill, 2019). A recent review of data science programs suggests that a more balanced 

approach is needed with respect to the computation and statistics components of data science (Adams, 

2020). Specifically, while the need for data science education for non-major data science students is 

evident (Dichev & Dicheva, 2017), there has been little discussion of the implementation of such a 

program (Cassel et al., 2016). In the following, we focus on the literature on statistics education for 

undergraduate and graduate social science students that is relevant for the readership of this journal.  

The history of statistics education for undergraduate and graduate social science students includes 

a long list of pedagogical reforms and improvements (Carter et al., 2017; Crooks et al., 2019; 

Fillebrown, 1994; Hazan et al., 2018; Immekus, 2019; Kolaczyk et al., 2021; Prodromou & Dunne, 

2017). Since many social science students experience some degree of anxiety about learning statistics, 

frequently as a result of a bad experience of learning mathematics at school, several methods have been 

proposed to better engage students with statistics. These methods are based on using real-life data that 

are relevant to the students (Fillebrown, 1994; Neumann et al., 2013; Prodromou & Dunne, 2017; 

Wiberg, 2009), problem-based learning (Buckley et al., 2015), project-based learning (Fillebrown, 

1994), flipped classrooms (Immekus, 2019), real-life practicum (Kolaczyk et al., 2021), and hands-on 

activities (Hancock & Rummerfield, 2020; Pfaff & Weinberg, 2009).  

Among these approaches, we elaborate on hands-on activities, which were also applied in our 

research. Pfaff and Weinberg (2009) examined the effectivity of hands-on activities in an introductory 

college statistics course. Although these activities did not significantly affect the students’ grades, the 

students reacted positively to the hands-on modules and many students listed them as the most 

interesting element of the course. Students’ responses to the question: “How was the hands-on module 

beneficial for your learning?” showed a median score of 4 on a scale of 1 to 5.  In another study, Hancock 

and Rummerfield (2020) examined the effect of hands-on simulations on the understanding of sampling 

distribution and found a significant positive effect of the hands-on activities on the students’ final exam 

grades. 

In the context of understanding statistics, researchers describe several types of learning outcomes 

that differentiate between the understanding of how some statistical tool is calculated and the 

understanding of when and how that statistical tool is used correctly (Moore, 1997). Crooks et al. )2019)  

defined conceptual knowledge of statistics as “an understanding of the why of statistics in addition to 

the how” (p. 46).   

In the context of ML, however, understanding the algorithm and how to use it is not sufficient. One 

of the main concerns when using ML algorithms is explainability: Can we understand what the 

algorithm learns? (Elad, 2017) and, can we understand why the algorithm suggests a specific prediction 

for a specific input? (Páez, 2019) These questions are the focus of the new field of explainable artificial 

intelligence (XAI), which is crucial to acquire human trust in ML algorithms. 

3. THE OBJECT-PROCESS DUALITY THEORY AND ML 

In this section, we first present the object-process duality theory borrowed from mathematical 

education research for our data analysis, and then present its applicability for ML education, in general, 

and for the understanding of ML algorithms as white box, in particular. 

3.1. THE OBJECT-PROCESS DUALITY THEORY 

The different ML algorithms taught in the program require students to understand the mathematical 

concepts of vectors, vector distances, dot products, derivatives and partial derivatives, and function 

optimization. None of these mathematical concepts is part of the psychology graduate curriculum 

(Rabin et al., 2018). The teaching of these algorithms, therefore, requires that the gaps in the students’ 

mathematical knowledge be filled as part of the data science course or, alternatively, that some of the 

mathematical details be omitted and the gap filled with alternative intuitive explanations. As our 

pedagogical goal is to foster students’ learning of ML algorithms using a white box approach, our 
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objective was to fill the mathematical knowledge gap and so we looked for pedagogical theories and 

methods that were applicable from mathematics education research. Among these theories, we found 

the process-object duality to be suitable.  

According to the process-object duality theory, abstract mathematical concepts can be represented 

in the human mind as either objects or processes (Sfard, 1991). As an object, an abstract mathematical 

concept is conceived of as a fixed construct, and as a process, an abstract mathematical concept is 

conceived of as an algorithm or a computation that generates an output from an input. For example, as 

an object, the concept of a function can be conceived of as a set of ordered pairs {(xi, yi)}, whereas as 

a process, a function can be represented in the human mind as the steps required to calculate the function 

output value yi for a given input value xi. In the learning processes of most mathematical concepts, the 

learner passes through three phases. First, the concept is conceived of as a process. Then, the process is 

mentally repacked (encapsulated), and an object representation is created in the learner’s mind. In the 

final step, after the concept has been repacked and has become an object, it can be used by the learner 

as an element of a more complex process. Following the theory of process-object mathematical 

comprehension, it can be argued that understanding the algorithm as a process is an essential step toward 

understanding it as a procept and as an object. Conceiving of abstract mathematical concepts as objects, 

therefore, reflects a deeper understanding than conceiving of them as processes.  

The concept of procept, introduced by Gray and Tall (1994), represents the mathematical duality 

that exists between the understanding of a process and a concept. It reflects the idea that an advanced 

thinker can hold both mental structures in his or her mind and can move back and forth between the 

two. Hence, a procept is a hybrid schema, an amalgam of the two representations, as a process and as 

an object.  

