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Thompson’s theory of quantitative reasoning and von Glasersfeld’s approach to conceptual analysis 
are underutilized tools in probability and statistics education. Both are valuable frameworks for 
researching how individuals conceptualize and reason about/with uncertainty as well as helping to 
inform instructional design around the same topics. We describe both conceptual analysis and the theory 
of quantitative reasoning and how they have shaped mathematics education. Further, we provide some 
instances where they have successfully been used in probability and statistics education. Sharing these 
useful tools from mathematics education has profound implications for the field given its tight linkages. 
Thus, presenting this framework has potential to provoke reflection within the field regarding what 
constitutes foundational probabilistic and statistical ideas and how instruction might support students’ 
understanding of them. 
 
BACKGROUND 

How might probability and statistics educators support students at any level to build coherent 
and productive meanings for handling uncertainty? Further, how might we help students to find utility 
in conceptualizing probability in such a way as to help them deal with uncertainty? These difficult 
questions lie at the heart of probability and inferential statistics education. With the COVID-19 global 
pandemic, probability and risk took on a highly visible role in people’s everyday lives. With this 
increased visibility, many of the challenges that probability and statistics education researchers have 
wrestled with for the past 50+ years were on display. Individuals struggled to make use of probability 
to make decisions, often resorting to heuristics. 

We agree with Stigler (2016) that the concept of measuring uncertainty is a core component of 
any statistical reasoning. Both Weisberg (2014) and Hacking (2006) have detailed the rich and messy 
history behind the development of conceptualizations of probability. Within their works as well as the 
treatises on the probability concept by von Mises (1981) and Savage (1972), we find more than just 
historical notes and articulations of theory. We find an approach that can help answer the two questions 
we opened with: Thompson’s theory of quantitative reasoning. Quantitative reasoning provides a natural 
and productive foundation for reasoning about uncertainty as well as the development of statistical and 
probabilistic reasoning. However, quantitative reasoning is not typically problematized nor an explicit 
focus in statistics and probability education. To this end, we will explain what this theory of quantitative 
reasoning entails along with the closely related tool of conceptual analysis (von Glasersfeld, 1995) and 
how they have helped to shape mathematics education. We will then discuss how these two tools can 
help us in probability and statistics education. 
 
THOMPSON’S THEORY OF QUANTIATIVE REASONING (QR) 

When we say “quantitative reasoning” we are specifically referring to the conceptual framework 
developed by Thompson (1994, 2011) meant to assist in describing and informing the learning and 
teaching of mathematics involving quantification from a cognitive perspective. Thompson built this 
framework out of constructivist-style conceptual analysis to describe and model an individual’s mental 
operations. This creates a tight connection between the framework of quantitative reasoning (QR) and 
the tool of conceptual analysis. 

 
Conceptual Analysis 

Von Glasersfeld (1995) describes conceptual analysis (CA) as an approach for distilling how a 
person understands a particular concept into basic components of their mental actions. For von 
Glasersfeld, a concept is the dynamic mental re-presentations (mental acts of bringing past experiences 
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to the fore of one’s thinking) an individual has which have “been honed by repetition, standardized by 
interaction, and associated with a specific word” (von Glasersfeld, 1987, p. 219). A central premise to 
CA is that the analyst seeks to answer the question, “what mental operations must be carried out to see 
the presented situation in the particular way one is seeing it?” (von Glasersfeld, 1995, p. 78). Given this 
question and that a researcher may only infer an individual’s mental operations based on their observed 
behavior, CA is a method of model building. Thompson (2000) describes three usages of conceptual 
analysis: (a) to build second-order models for how another person might understand a particular idea; 
(b) to generate a model for meanings that should an individual have these meanings, then that individual 
is in a beneficial position for future learning; and (c) to generate a model of meanings that might inhibit 
the individual in generating an understanding of new situations and/or prevent the construction of new, 
more productive meanings. Thompson (2008) added an additional usage of CA: describing the 
“coherence of various ways of understanding a body of ideas” (p. 45). These four uses of CA tie to the 
goals of CA as well. Steffe’s (1996) use of CA highlights students’ mathematical realities (that differ 
from the researcher’s) as valid and authentic constructions, and aspects of those realities that function 
effectively for them.  

For interested readers, we point to the following examples where this style of CA was used 
within statistics and probability education: Saldanha’s (2016) description of high school students 
conceptualizing unusualness, Saldanha and Thompson’s (2002) work on students’ images of sampling 
distributions, Liu and Thompson’s (2007) investigation of teacher’s understandings of probability, and 
Hatfield’s (2018, 2019) descriptions of students’ meanings for probability and their conceptualizations 
of stochastic processes. CA is a powerful tool for investigating how students might be reasoning. This 
power lies at the heart of the QR framework.  

