01

PROJECT DESCRIPTION

INITIAL GOAL
To study the incidence rate of misdiagnosis in rare diseases.

PROBLEM EXPLANATION

"If there was a medical test with 98% reliability to detect if a person suffers a certain illness (such as cancer) and that 1 in 200 suffer that illness and we are tested positive one day, to what extent should we worry about it? How likely is
it that we have that illness?" it that we have that illness?

Chart explanation:

- The relation 50 ill to 9950 healthy comes from applying the incidence of 1 in each 200 to the 10000 people total.
The relation 49 ill to 1 healthy comes from applying 98% reliabilty to the
50 who "will develop cancer".
The relation 199 ill to 9751 healthy comes from applying 98% reliability to the 9950 who "won't develop cancer".

RESULTS

After analyzing the data from the contingency chart above, we can reach the following conclusions:

Data

Conclusions

Test (-)	ILI	HEALTHY	TOTAL	$P($ false negative $)=\frac{1}{9752}=0,0001$
	1	9751	9752	
	ILL	HEALTHY	TOTAL	P(ilness \| true positive) $==\frac{49}{248}$
Test (+)	49	199	248	${ }_{0}$ (tru75

EXPERIMENT DESIGN

In order to get a device, which gave many ake resulis we created it ourselves.

We designed some plastic spoons which contain powder that changes colour in contac with water, depending on what we wanted to get. If we wanted a positive (fake) the colour changes and if we wanted a negative result (fake) the colour doesn't change.

BAYES' THEOREM

Thomas Bayes (s XVIII): If $A_{1}, A_{2}, \ldots, A_{n}$ is a system of events, where S is an event of anytype for which we know the $P\left(S \mid A_{i}\right)$, then:
$P\left(A_{i} \mid S\right)=\frac{P\left(A_{i}\right) \cdot P\left(S \mid A_{i}\right)}{P\left(A_{1}\right) \cdot P\left(S \mid A_{1}\right)+\ldots+P\left(A_{n}\right) \cdot P\left(S \mid A_{n}\right)}$
$P\left(A_{i}\right)$ are called "Prior probability" because they are known.
$P\left(S \mid A_{i}\right)$ are called "Likelihood" as they are easily understo.
$P\left(A_{i} \mid S\right)$ are called "Posterior probability", they must be calculated.
Application: medical diagnosis; establish the diagnosis of a patient from a series of symptoms; the symptor
illness don't have a biunivocal correspondence.

ABOUT RARE DISEASES (R.D.)

What is considered a rare disease?	How m A disease that affects 1 out of 2000 people.
Medical and social consequences	Up to diseas
Treatme Most of them cannot be cured, which makes the patients vulnerable.	There has but the diseases them
MEDICAL ATTENTION	

Only 34.5\% get the treatment that they need.

RAREDISEASEDAYORG
Rare diseases day It is the last day of February since 2008.
Origin and characteristics Most of them are
genetic, but not all of genetic, but not all of and progressive.

DISABILITY AND DEPENDENCY WITH R.D.

Almost a 25% of the patients have a disability bigger than 75\%

Almost 20\% of the patients have had to wait 10 or more years for their diagnosis.
 of the pieces of information hat stands out is that in the educational field the discrimination exceeds the 40%.
But what is most impressive is the fact that, since 2009, discrimination has risen in every field.
Source: 2018 ENSERio Study on the Social
Health Needs of People with Reree Diseases in Soain

\square

Do you care about a false diagnosis? $-A L S E$ DIAGNOSIS

03

 STUPIED DISEASESWith the data found on prevalences and reliability of existing diagnoses, we calcoulated the probasabilities of testing positive and
of a false positive, using Bayes' Theorem:

a

$P(E)=9 / 1000000=0,000009 \rightarrow P(+\mid E)=0,000009 \cdot 0,95=0,00000855$
$P(S)=0,999991 \rightarrow P(+\mid S)=0,999991 \cdot 0,05=0,04999955$
$P(+)=P(+\mid E)+P(+\mid S)=0,0500081=5 \%$.
Applying Bayes' $T h .: P(E \mid+)=\frac{P(+\mid E)}{P(+\mid E)+P(+\mid S)}=\frac{0,00000855}{0,0500081}=0,00017=0,02 \%$ $P($ false +$)=P(\mathrm{~S} \mid+)=1-P(\mathrm{E} \mid+)=100 \%-0,02 \%=99,98 \%$

BETHLEM MYOPATHY

Benign autosomal dominant form of slowly progressive muscultr dystrophy. Less than 100 cases throughout history
Prevalence $1: 100000 \cdot$ Prevalence 1:1000000; Test Reliability of 95\%, then: $P(S)=0,999999 \rightarrow P(+\mid S)=0,999999 \cdot 0,05=0,04999995$ $P(+)=P(+\mid \mathrm{E})+P(+\mid \mathrm{S})=0,0500009=5 \%$ By Bayes' Th.: $P(\mathrm{E} \mid+)=\frac{P(+\mid \mathrm{E})}{P(+\mid \mathrm{E})+P(+\mid S)}=\frac{0,00000095}{0,05000}$ $P($ false +$)=P(\mathrm{~S} \mid+)=1-P(\mathrm{E} \mid+)=100 \%-0,002 \%=99,998 \%$ CUSHING'S SYNDROME [CS]

Hormonal disorders due to high and prolonged levels of exposure to
glucocorticoids, can be of both endogenous and exo
glucocorticoids, can be of both endogenous and exogenous origin. Prevalence 9:100000; Sensitivity test 100% and Specificity 93% : $P(E)=9 / 100000=0,00009 \rightarrow P(+\mid E)=0,00009 \cdot 1=0,00009$ $\mathrm{P}(\mathrm{S})=0,99991 \rightarrow \mathrm{P}(+\mid \mathrm{S})=0,99991 \cdot 0,07=0,0699937$
$P(+)=P(+\mid E)+P(+\mid \mathrm{S})=0,070037=70 \%$
$P(+)=P(+\mid \mathrm{E})+P(+\mid \mathrm{S})=0,0700837=7 \%$
By Bayes' Th.: $P(\mathrm{E} \mid+)=\frac{P(+\mid \mathrm{E})}{P(+\mid \mathrm{E})+P(+\mid S)}=\frac{0,00009}{0,070083}$ $P($ false +$)=P(S \mid+)=1-P(E \mid+)=100 \%-0,13 \%=99,87 \%$

04

ANALYSIS OF THE RESULTS:

\square In cases like those studied, there is only a 5-7\% chance of suffering from the disease having tested positive.
Many shocking results stem from "the false positive paradox": with low prevalences, false positive tests are much more likely than true positives.
These results are with tests whose reliability is at least 95%.

Probability combined with Statistics is a diagnostic tool to decide if a person is sick (using Bayes' Theorem).

- Rare diseases, despite their numbers, are still truly unknown.
- People who get sick will always be a small percentage compared to what would seem to us due to the reliability
of the test (95%). of the test (95\%).
- It's always better to keep calm, be patient and optimistic.

