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This work discusses the application of an activity as a didactic tool for approaching the concept of
probability by confronting its classic and frequentist approaches. The activity takes place in a
continuing education course for mathematics teachers who work in basic education. Research in the
teaching-learning area of probability has highlighted the need for teachers to be better prepared for
classroom work, with activities that can promote the development of probabilistic thinking and
reasoning. In this study a qualitative case study research method is used. Among the conclusions, we
found that the didactic situations we constructed allowed teachers to improve their knowledge, thus
enabling them to recognize important elements for developing probabilistic thinking and reasoning.

INTRODUCTION

The 21st century world is complex and data driven. Informed citizens need to be data literate,
and there is an urgent need to educate students and teachers to become literate. Preparing students and
teachers for work requires that they be able to make decisions based on data, analyze data, and draw
inferences and make predictions based on these analyses, which involves probabilistic knowledge.

Research on the teaching and learning of probability, such as the work by Batanero, Godino,
and Roa (2004); Cavalcante (2021); Cazorla (2009); and Coutinho and Figueiredo (2020), has
highlighted that teachers must be better prepared to teach probability, not only to use technology but
also to propose activities involving probabilistic thinking and reasoning to promote students’
development and assist in their decision making.

Therefore, the development of probabilistic thinking and reasoning today is crucial in
teaching and learning elementary school mathematics. In Brazil, official documents such as the
National Common Core Curriculum (BNCC) (Ministério da Educagdo, 2018) recommend including
content related to probability. Further, in their “Probability and Statistics” axis, BNCC suggests that
those objects of knowledge should be addressed from the early years of elementary school. BNCC also
suggests that throughout basic education, the study of probability should be expanded and deepened
through activities in which students perform random experiments and simulation and compare the
results obtained by classical probability with those estimated by frequentist probability.

This study discusses the application of an activity as a didactic tool for approaching the
concept of probability by confronting its classic and frequentist approaches. The activity is
implemented in a continuing education course for mathematics teachers who work in basic education.
The activity is based on a GeoGebra applet that simulates the Franc-Carreau (FC) game, which
consists of tossing a coin that lands on a tiled floor with square-shaped tiles. The FC position occurs
when the coin lands fully within only one tile. We further describe the game and offer some
possibilities for dealing with aspects of probability using the game.

THE FRANC CARREAU GAME AND PROBABILITY

The applet used in the activity is freely available through the GeoGebra website at
https://www.geogebra.org/m/zegKUvgP. Based on consecutive coin tosses in the game, one can build
tables with accumulated frequencies and their respective probabilities for the coin landing in the FC
position for these tosses. It is possible to toss the “coin” inside the “tile” and to toss this “coin” as
many times as wished. Players bet on the whether the final position of the coin after it “lands,” i.e.,
when the coin is stopped, is within only one of the squares, i.e., FC. Figure 1 shows a position of the
coin where FC did not occur because the coin landed occupying part of two squares. Figure 1 also
shows the game image after 94 moves, the number of occurrences of FC, and other data and
commands that the applet offers on its main screen after each move of the simulation. The dimensions
of the squares and the coin are fixed in the applet. The figure is composed of nine 5-cm squares, with a
coin with a 1-cm radius.
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Figure 1. Data and commands available in the applet

From the frequentist probability perspective, one may ask how many flips would be enough to
determine the probability that the coin lands in the FC position. We take the definition given by
Ventsel (1962) in his work Théorie des Probabilités. The probability cannot be other than the number
around which the values of the frequency series stabilize, P(A4) = lim Fr, (4). The frequentist
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approach gives us a good estimate for this value. Comparing the probability calculation of the FC
game by the frequentist approach with the calculation by the classical approach, we have P(A) =
(numbers of successes / total number of cases). The latter is the definition proposed by Pascal and
Fermat that was axiomatized by Laplace (2009) in his Essai Philosophique sur les Probabilités and
that is still used in schools today.