 
Quantitative Reasoning 

To describe whether and how a person is reasoning quantitatively, the researcher must engage 
in CA. QR occurs when an individual conceptualizes a situation as consisting of a network of quantities 
and relationships between and amongst those quantities (Thompson, 1993). Within the QR framework, 
“quantity” takes on a specific meaning that goes beyond the commonplace meaning of number or 
amount. Specifically, 

Quantities are conceptual entities. They exist in people’s conceptions of situations. A person is 
thinking of a quantity when he or she conceives a quality of an object in such a way that this 
conception entails the quality’s measurability. A quantity is schematic: It is composed of an 
object, a quality of the object, an appropriate unit or dimension, and a process by which to assign 
a numerical value to the quality. (Thompson, 1994, p. 184)  

The above quotation highlights an important tenet of the QR framework: we are modeling an 
individual’s thinking/cognition. A quantity is a construct that a person (a student) conceptualizes in 
relation to objects within a particular situation. Further, their conceptualization of the situation is such 
that it supports them in thinking about objects imbued with features which they see as quantifiable. CA 
as we’ve described is the key tool that enables a researcher to investigate and make claims as to how a 
student might be conceptualizing a probabilistic situation quantitatively. 

How a person conceptualizes a quantity occurs through acts of quantification. “Quantification 
is the process of conceptualizing an object and an attribute of it so that the attribute has a unit of measure, 
and the attribute’s measure entails a proportional relationship […] with its unit” (Thompson, 2011, p. 
37). There is an important back-and-forth that occurs between an individual’s acts of quantification and 
their conceptualization of quantities. As a person engages in quantification, they will construct a 
quantity. As they work with and reason about and with that quantity, they may encounter shortcomings 
with their current conceptualization. This has the potential to occasion new waves of quantification as 
they attempt to resolve the issues they encountered (Thompson, 2012). This dialectic highlights that 
quantification is not a one-and-done process. Further quantification may take a significant amount of 
effort and time.  

If we want students to conceptualize probability as a quantity, then we need to wrestle with the 
following questions: 
• What is the object a student conceptualizes when conceiving of probability? 
• What is the attribute of the object that the student conceptualizes as probability? 
• What does a probability measure mean once we have such a measure? 
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These questions come directly from the QR framework. Perhaps most importantly, these 
questions and QR in general are not bound to any one philosophical position about measuring 
uncertainty. Answering these questions can be achieved through applying conceptual analysis, 
particularly by focusing on the meanings which would be beneficial for students to develop. 

Throughout history, many scholars have engaged in QR and quantification. In settling what a 
measure of uncertainty means (along with how to get a measure and what is meant by measuring 
uncertainty), different scholars have taken different paths and arrived at their own meanings for 
probability. In the frequentist tradition championed by von Mises (1981), the object under study is a 
random process that can be repeated indefinitely to build up a collective of outcomes generated by the 
process. The attribute of this object is the propensity/tendency of the process to generate a certain set of 
outcomes, which von Mises conceived measuring through the limit of the long-run relative frequency. 
The meaning he gave to this measure was the percent of the time we anticipate seeing that set of 
outcomes. Such a framing makes probability a quantity. Suppose that instead of some process and 
collective, we concern ourselves with an act of gambling and the attribute of winning the bet. This sets 
the stage for the quantity known as “classical probability” or “chance,” which Laplace interpreted as the 
ratio of the number of desired outcomes to total number of equally likely cases (Weisberg, 2014). De 
Finetti (1974) and Savage (1972) regarded probability as an amount of belief—an attribute that the 
person possesses. This led them to quantify “personalistic probability.” In all three cases, individuals 
conceptualized some object, an attribute of that object, and what a measure of that attribute means. This 
highlights the power that QR has for probability education research. While the three philosophical 
positions are distinct, they all involve QR.  

 
Impact on Mathematics Education 

It is difficult to overstate the impacts of von Glasersfeld’s approach to CA and Thompson’s 
theory of QR. CA and radical constructivism led to a shift in mathematics education where researchers 
explicitly attended to the mathematical realities that students constructed, not just how the students 
performed. Further, CA has stimulated the development of several important methodologies in 
education research such as teaching experiments (P. Cobb, 2000; P. Cobb & Steffe, 1983; Steffe & 
Thompson, 2000) and design experiments (P. Cobb et al., 2003). 

QR theory has spurred many research programs in mathematics education. Thompson’s QR 
framework has been used to inform researchers’ understanding of notions of transfer (Lobato & Siebert, 
2002), trigonometry (Moore, 2012, 2014), rates of change (Johnson, 2012), exponential functions 
(Castillo-Garsow, 2012), calculus (Thompson et al., 2013) and covariational reasoning (Carlson et al., 
2002; Zieffler & Garfield, 2009).  

 
EXAMPLES OF APPLICATION IN PROBABILITY AND STATISTICS EDUCATION 

As we’ve previously mentioned, Thompson’s theory of QR and von Glasersfeld’s CA are 
uncommon in statistics and probability education. To this end, we present two examples of applying 
these tools in the context of probability and statistics education.  