In practice, we should ask: How do learners build their mental representations of mathematical 

objects, and how do they advance their representations along the process-object continuum? A current 

mathematical education theory suggests that the learning of mathematical concepts is accomplished by 

participating in mathematical routines, which can be viewed as repeated executions of mathematical 

tasks (Heyd-Metzuyanim & Graven, 2019; Sfard & Lavie, 2005). There are two types of mathematical 

routines: rituals and exploration (Lavie et al., 2019). A ritual is the execution of a mathematical routine 

on a lower level of thinking, i.e., a simple repetition of the mathematical procedure, based on a 

representation of the mathematical concept as a process. Exploration is the execution of a mathematical 

routine on a higher level of thinking and consists of constructing the mathematical concept as an object. 

Learners are required to practice rituals to be able to proceed toward an exploration process. Lavie et 

al. (2019) claimed that “in initial encounters with a new discourse, the learners can only participate in 

this discourse in ritualized ways. In further learning, their routines are expected to undergo gradual de-

ritualization until they eventually turn into full-fledged explorations” (p. 1). 

3.2. WHITE BOX UNDERSTANDING OF MACHINE LEARNING 

The goal of our study was to design a pedagogical approach for white box understanding of ML 

algorithms. Not only are ML algorithms based on advanced mathematical concepts, but they themselves 

can be described as the “mathematical function mapping [of] some set of input values to output values” 

(Goodfellow et al., 2016, p. 5). It is therefore relevant to examine learners’ conception of ML algorithms 

in term of understanding mathematical concepts as processes and objects.    

Understanding an ML algorithm as a black box refers to the ability to call a library procedure that 

executes the algorithm without understanding the internal process of how the algorithm’s output is 

generated. Such understanding, however, is not sufficient for hyperparameter tuning, for example, since 

the students’ unfamiliarity with how the algorithm works does not allow them to understand how to 

tune it. For example, one of the teachers interviewed by Sulmont et al. (2019a) suggested that “their 

students cannot understand how tuning works, because they lack the mathematical prerequisite to 

understand parameters. Therefore, they claim, they think [ML] is magic when you tune parameters and 

get different results.” (p. 11). 

Understanding an ML algorithm as a white box refers to knowing how it works. Since ML 

algorithms are mathematical objects, white box understanding can be further described as understanding 

ML algorithms as processes, as objects, or as procepts. According to Sfard (1991), understanding an 

algorithm as an object requires an initial understanding of it as a process. Thus, the more a learner 
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practices the execution of the algorithm as a process, the more chances he or she has of gradually 

developing an understanding of it as an object. Accordingly, the following question guided our research: 

What pedagogical methods can enhance students’ understanding of an ML algorithm as a process, as 

the first step toward its encapsulation into an object?  

Specifically, we asked ourselves whether it would be effective to implement the algorithms as 

computer codes and track their execution flow. Tracing problems are a common type of question in 

computer science education (Hazzan et al., 2020). In most cases, however, such problems focus on 

software execution tracking rather than on mathematical calculations. The learning of mathematical 

concepts can be supported by programming exercises (Leron & Dubinsky, 1995), but they require an 

understanding of the mathematical concepts, at least as processes, as well as proficiency in 

programming. This does not apply, however, to students who are not majoring in data science and who 

are studying ML; as such learners lack the required mathematical background and programming 

proficiency, and therefore, implementing an ML algorithm programmatically might not support their 

learning of the underlying mathematical concepts.  

We thus developed a different approach, building on mathematical education rather on computer 

science education. First, based on the process-object theory, we explained the ML algorithms using 

only mathematical objects the learners are familiar with. For example, in our explanations of the KNN 

algorithm (see Section 4), we used only the Euclidean distance, which requires only basic mathematical 

operations (addition, subtraction, squaring, and taking square roots). Second. Building on the theory of 

mathematical ritual and exploration, we provided the students with learning opportunities by executing 

hands-on manual calculations of the algorithms. Similar to first grade pupils learning how to calculate 

the difference between two numbers by practicing ritual calculation in mathematical exercises until the 

ritual evaluation turns into exploration from which learning is derived, our students learned, for 

example, to calculate the difference between two vectors, using a hand-on task, as illustrated in the next 

section. We designed pen-and-paper tasks that mimic the hybrid, consisting of the mathematical routine 

and the computer science tracing task, in which the students are required to perform the calculations 

using pen and paper rather than computer software. These exercises focused solely on the mathematical 

concepts and were phrased using mathematical equations and symbols rather than code or pseudo-code. 

 Hands-on calculation, as a pedagogical tool, has been experimentally investigated to determine 

whether it improves the understanding of various statistical concepts. Although in some experiments, 

no significant improvement was found (Pfaff & Weinberg, 2009), others showed significant 

improvement (Hancock & Rummerfield, 2020). In both cases, students’ feedback on the activity 

indicated that it positively influenced their learning and motivation.  

Our approach to hands-on activities designed to impart the mathematical background required for 

learning ML is illustrated in the next section using one of the ML algorithms learned in the course: the 

KNN algorithm. 

4. HANDS-ON ACTIVITY FOR LEARNING THE MATHEMATICS UNDERLYING 

MACHINE LEARNING  

To illustrate the idea of using mathematical rituals in the teaching of ML algorithms, we present 

one example of implementing our hands-on approach for teaching the K-nearest neighbors (KNN) 

algorithm. KNN is the first algorithm in the curriculum since it is a relatively simple and intuitive 

classifier that uses the classification algorithm presented in Figure 2 and explained below. As part of 

our comprehensive research on data science education, similar hands-on tasks were developed for the 

perceptron, gradient descent, linear regression, logistic regression, and neural network algorithms, but 

are not presented here due to space limitations. 