METHODOLOGIC PATHS AND THEORETICAL BASIS

This study employed the qualitative research method of a case study, a modality that aims to
know a well-defined entity in an educational system (Ponte, 2006). For this paper, we analyze results
from one of the activities proposed to 17 basic education teachers in a continuing education online
course. To develop the activity, we appealed to the theory of didactic situations to organize didactic
situations to improve the teachers’ probabilistic and pedagogical knowledge (Brousseau, 1986). The
didactic situation dealt with the computer simulation of the FC game: simulate the coin tosses; write
down the observed results; transfer the results to an Excel spreadsheet; and use Excel for other
calculations. Then, the teachers were asked to construct the line graph that represented the sequence of
results of observed frequencies for further analysis. The didactic situation used is drawn from
Coutinho (2001) and displayed in Table 1.

The continuing education activity took place in a virtual environment using the Microsoft
Teams platform, with channels made available for teachers to work on the issues to be solved in
groups. Sometimes broader discussions were held in a large group, and sometimes they were
organized in small groups. At each meeting, there was contextualization prior to the activity and the
proposition of the didactic situation that should be developed in groups. At the end of the meeting,
everyone returned to the large group to present and discuss what had been done in each group’s
channel.

This didactic situation lasted two class meetings of three hours each. All meetings were video
recorded for this paper, and we analyzed the teachers' dialogues and written productions.

The environment in which the training took place with this activity can capture the nature of
probabilistic thinking and reasoning that teachers mobilized in the face of their questions and offer
them the possibility of expanding their repertoire. For our analysis, we took Borovcnik (2016) as the
basis. Borovcnik synthesizes ideas about probabilistic thinking and how they are linked, including
attending to elements such as randomness, the theoretical character of probability and independence,
and risk, among others. Jones et al. (1999) pointed out elements for probabilistic reasoning and
highlighted six key concepts: sample space, experimental probability of an event, theoretical
probability of an event, probability comparisons, conditional probability, and independence. Based on
these concepts, Jones et al established a classification of four levels of probabilistic reasoning: level 1
is associated with subjective or non-quantitative reasoning; level 2 is seen as a transition between
subjective and naive quantitative reasoning; level 3 involves the use of informal quantitative
reasoning; and level 4 incorporates numerical reasoning. We consider the levels of probabilistic
literacy in alignment with the levels of reasoning and probabilistic thinking from Jones et al.
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Table 1. Didactic Situation proposed to teachers of the continuing education course

a) Some initial procedures with the Franc-Carreau (FC) applet.

I) Use the software to simulate coin tosses.

1) Every ten throws, write down the number of throws that land in FC and the total number of
tosses.

IIT) Build a table in Excel with the results found for the absolute and cumulative frequency of
the FC occurrence (create a column with the observed frequencies and, for each result,
determine the cumulative relative frequency).

IV) Do the same every 20 tosses and increase if necessary.

b) Analyze the items below.

I) Could you find the stabilization of this relative frequency from the accumulated throws that
resulted in the FC position? Explain your answer.

II) How many repetitions did you perform in the experiment?

IIT) What is the probability of tossing a coin and getting FC in this game?

IV) How could you explain the calculation of this probability by the classical or frequentist
approach?

¢) Give your impressions about the activity.

I) Did you have any difficulty in understanding and performing the simulation to “toss a coin
and observe the final position after immobilization” using the FC applet? What difficulties?

II) Did you consider the applet to be a good resource to work with students on the concepts of
probability, simulation, and the classical and frequentist approaches to geometric
probability? Explain your answer.

d) The relationship between the activity with the BNCC (Ministério da Educagdo, 2018) and Gal’s

(2005) probabilistic literacy.

I) What aspects of the BNCC (Ministério da Educagdo, 2018) would you be putting into
action with the activity?

ANALYSIS AND RESULTS OF THE PROPOSED ACTIVITY

The teachers organized themselves freely into three working groups allocated in three Teams
channels for the activity presented. We randomly named the channels A, B, and C for the analysis of
teachers’ answers to the activities and their dialogues in each of these channels.

Although discussions among the three groups raised many common themes, we will present
those of group C in this paper. The three groups began to toss the coin individually using the applet,
i.e., each individual made a table and then compiled the results from group members as in Table 2.
Group C observed the results and concluded that 20 throws would not be enough to estimate the
desired probability. They continued to toss more coins individually until they reached 150 each. See
Table 3.