 
Teacher’s Conceptions of Probability  

Liu and Thompson (2007) explicitly used CA in their investigations of eight US high school 
teachers’ understandings of probability, all of whom had had prior course work and teaching experience 
in probability and statistics. Through the CA of teachers’ statements and actions, they found that most 
teachers’ understandings of probability were compartmentalized and not grounded in a 
conceptualization of distribution, and that their understandings depended upon how they conceptualized 
and understood the situation at hand. Liu and Thompson developed a framework for how a person might 
arrive at different probabilistic understandings. Their usage of CA helped them in several critical ways. 
First, by continuing to apply CA throughout the 8-week seminar they were able to create, test, and revise 
models of how those teachers were thinking about probabilistic situations. Second, their models helped 
them to think critically about how to support the teachers in shifting their thinking. For instance, Liu 
and Thompson (2007) framed a stochastic conception of an outcome’s probability, x, as an individual’s 
“expectation that the long-run repetition of the process that produced the outcome … will end with [that 
outcome] 100x% of the time” (p. 121). They reported that while teachers started out largely with a non-
stochastic conception of probability, throughout the experiment they began to conceive of more 
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situations stochastically and, in several instances, to recognize that the same situation could be conceived 
both stochastically and non-stochastically. Finally, CA helped them design activities intended to elicit 
observable behaviors indicative of how the teachers were thinking. This also allowed them to create 
activities that tapped into the quantification that they teachers did and did not undertake. For several 
teachers, likelihood was not a quantity but a qualitative judgement of “more or less likely.”  
 
Relative Risk 

The COVID-19 global pandemic provides an example of the quantitative reasoning 
framework’s impact on research. The COViD-Taser project focuses on exploring how people interpreted 
media that contained quantitative data representations (www.covidtaser.com/). The project team 
routinely makes use of CA and the QR framework. In one study, their usage of CA suggested that 
citizens in both the United States and South Korea struggled to compare the risk of dying from the flu 
and from COVID-19, with only about 40% (13 of 32) making a multiplicative comparison of the risks 
(Yoon et al., 2021). They found that the participants struggled to reason quantitatively about individual 
risks, which became a barrier for making multiplicative comparisons. By using CA and the QR 
framework, they identified important ways of thinking for citizens to have a productive understanding 
of relative risks. In an attempt to help individuals reason more quantitively, the team created the Relative 
Risk Tool (English version: https://www.covidtaser.com/relativerisk; Korean version: 
https://www.covidtaser.com/relativerisk-ko). Joshua et al. (2022) detail lessons they developed for 
elementary, middle, and high school classes as well as their reflections in implementing such lessons. 
Their work highlights that reasoning quantitatively about probability/risk can happen at different ages 
and does not depend on algebraic formulas. 

 
DISCUSSION AND IMPLICATIONS FOR THEORY AND PRACTICE 

QR theory and CA can be powerful tools for both research and instruction. Saldanha, et al. 
(2022) use both QR and CA to not only provide a foundation for discussing the teaching and learning 
of statistics and probability, but also as a means for providing conceptual coherence. We want to stress 
the utility that these tools can bring to probability and statistics education, both in and out of the 
classroom. 

As highlighted earlier, QR theory and CA have had significant impacts on mathematics 
education research. Statistics and probability education research can benefit from the usage of these 
tools. The QR framework provides a different perspective for researchers to work from. Diversifying 
our theoretical perspectives stands to increase the field’s robustness and impact its development. The 
framework can directly influence the design of instructional activities for supporting students’ 
understandings of statistical and probabilistic concepts and for providing a coherence across students’ 
statistical and mathematical experiences. As another example, Hatfield (2019) provides CA not only of 
distribution, but of related concepts such as stochastic (random) processes, randomness, and probability. 
He further highlights how CA can be used to inform hypothetical learning progressions/trajectories 
(Lehrer et al., 2014; Simon, 1995). Research drawing upon both QR and CA stand on firmer theoretical 
ground and can point towards instructional design. 

As guides for instruction, CA and QR can help guide educators in supporting students in 
developing coherent and productive ways of thinking. Further, QR and CA can help guide the 
construction of activities meant to support students in developing productive ways of probabilistic 
thinking. While calls have been made to reform how probability is taught in introductory statistics 
classes (G. W. Cobb, 2015; G. W. Cobb & Moore, 1997), textbooks either continue with the traditional 
approach or move the traditional approach into a supplementary section of the text. The QR framework 
is a powerful way to help students build productive meanings for probability in introductory courses. In 
the QR frequentist probability example, we see the elements that instruction should focus on to support 
students: conceptualizing the process, the notion of tendency, and a percentage of time (infinite 
repetition). Further, when formulas are necessary, QR provides an opportunity for students to have those 
formulas make sense to them quantitatively. That is, for students to see the symbols on a page not just 
as something to memorize in a particular configuration and/or as a call to calculate, but rather, as 
describing the relationships between quantities.  

CA and QR as we have described here are powerful tools for education research. We hope that 
sharing these useful tools from mathematics education will have profound implications for 
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probability/statistics education given their tight linkages. In presenting the QR framework and 
conceptual analysis, we aimed to provoke reflection regarding what constitutes foundational 
probabilistic and statistical ideas and how instruction might support students’ understanding of them. 
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