 

To classify a new object, U, with features u1, u2, …, un: 

(a) Calculate the distance of U from each sample X(i) in the training dataset. 

(b) Find the K nearest neighbors of U. 

(c) Find the most common label among these K nearest neighbors. 

(d) U is classified accordingly to this most common label. 

 

Figure 2. The classification algorithm of the KNN algorithm 
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The distance between a new object and its neighbors is calculated by vector distances. Several 

distance measures may be selected; we teach the Euclidian distance measure, as it is more intuitive to 

explain using its geometrical meaning. We therefore begin with a classification problem of objects with 

two features, i.e., a two-dimensional case. In this case, the Euclidian distance can be calculated based 

on the Pythagoras theorem. The distance, d(i), between the unknown object, U, and the ith sample (X(i)) 

in the training set is given by 

 

𝑑(𝑖) = √(𝑢1 − 𝑥1
(𝑖)
)2 + (𝑢2 − 𝑥2

(𝑖)
)2 

To generalize the algorithm to the n-dimensional case, we present the vector distance between the 

unknown object, U, and the ith sample (X(i)) as a generalization of the Pythagoras theorem, given by 

 

𝑑(𝑖) = √(𝑢1 − 𝑥1
(𝑖)
)2 + (𝑢2 − 𝑥2

(𝑖)
)2 +⋯+ (𝑢𝑛 − 𝑥𝑛

(𝑖)
)2 

A common task for practicing the KNN algorithm is naturally a classification task of an unknown 

object based on a training set. One such exercise is the classification of Iris flowers based on four 

features of the flower: sepal length (SL), sepal width (SW), petal length (PL), and petal width (PW), 

using a well-known training dataset containing 150 examples of three types of Iris flowers (Fisher, 

1936). Even with a small dataset of 150 flowers, this task might be too tedious for any learner to execute 

manually, and the calculation is, therefore, performed by a computer. Both methods, however, fail to 

produce the ritual required to support the learning of mathematical concepts, first as a process and then 

as an object, and so we designed a worksheet that guides learners to simulate the KNN algorithm 

manually and perform the required calculations themselves, manually (see Figure 3).  
This worksheet guides a ritual execution of the mathematical process of classification using KNN 

and has two phases:  

• The first phase requires visual identification of nearest neighbors in a two-dimensional case. It 

simulates the algorithm’s search for the K nearest neighbors of a new instance and its classification 

according to the majority class. The given dataset was drawn in a way that enables to observe the 

classification easily without needing to actually calculate the distances.  

• In the second phase, the students are asked to manually calculate the Pythagoras distances in the 

four-dimensional case for the Iris flower dataset, to find the nearest neighbors, and to classify a new 

instance according to the majority class. Since the given dataset is small (6 samples of flowers), the 

students can perform the calculations manually without using a computer program.  

 

Part 1 – Image classification 

 

A KNN algorithm is designed to classify images into two types: urban or forest; based 

on two features: Red - the mean level of the red color in the image, and Blue - the mean 

level of the blue color in the image.  

The following graph presents the training dataset images (urban images in gray and 

forest images in green). The graph also shows two unknown images, A and B. Classify 

images A and B using a KNN algorithm, with K = 1 and K = 3. 
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1. For K = 1: 

 a. The classification of image A is:        
            Explain your answer: __________________________________________ 

       b. The classification of image B is:   

     Explain your answer: __________________________________________ 

2. For K = 3: 

 a. The classification of image A is:    

     Explain your answer: __________________________________________ 

 b. The classification of image B is:    

     Explain your answer: __________________________________________ 

 

Part 2 – Iris classification 

 

A KNN algorithm is designed to classify Iris flowers into two classes: setosa and 

versicolor. Four features are given for each flower: sepal length (SL), sepal width (SW), 

petal length (PL), and petal width (PW). There are six samples of flowers in the training 

set. 

A researcher found a new flower, U, with the following features: USL = 5, USW = 3,  

UPL = 2, UPW = 2.  

1. Calculate the distance of the new flower from each sample in the training set: 

 
(i)d Label petal 

length 

(PW) 

petal 

length 

(PL) 

sepal 

width 

(SW) 

sepal 

length 

(SL) 

Sample  

 Setosa 0.2 1.4 3.5 5.1 1 

 Setosa 0.2 1.4 3 4.9 2 

 Setosa 0.2 1.3 3.2 4.7 3 

 Versicolor 1.4 4.7 3.2 7 4 

 Versicolor 1.5 4.5 3.2 6.4 5 

 Versicolor 1.5 4.9 3.1 6.9 6 

 

 



9 

2. Classify this new flower using the KNN algorithm with K = 1 and with K = 3. 

For K = 1: 

 a. The indexes of the K closest training examples:  

 b. The labels of the K closest training examples:  

 c. The final classification is:  

For K = 3: 

 a. The indexes of the K closest training examples:   

 b. The labels of the K closest training examples:  

 c. The final classification is:  

 

Figure 3. The KNN algorithm worksheet 

5. RESEARCH METHOD 

This section describes the research method in detail. We start with the research goal and research 

question with respect to the current gap in the research literature regarding teaching ML to non-major 

data science students (subsection 5.1). Then, the research design and research population are presented 

(subsections 5.2 and 5.3, respectively). In subsection 5.4, we describe the KNN comprehension 

questionnaire, a tool we developed to collect data regarding students’ understanding of the KNN 

algorithm and explain the theoretical considerations behind the development process. We conclude this 

section by laying out the method of data analysis and offering examples of it (subsection 5.5). 