Table 2. Result of 20 group C tosses Table 3. Result of 150 group C tosses

FC NFC f FC NFC f
Teacher A 9 11 045 Teacher A 68 82  0.45333
Teacher B 8 12 04 Teacher B 53 97  0.35333
Teacher C 5 14 0.25 Teacher C 48 102 0.32
TeacherD 6 14 03 Teacher D 50 100 0.33333
TeacherE 7 13 0.35 Teacher E 53 97  0.35333
Total 35 65 Total 272 478

Teachers began to recognize that a greater number of coin tosses was needed to determine the
probability of CF occurring using the frequentist perspective, which indicates that, at this point, they
were at the informal quantitative level of probabilistic reasoning as per Jones et al. (1999).

Nevertheless, they did not seem to recognize that experimental probability was determined
from a large number of repetitions of that random experiment and that it was close to the theoretical
probability (Laplacian) because they did not try to find such a way of calculating the probability. Nor
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did they provide any indication that they recognized the need to repeat the experiment many times.
This would have classified them in level 4 of probabilistic reasoning according to Jones et al. (1999),
the numeric level.

Group C identified that the results obtained in Table 2 were very different among group
members, which did not lead them to conclude that such a simulation would reach a number that could
be common to all, or at least close to it. At that moment, they seemed to identify the random character
of probability through simulations, which according to Borovcnik (2016), is one of the pillars where
probabilistic thinking resides.

When the group faced the number of simulations represented in Table 3, they formulated some
questions in their discussion: How many simulations are needed to determine this probability? Will we
really be able to arrive at a satisfactory number?

At this point, the teacher educators intervened and began to discuss the concept of frequentist
probability in the three groups A, B, and C. This fact revealed that the teachers involved had not had
any prior contact with frequentist probability or that they had not duly comprehended it.

Therefore, we can infer that the FC game activity was efficient in introducing the concept of
frequentist probability and that it was effectively developed as an adidactic situation, in the terms of
Brousseau (1986). Feedback given by the researchers responsible for the training and the dialectic of
action, formulation, and validation were well characterized in teachers' dialogues and written
productions, as illustrated in the text.

The development of the activity made these teachers search independently for a solution,
mobilizing their knowledge and the knowledge introduced in the environment by the applet. They
exchanged information about their individual experiences to make the experience part of the whole
group, and they searched for a common result to carry out the validation. All of this occurred in an
articulated way, effectively as a dialectic. Finally, the researchers responsible for the training
institutionalized the concept of frequentist probability.

From the interference, the group changed their data collection strategy and began to divide
tasks using screen sharing in the Teams channel. They showed the constructed table and only one of
the applets tossing the coins. They generated another table in Excel itself, displayed in Table 4.

Table 4. Register of the results of 1,000 coin-tosses in the game presented by group C

Number of flips  FC  NFC f Number of flips ~ FC NFC f

50 18 32 0.36 550 193 357 0.35
100 36 64 0.36 600 212 388 0.35
150 56 94 0.37 650 234 416 0.36
200 74 126 037 700 253 448 0.36
250 96 154  0.38 750 271 479 0.36
300 118 182 0.39 800 291 509 0.36
350 141 209 0.4 850 311 539 0.37
400 156 244  0.39 900 334 566 0.37
450 156 294 035 950 354 596 0.37
500 182 318 0.36 1000 372 628 0.37

Then, the group began to entertain the possibility that the number of game simulations
behaved such that the probability of FC occurrence approached a specific number. However, in the
tabular representation of Table 4, they dispensed with the number of decimal places they worked with
in Table 3 and admitted that the decision-making they had to do in the time allotted for the activity
was not enough for them to formulate the answer accordingly. Because the proposed activity would
require other questions to be answered, they decided to use results from only the applet, configured to
present results with two decimal places, and then represented the graph with the data in the table to
better visualize the data behavior, as displayed in Figure 2.