5.1.  RESEARCH GOAL AND RESEARCH QUESTION 

On the one hand, the literature on ML education points to the need for a white box understanding 

of ML algorithms (Biehler & Schulte, 2018), also indicating that a) non-major data science students 

have difficulty achieving such an understanding and b) that educational tools have not yet been 

developed to achieve this desired level of understanding (Sulmont et al., 2019b). On the other hand, the 

mathematical education research community, which is a significantly more mature research community 

than the ML education research community, offers theories that explain the processes of mathematics 

learning and understanding of mathematical concepts along with pedagogical approaches for achieving 

a high-level understanding of mathematical concepts (Lavie et al., 2019).  

Addressing this gap, our research goal was to examine whether theories and practices borrowed 

from mathematics education research can support non-major students’ white box understanding of ML 

algorithms. From this research goal we derived the following research question: Can teaching methods, 

derived from the mathematical education theories of object-process conception and ritual exploration, 

support non-major students’ white box understanding of ML algorithms? Specifically, our research 

focused on the hands-on task presented in Section 4.  

5.2.  RESEARCH DESIGN 

To answer this question, we designed a learning module on the KNN algorithm that included a 

recorded lecture and the hands-on task. The lecture and the task are based on the following principles, 

borrowed from mathematical education: 

(a) In the recorded lecture, the students learn all mathematical details of the KNN algorithm, using 

only mathematical objects the students are familiar with, that is, finding the minimum of a list 

and calculating Euclidian distance using addition, subtraction, squaring, and taking square roots 

(the recorded lecture in Hebrew can be found here).  

(b) In the hands-on activity, the students manually simulate the operation of the KNN algorithm 

and calculate the required operations. This task allows the students to execute the algorithm 

ritually as a process (see Figure 3, part 2).  

To measure the learning outcomes, we designed a KNN comprehension questionnaire (see Section 

5.4). This questionnaire was administered to the students after watching the recorded lecture about the 

KNN algorithm and completing the KNN hands-on activity. Thus, this questionnaire measured the 

students’ accumulated learning of the KNN algorithm from both the lecture and the hands-on task.  

https://www.youtube.com/watch?v=Ipq9BZy82LM
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The learning module was integrated into the Introduction to Data Science for Psychological Science 

course in the 2021 Spring semester (see Appendix 1). After the students watched the recorded lecture 

and solved the hands-on activity, they answered the KNN comprehension questionnaire (see Figure 4 

below).  

5.3.  RESEARCH POPULATION 

The research population included 23 students who were enrolled in the course “Data Science for 

Psychology Science” in a large research university in Israel (see Appendix 1). Gender was balanced (12 

man and 11 women). Approximately 75% of the students were graduate (MA) students and 25% were 

PhD students. Half of the students were studying and researching social psychology and the other half 

were studying and researching cognitive psychology. Two students were studying neural sciences.  

An introductory questionnaire was administered to the students before the onset of the semester to 

collect data on the participants’ motivation to study the course and on their previous knowledge. 

Seventeen students answered this questionnaire. Student motivation was measured by a closed question 

based on our previous study on the learning of ML by social science and digital humanities graduate 

students and researchers (Mike et al., 2021). Ninety-four percent of the students indicated that they 

were interested in learning new research tools and 77% said they were interested in learning Python.  

With respect to students’ previous knowledge, as expected, the students evaluated their background 

in statistics as being higher than their knowledge in computer science and ML, and their initial 

knowledge regarding ML as being lower relative to all other topics mentioned in the questionnaire 

(Table 1).  

 

Table 1. Students’ self-evaluation of prior knowledge (1 = low, 5 = high) (n = 17) 

 

Topic Mean (Variance) 

Programing in any language 3.9 (0.6)  

Python programing 2.9 (0.9) 

Descriptive statistics 4.2 (0.9) 

Statistical inference 4.2 (1.0) 

Linear regression 4.1 (1.4) 

Machine learning 2.3 (1.0) 

5.4.  RESEARCH TOOLS 

Theories in mathematics education research distinguish between a process and object conception of 

mathematical concepts (Sfard, 1991). A process conception of a mathematical concept is reflected by 

the ability to follow the calculation of the output of the concept for a specific input. An object 

conception of a mathematical concept, on the other hand, is reflected by the ability to examine it 

according to its properties, without necessarily checking to see how it works. Similarly, a ritual solution 

of a mathematical task is characterized by meticulously following the entire process of the solution, 

step by step, while an explorative solution of a mathematical task is characterized by the flexible and 

goal-oriented execution of previously learned rituals that have been conceptualized as objects and can, 

therefore, be manipulated and examined according to their properties (Lavie et al., 2019).  

Accordingly, we characterized students’ understanding of the KNN algorithm as a process and as 

an object. Students’ conception of the KNN algorithm as a process in problem-solving processes, whose 

topic was the KNN algorithm, is exhibited when students specifically address at least one of the three 

steps required for classification of an unseen sample (P1-P3 below, see Textbox 1) and/or the step of 

tuning the K hyperparameter in the performance optimization stage (P4 below). We note that 

classification of an unseen sample is executed several times during the ML life cycle (as part of the 

algorithm’s validation, testing, and prediction stages): 

(P1) Calculate distance from all samples 

(P2) Pick the K nearest samples 

(P3) Find the label of the majority 

(P4) Tune the hyperparameter K to improve performance (to avoid underfitting and overfitting) 
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Students’ conception of the KNN algorithm as an object in problem-solving processes, whose topic 

was the KNN algorithm, is exhibited when students examine the following seven properties of the KNN 

algorithm—the first three (O1-O3) address the classification, the fourth (O4) addresses the algorithm’s 

performance and the last three (O5-O7) address the algorithm’s complexity (determined by the number 

of distance calculations): 

(O1) Classification depends on similarity 

(O2) Classification is determined by distance 

(O3) The classification of a specific unknown example depends on K 

(O4) The performance of the KNN algorithm for a specific K depends on the distribution of data 

(O5) The number of distance calculations depends on the number of training samples 

(O6) The number of distance calculations depends on the number of features 

(O7) The number of distance calculations does not depend on K 

To examine students’ conception of the KNN algorithm, we used the KNN comprehension 

questionnaire (see Figure 4). Each question enabled us to reveal the students’ conception of the KNN 

algorithm as either a process or an object or both, by examining the entity(ies) the students used in their 

answers: the four process steps or the seven object properties of the KNN algorithm, respectively (see 

Table 2).  

Question 1. The students are asked to explain the KNN algorithm to a friend. The aim of the request 

to explain the algorithm to a friend instead of simply defining it is to guide the students not to recall the 

KNN definition they learned in the lecture, but rather, to explain it in their own words. The formulation 

of this question also implies that the explanation should avoid jargon, but rather, should use only simple 

and understandable language.  

Questions 2 and 3. The students are asked to indicate whether each of six statements on the 

prediction of the KNN algorithm, made by six hypothetical students (Alice, Bob, Carol, Dave, Eve, and 

Frank) is correct or incorrect, and to speculate how the hypothetical student explained his or her answer. 

These are critical thinking questions, which represent a higher order of thinking based on Bloom’s 

taxonomy (Anderson et al., 2001; Bloom et al., 1956).  

Question 4. The students are asked to examine the computational complexity of the KNN algorithm. 

While for 4(a) and 4(b), a process conception of the KNN algorithm is sufficient, an object conception 

is required in order to draw conclusions regarding its complexity in different situations (in 4(c), 4(d) 

and 4(e)). We note that graduate psychological students are not familiar with the concept of 

computational complexity and that it is not part of the course curriculum. Specifically in Question 4, 

the students are asked to indicate, for K = 5 and K = 11, the number of times the square operator had to 

be calculated in a specific classification problem using a KNN algorithm. Although the K values are 

different, the square operator must be calculated to find the Euclidian distance between the unknown 

instance and each of the training examples. In other words, 4,000 calculations are required in both cases, 

regardless of the value of K.  

 

KNN Questionnaire 

1. How would you explain to a friend what the KNN algorithm is? 

2. Students were asked to classify Example A in the figure below, using the KNN 

algorithm for K = 5.  

 
 

 



12 

Alice claims that A’s classification is Forest.  

a. Is Alice, right?  

b. In your opinion, how did Alice explain her answer? 

Bob claims that A’s classification is City.  

c. Is Bob, right? 

d. In your opinion, how did Bob explain his answer? 

3. Students were asked to classify Example B in the figure below, using the KNN 

algorithm.  

 
Carol claims that for K=5, B’s classification is City.  

a. Is Carol, right? 

b. In your opinion, how did Carol explain her answer? 

 

Dave claims that for K=5, B’s classification is Forest. 

c. Is Dave, right? 

d. In your opinion, how did Dave explain his answer? 

 

Eve claims that for any K, B’s classification is City.  

e. Is Eve, right? 

f. In your opinion, how did Eve explain her answer? 

 

Frank claims that for any K, B’s classification is Forest.  

g. Is Frank right? 

h. In your opinion, how did Frank explain his answer? 

 

4. In order to classify dogs as Poodle or Labrador, four characteristics were selected: 

height, weight, tail length, and ear length. The training set included 1,000 dogs, 500 

of each kind. Based on this data set, we wish to classify an unknown dog using the 

KNN classifier.  

a. For K = 5: How many times is the square operation executed? 

b. For K = 11: How many times is the square operation executed? 

c. What conclusion can you draw from your answers to the above two questions? 

d. In your opinion, when are the chances of a correct classification higher? 

I. K = 5 

II. K = 11 

III. It is impossible to decide 

IV. I do not know  

e. Please explain your answer. 

 

 

Figure 4: KNN comprehension questionnaire 
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Table 2. Mapping the questions of the comprehension questionnaire according to the KNN process 

steps and object properties each question elicits 

 

  Question 

Type of 

conception 

Expression of conception 1 2 3 4 

Process 

conception 

(P1) Calculate distance from all samples X   X 

(P2) Pick the K nearest samples X X X  

(P3) Find the label of the majority X X X  

(P4) Tune the hyper parameter K to improve 

performance 

   X 

Object conception (O1) Classification depends on similarity X    

(O2) Classification is determined by distance X    

(O3) The classification of a specific unknown 

example depends on K 

X  X  

(O4) The performance of the KNN algorithm for a 

specific K depends on the distribution of the data 

   X 

(O5) The number of distance calculations depends 

on the number of training samples 

   X 

(O6) The number of distance calculations depends 

on number of features 

   X 

(O7) The number of distance calculations does not 

depend on K 

   X 

5.5.  DATA ANALYSIS METHODS 

Students’ answers to all questions in the comprehension questionnaire were analyzed to extract the 

students’ conception of the KNN algorithm as either a process or an object or both. Specifically, for 

each student explanation provided in the comprehension questionnaire, we examined what process steps 

and/or object properties it includes and determined the student’s conception accordingly. The coding 

scheme used is presented and illustrated in Appendix 2. 