In the overall group presentations of results, they agreed that the graphic representation helped
them to identify the probability of the FC position in the game when using the frequentist view. Yet,
they found it difficult to calculate such a probability by the classical view so that they could compare
them. Only one teacher could sketch his ideas about this calculation. Everyone provided evidence that




ICOTS11 (2022) Invited Paper - Refereed (DOI: 10.52041/iase.icots11.T6A3) Figueiredo & Coutinho

they knew how to calculate probability from the classical point of view, i.e., the ratio between the
number of elements in the event and the number of elements in the sample space. However, they did
not recognize the area of squares as a possibility for determining these numbers. The geometric
probability was not part of the repertoire of activities that these teachers would be able to propose to
their basic education students. This fact allows us to hypothesize that there are other key constructs of
probabilistic reasoning these teachers did not master, which opens up a perspective for research on
levels of probabilistic reasoning following Jones et al. (1999).

franc-carreau play frequency

o 100 200 300 400 500 600 700 800 200 1000

Figure 2. Graphical representation of the data in Table 4, presented by group C

The teachers did not have enough time to discuss all of the points related to the activity (Table
1), and they requested more time so that they could better understand all of the concepts involved in
the activity and reflect on the activity more to deliver a new explanation in the large group session.
After all teachers agreed, one week later, in a new Teams meeting, the groups presented not only the
questions of the activity but some reflections on their practices as teachers. This fact leads us to what
Jones et al. (1999) observe, that probabilistic reasoning develops over time. For these teachers, time
for reflection was necessary to better develop their understandings of the concepts and ideas that
emerged during the activity.

In this second meeting, the teachers presented new results of coin tosses in the game as tabular
and graphical representations with more simulations. All identified there must be more throws to
confirm the probability of occurrence of the FC event in the game. Besides those findings, one of the
groups presented a calculation of the classical probability using not only the geometric explanation for
it, but a generalization. They presented a formula that included the radius of the coin and the side
length measures from the square, as displayed in Figure 3.
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Figure 3. Calculation of the probability of FC in the game, presented by group A

Regarding teachers’ answers to the question, What aspects of the BNCC (Ministério da
Educacdo, 2018) would they be putting into action with the activity?, the teachers showed a better
understanding of indicators in the document after carrying out the activity, including conceptual
objects of knowledge for basic education students to develop such as random events, the notion of
chance, frequencies of occurrences, frequentist probability, and estimation of probability through the
frequency of occurrence. Teachers’ new understanding of document indicators seems to have created
an opportunity for peer dialogue, which gives them new possibilities for working with basic education
students using frequentist probability.

The three groups made suggestions for new possibilities of working with this activity. One of
them reported the following: “In the classroom, we could use other geometric figures to perform the
game, this would give more possibilities to relate the frequentist and classical probability without the
applet with our basic education students, through concrete materials.”

In this research, we could observe that the level of probabilistic literacy is dependent on
probabilistic reasoning and thinking. Moreover, as probabilistic literacy increases, probabilistic
reasoning and thinking become more refined.
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CONCLUSION

The teachers participating in the course admitted that both the frequentist probability and the
geometric probability involved new concepts. This fact caught our attention because, regarding their
teaching time, the interquartile range allowed us to observe that 50% of teachers have 1.3 to 8.5 years
of teaching. We hypothesized that they had had some contact with the probabilistic content to be
addressed in the classroom. According to Huberman (1990; as cited in Bolivar, 2002, p. 54), this is the
stabilization phase (four to six years of teaching) marked by the “consolidation of a repertoire of basic
practical skills that bring security at work and professional identity.”

However, the didactic situation, conceived of in light of the theory of didactic situations,
allowed not only the approach of probability with teachers working in basic school, but also discussion
on how these teachers could apply the game with their students. In this way, it allowed them to
construct or deepen specific knowledge about probability and work on their own knowledge, which
enabled them to recognize important elements for developing probabilistic thinking and reasoning.

Our findings indicate a need for continuing education courses for teachers of basic education
that address probabilistic knowledge and its possibilities of articulating literacy, thinking, and
probabilistic reasoning. Research is needed in this area to identify difficulties and new paths to follow.
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