5.6.  RESEARCH LIMITATIONS 

 This exploratory research aims to present preliminary results regarding the usability of the learning 

module (a lecture and hands-on task) to support non-major data science students' white box 

understanding of ML algorithms. The module’s current design has several limitations. We mention 

three: 

A) Student understanding was tested only once: Since the comprehension questionnaire (Figure 4) 

was given to the students after watching a recorded lecture about the KNN algorithm and 

solving the hands-on task (Figure 3), we cannot separate the effect of the lecture from that of 

the hands-on task.  

B) We have no observation data on how the students solved the hands-on task and completed the 

comprehension questionnaire.  

C) One data collection tool: Students’ understanding was analyzed only by a written questionnaire. 

In future, to further validate the data analysis of this preliminary research, we intend to gather 

additional data about students’ comprehension of the KNN algorithm and other algorithms 

using additional tools, such as interviews.  

6. RESULTS AND DATA ANALYSIS 

In this section, we present our analysis regarding students’ conception of the KNN algorithm from 

the perspective of the process-object duality, first from the student point of view and then from the 

algorithmic perspective. Specifically, in Section 6.1, we categorize the students according to their 

conception of the KNN algorithm as either a process, object, or procept. Then, in Section 6.2, we delve 
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into the details, analyzing the process steps of object properties the students addressed in their answers 

and what can be learned from the analysis. In the next section (Section 7) we further delve into the 

details of these conceptions and their implications for the pedagogy of machine learning. 

6.1.  STUDENTS’ CONCEPTION FROM THE PROCESS-OBJECT DUALITY 

PERSPECTIVE 

Reviewing the students’ coded answers (see Table 3) revealed that:  

i) About half of the students (5 out of 12, light green in Table 3) conceived the KNN algorithm as 

a process, using in their explanations at least half of its process steps but less than half of its 

object properties. Clearly, other criteria could be used to determine this conception, but for the 

sake of simplicity, we set this simple criterion. 

ii) About half  of the students (7 out of 12, dark green in Table 3) conceived the KNN algorithm as 

a procept, using in their explanations at least half of its process steps and at least half of its 

object properties. Again, we used this criterion for the sake of simplicity. 

iii) None of the students used object properties exclusively in their explanations, and accordingly, 

none of the students’ conception was classified as an object.  

6.2.  PROCESS STEPS AND OBJECT PROPERTIES CONCEPTION 

We present three observations about the students’ conception of each process step and object property, 

by their prevalence:  

i) Similarity: The students best conceptualized the steps of picking the K nearest samples (P2), 

finding the label of the majority (P3), and the property classification is determined by distance 

(O2). This result may be explained by the facts that a) steps (P2) and (P3) are the most practiced 

steps in the hands-on task (Figure 3) and b) this understanding of (P2) and (P3) supports their 

understanding of (O2). This may explain the fact that all students gave correct answers to all of 

the closed items of Questions 2 and 3 (See Figure 4, Questions 2 a, c and 3 a, c, e, g). We note 

that only one third of the students mentioned that classification depends on similarity (O1). 

This can be explained by the fact that students used the terms similarity and distance 

interchangeably, due to the graphic representation in which similarity and distance are visually 

the same. 

ii) Complexity: Eight students mentioned at least one of the properties: The number of distance 

calculations depends on the number of training samples (O5), the number of distance 

calculations depends on the number of features (O6), and the number of distance calculations 

does not depend on K (O7). Three students consistently mentioned all three properties (students 

10, 11 and 12), and five students mentioned one or two of them. This is consistent with the fact 

that half of the students conceptualize the first process step calculate the distance from all 

samples (P1). Indeed, all students who mentioned this process step also mentioned two 

properties regarding complexity (number of calculations). This result might be due to the 

technique of solving visual tasks, i.e., Part 1 of the KNN hands-on activity (Figure 2) and 

Questions 2 and 3 on the KNN comprehension questionnaire (Figure 3). In these cases, the 

human mind can find the neighbors instantly, using only its visual processing capabilities, 

without needing to calculate the distances from all samples in the training set numerically.  

iii) K hyperparameter: One third of the students mentioned the property that the classification of 

a specific unknown example depends on K (O3) and one half of the students mentioned the 

property that the performance of the KNN algorithm for specific K depends on the distribution 

of the data (O4). There is partial overlap (of 2 students) between the students who mentioned 

these properties regarding K and the students who mentioned the performance optimization 

phase in which the K hyperparameter is tuned (P4). This might indicate that more students 

conceptualized the role of K correctly but did not mention the tuning step, as the question 

formulation asked them merely to compare the possible performance of two different Ks, and 

not to describe how to maximize performance. This explanation is also supported by the fact 

that only one quarter of the students mentioned the step of tuning the hyperparameter K to 

optimize the algorithm performance (P4). 
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Table 3. Coded answers 

 

   Student number 

Type of 

conception 

Expression of conception Total 1 2 3 4 5 6 7 8 9 10 11 12 

Process 

conception 
(P1) Calculate distance from all 

samples 

6             

(P2) Pick the K nearest samples 
12             

(P3) Find the label of the majority 
12             

(P4) Tune the hyperparameter K 

to improve performance 

3             

Object 

conception 

 

(O1) Classification depends on 

similarity 

4             

(O2) Classification is determined 

by distance 

11             

(O3) The classification of a 

specific unknown example 

depends on K 

4             

(O4) The performance of the 

KNN algorithm for specific K 

depends on the distribution of the 

data 

6             

(O5) The number of distance 

calculations depends on the 

number of training samples 

6             

(O6) The number of distance 

calculations depends on the 

number of features 

6             

(O7) The number of distance 

calculations does not depend on K 

6             

7. DISCUSSION: PEDAGOGICAL IMPLICATIONS AND RESEARCH CONTRIBUTION 

From a wider perspective, the process-object duality of the mental representation of mathematical 

concepts is associated with the phenomenon of reducing the abstraction level when learning abstract 

mathematical concepts (Hazzan, 1999). In general, students who need to learn mathematical concepts 

that are too abstract for their current mental representation, i.e., their conception, of the concepts, use 

several mechanisms to reduce the level of abstraction. One of these is based on the dual process-object 

representation of mathematical concepts, according to which students conceive abstract concepts that 

are too abstract as processes or procepts rather than as objects, which are considered a more abstract 

conception. This statement has been generalized to include the learning of computer science concepts 

as well (Hazzan, 2003a, 2003b; Hazzan & Hadar, 2005), and so the theory of process-object 

representation of mathematical concepts can be used also to describe students’ understanding of ML 

algorithms on different levels of abstraction.  

Within this context, the hands-on ritual-based tasks presented in this paper (see Figure 2) may 

support students’ learning by reducing the level of abstraction (in intermediate learning stages) in 

several ways: 

(a) Data have specific features that are more concrete (less abstract) than abstract features; images 

with features “red” and “green” are more concrete than objects with features “x1” and “x2”. 
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(b) Data have specific values that are more concrete than abstract values; an image with features 

[107, 83, city] is more concrete than an object with features [x1, x2, x3]. 

(c) Data are more concrete than just numbers, as they have meaning in the real world; “the level of 

red in the image is 107” is more concrete than the fact “the value of feature x1 is 107”. 

(d) A small training dataset that learners can iterate manually is more concrete than the huge 

datasets typically used to demonstrate ML algorithms. 

(e) The manual execution of a task is more concrete than running a simulation, such as a computer 

program, because attention must be paid to every detail, regardless of its role in the procedure. 

Thus, the hands-on activities presented in this paper support learning not only by allowing the students 

to practice a ritual involving the underlying mathematical concepts, but also by intentionally reducing 

the level of abstraction of ML algorithms in intermediate learning stages.  

Reducing the level of abstraction, however, should be done very carefully, since reducing the level 

of abstraction too much, may lead learners to conceive the specific as the general case and this, in turn, 

may lead to a process or a procept conception. For example, the graphical representation of the KNN, 

as described in the first part of the KNN hands-on task (see Figure 3) in which the students can find the 

neighbors using visual capabilities without needing to calculate the distance from all samples in the 

training set (since the algorithm does not really calculate the distance), might lead to partial 

conceptualization of the complexity of the KNN algorithm (see Section 6.2). Another example is the 

small number of training samples in the second part of the KNN hands-on task (see Figure 2), in which 

the students had to calculate the distances of a new example from too small a training data set (of only 

six samples), and so the first step of the KNN algorithm, calculating the distance from all the training 

samples, was not sufficiently clear.  

From the abstraction perspective, the three categories of process steps and object properties 

presented in Section 6.2—Similarity, Complexity, and K as hyperparameter—can be organized by the 

level of abstraction they represent. Similarity may be explained visually and, thus, requires the lowest 

level of abstraction. Complexity may need to be explained using large tables and, thus, requires a higher 

level of abstraction, and K as a hyperparameter requires that the classification process be conceived as 

an object in order to optimize performance, therefore, requiring an even higher level of abstraction. 

The above discussion highlights both the practical-pedagogical and theoretical contributions of this 

research. Practically, we present a learning module that supports non- major data science students’ 

white box understanding of ML (at least as a process). Theoretically, we introduce a data analysis 

method to evaluate students’ conceptions of ML algorithms. Combining these two facets of contribution 

may guide the teaching process of ML algorithms. For example, a teacher who notices that the majority 

of his or her class conceives specific ML algorithms as a process, should consider whether more 

advanced algorithms should be introduced to the class or alternatively, and most probably, additional 

practice of the specific algorithms is required. An illustrative example for this assertion is the perceptron 

and neural networks. A teacher should verify that the class conceptualizes the perceptron algorithm as 

an object before moving forward using it as a building block of a neural network. 

8. CONCLUSION 

The research presented in this paper addressed a major challenge of data science education: white 

box understanding of ML algorithms by non-major data science students who lack a sufficient 

mathematical background for this kind of understanding. Specifically, to support the learning process 

that leads to white box understanding of the mathematical concepts learned in an ML course, we 

presented a pedagogical method that is based on a theory according to which mathematical concepts 

can be comprehended as processes and as objects. We propose that teaching algorithms based on a) 

mathematical concepts that are already known to the learners and b) hands-on tasks, can improve 

learners’ understanding of algorithms as processes also in the case of complex algorithms which 

students may not be able to understand as white boxes, and thus are commonly learned as black boxes. 

We illustrated our claims with the results of an exploratory research conducted on graduate psychology 

students who learned ML as part of an introduction level data science course. This method should be 

further investigated and modified to fit a variety of learner populations of data science to promote a 

deeper understanding of ML algorithms. Such an investigation is needed due to the crucial role that 

data play in present times and the importance attributed to the responsible and critical use of data in 
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many real-life domains and situations. We also propose to further study the comprehension and 

conceptualization of ML algorithms from the process-object duality perspective. Such research may 

lead to the invention and adaption of other pedagogical methods to teach ML algorithms to non-major 

data science learners.  
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APPENDIX 1. DATA SCIENCE FOR PSYCHOLOGY SCIENCE 

The “Data Science for Psychology Science” specialization is a new initiative of the school of 

psychology sciences at a large research university in Israel (Mike & Hazzan, 2022). The motivation to 

develop such a specialization was threefold: 

(a) To expose graduate psychology research students to new research methods that are emerging 

from the new discipline of data science.  

(b) To expose graduate psychology research students, in general, and cognitive psychology 

research students, in particular, to state-of-the-art ML models that are inspired by the human 

brain and human thinking.  

(c) To support the market demand for data scientists with a confirmed background in social 

sciences, in general, and in psychology science, in particular. 

The specialization is divided into two courses. The first course, Computer Science for Psychology 

Science, was designed to fill the computer science knowledge gap (see Table A-1). The second course, 

Computer Science for Psychology Science, was designed to develop students’ ability to complete the 

data analysis cycle, that is, to explore, analyze, model, and predict using data they collected in Course 

1 (see Table A-2). The courses were designed in a flipped classroom format, with a-synchronous pre-

recorded lectures and weekly Zoom online meetings devoted to answering students’ questions and 

working on advanced exercises in small groups (Rosenberg-Kima & Mike, 2020).  

 

Table A-1. Computer science for graduate psychology students - Topics and number of hours 

 
Topic Hours 

Computational thinking 4 

Website design and HTML 8 

Website design and JavaScript 8 

Python programming 16 

Web scraping with Python 8 

Computerized experiments with JavaScript 8 

TOTAL 52 

 

Table A-2. Data science for graduate psychology students - Topics and number of hours 

 
Topic Hours 

The data science workflow 4 

Table manipulation with Python 4 

Visualization with Python 4 

Statistical inference with Python 4 

Principles of machine learning  8 

Supervised machine learning  16 

Unsupervised machine learning 4 

Text analysis 8 

TOTAL 52 
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APPENDIX 2. CODING SCHEME OF ANSWERS TO THE KNN COMPREHENSION 

QUESTIONNAIRE  

Type of 

conception 

Expression of 

conception 

Coding scheme Example 

Process 

conception 

 

(P1) Calculate 

distance from all 

samples 

The text specifies the 

operation of calculating 

the distance from all 

training samples. 

“The algorithm checks the distance to all 

examples.” (Answer to Q.4) 

(P2) Pick the K 

nearest samples 

The text specifies the 

operation of picking the K 

nearest neighbors. 

“If, for example, we defined that the 

number of neighbors (K) is five - the 

algorithm will check which five examples 

are the nearest.” (Answer to Q.1) 

 

“Of the five images closest (most 

similar) to the new image, most (4) are a 

city.” (Answer to Q.2) 

(P3) Find the label of 

the majority 

The text specifies the 

operation of choosing the 

label of the majority of 

samples. 

“… and according to the majority, will 

determine which type it belongs to.” 

(Answer to Q.1) 

 

“… most (4) are a city.” (Answer to Q.2) 

(P4) Tune the 

hyperparameter K to 

improve performance 

The text specifies the 

operation of tuning K to 

maximize performance. 

“It very much depends on the data; you 

should check the cross validation and 

decide accordingly. There is no one 

correct K.” (Answer to Q.4) 

Object 

conception 

(O1) Classification 

depends on similarity 

The text specifies that 

classification is based on 

similarity. 

“[the decision] will be determined … by 

proximity.” (Answer to Q.1) 

(O2) Classification is 

determined by 

distance 

The text specifies that 

classification is based on 

distance. 

“The similarity is expressed by a 

quantitative distance (squared) from the 

existing data.” (Answer to Q.1) 

(O3) The 

classification of a 

specific unknown 

example depends on 

K 

The text specifies that 

different K may lead to 

different classifications. 

“[the decision] will be determined by the 

number of nearest items we defined 

(neighbors).” (Answer to Q.1)  

 

“He [Frank] missed k=1 and looked 

only at larger Ks.” (Answer to Q.3) 

(O4) The 

performance of the 

KNN algorithm for a 

specific K depends 

on the distribution of 

the data 

The text mentions the 

property that accuracy 

depends on the properties 

of the data. 

“You need to know how the data is 

distributed.” (Answer to Q.4)  

(O5) The number of 

distance calculations 

depends on the 

number of training 

samples 

The text mentions the 

property that the number 

of operations depends on 

the number of training 

samples. 

“… the number of square operations 

depends on the number of samples and 

not on the number of neighbors.” 

(Answer to Q.4) 

(O6) The number of 

distance calculations 

depends on number 

of features 

The text mentions the 

property that the number 

of operations depends on 

the number of features. 

“You need to calculate 1000 distances; 

each distance has 4 characteristics 

which is 4000 square operations.” 

(Answer to Q.4) 

(O7) The number of 

distance calculations 

does not depend on K 

The text mentions the 

property that the number 

of operations does not 

depend on the number of 

neighbors. 

“… the number of square operations 

depends on the number of samples and 

not on the number of neighbors.” 

(Answer to Q.4) 

 


