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The purpose of this report is to describe the probabilistic reasoning of prospective teachers when 
working with a sampling situation. We analyze written responses of 139 prospective secondary school 
mathematics teachers to a task where they had to estimate an urn’s composition given a sample of 
1000 drawings. Afterwards they had to estimate the probability of the next extraction. Although most 
teachers built an urn model consistent with the sample selected, few of them used the model to predict 
the next selection. The study highlights the need to improve the probabilistic reasoning of prospective 
secondary school mathematics teachers, who, having received formal statistical training, lack an 
education in the psychological and didactical components of teaching probability. 
 
INTRODUCTION 

There is growing interest in the education of mathematics teachers, as is reflected in journals 
such as the Journal of Mathematics Teacher Education, although research in the specific case of 
statistics and probability is still scarce. This line of research increased after the Joint ICMI/IASE 
Study, “Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education,” 
which was organised by the International Commission on Mathematical Instruction (ICMI) in 
collaboration with the International Association for Statistical Education (IASE) (Batanero et al., 
2011), although most of it has focused on prospective or in service primary education teachers.  

We focus on prospective secondary and high school mathematics teachers, who have solid 
mathematical backgrounds as graduates in mathematics, statistics, science, or engineering. However, 
they only receive formal training in probability, which is contrary to the current curricular 
recommendations in Spain (Ministerio de Educación, Cultura y Deporte [MECD], 2015), where an 
empirical approach based on simulations and experiments is recommended in the teaching of 
probability and sampling. 

 
BACKGROUND 

We assume that probabilistic reasoning is based on probabilistic literacy, including 
understanding of randomness, variability, independence, and predictability/uncertainty according to 
Gal (2005), as well as capacity to estimate probabilities in random situations. Besides, we consider the 
following components of probabilistic reasoning described by Borovcnik (2016): understanding and 
relating the different meanings of probability and equilibrating the psychological and formal 
components of probability. 
 
Teacher’s Mathematical Knowledge 

We base our work on the Mathematical Knowledge for Teaching model, which consists of 
Common Content Knowledge (CCK), Horizon Content Knowledge (HCK), Specialized Content 
Knowledge (SCK), Knowledge of Content and Teaching, Knowledge of Content and Students, and 
Knowledge of Content and Curriculum (Hill et al., 2008). CCK is the knowledge brought into play by 
an educated person to solve mathematical problems, for which a person with basic knowledge is 
qualified. SCK describes a teacher’s special knowledge that enables him/her to plan and develop 
teaching sequences. HCK refers to the more advanced aspects of the content, e.g., solving tasks that 
are not commonly found in textbooks.  

This paper focuses on prospective high school mathematics teachers’ mathematical knowledge 
of sampling. Specifically, we focus on their ability to estimate the composition of an urn after they are 
given a sample of extractions with replacement from the urn, and on their prediction of probability in 
new experiments using the constructed model. Such knowledge is part of relating sampling and 
estimation, as well as classical and frequentist probability, which appears in the Spanish secondary 
school curriculum (MECD, 2015) and should be taught to the students. Because tasks such as this are 
not usually found in textbooks, we evaluate not only part of the teachers’ CCK, but also their HCK. 
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Understanding Sampling 
Understanding sampling requires linking two apparently opposed ideas: sample 

representativeness and sample variability (Chance et al., 2004). Sample representativeness implies that 
a random sample of adequate size from a population will approximately reproduce population 
characteristics, whereas sample variability implies that different samples will differ. Understanding 
also requires discriminating among three types of distributions: the theoretical population distribution 
(e.g., the distribution of black and white balls in the random generator urn); the distribution of sample 
data collected from the population (e.g., the results of 1000 drawings) and the sampling distribution of 
statistics from different samples (Batanero et al., 2020). Research has dealt with this issue, asking 
students to generate samples from a given population (e.g., see a survey in Begué, et al., 2019). 

In Batanero et al. (2020) we proposed the opposite task to those used in this research to 235 
high school students. That is, knowing the composition of a random generator, participants were asked 
to generate possible results from samples obtained from that population. The analysis of students’ 
responses indicated a good understanding of the relationship between the theoretical proportion in the 
population and the sample proportion. However, sampling variability was overestimated in bigger 
samples. We also observed various types of biased thinking in students: specifically, the 
equiprobability (Lecoutre, 1992) and recency (Kahneman & Tversky, 1972) biases. The former 
considers results of any random phenomenon as equally likely, whereas the latter describes a tendency 
in giving priority to past sample results over information about the population.  

In this paper we use the complementary activity, which consists of estimating the composition 
of a population when the results from a sample are given and for which there is scarce research. In 
particular, Sánchez and Valdez (2017) studied the inferences made by three groups of 10 high school 
students in Mexico in variations of the same task. The task provided data from 1000 extractions of 
black and white balls from two urns with known or unknown composition, asking the students to 
choose the urn that provided greater chance of obtaining a given colour in the next extraction, or to 
predict the colour of the next extraction, depending on the group of students. From the analysis of 
students’ responses, the authors proposed a hierarchy of levels of understanding randomness, 
variability, and independence, as follows: 
• Randomness: (L1) making deterministic predictions; (L2) making deterministic predictions 

qualified with probabilistic language; (L3) recognising that the outcome cannot be predicted with 
accuracy; (L4) recognising the stability of the frequency in the long run even though the outcome 
cannot be predicted with accuracy. 

• Variability: (L1) not considered; (L2) thinking that differences between specified and observed 
frequencies are always significant regardless of sample size; (L3) considering a difference to be 
significant in a small sample but not in a large sample; (L4) understanding the relationship of 
variability with sample size. 

• Independence: (L1) thinking that successive results depend on previous outcomes; (L2) thinking 
the result depends on whether the sample is representative; (L3) using models to determine a 
possible result; (L4) recognizing independence. 

In other research, Sánchez and Valdez (2013) analyzed the way in which a group of Mexican 
high school students understood the Law of Large numbers and related the frequentist and classical 
views of probability. Using interviews, the researchers studied students’ responses to physical and 
computational simulation tasks, describing the subjective, transitional, informal quantitative, and 
numerical levels of reasoning. At the subjective level, probability is not assigned to events or it is done 
subjectively, without the possibility of using probability to make inferences; at the transitional level, 
probability is assigned to an event through a priori analysis of the experiment or through the empirical 
results, without relating to each other; at the informal quantitative level, both approaches are used, but 
variability is not taken into account; and at the numerical level, both approaches are brought into play, 
valuing variability appropriately to form inferences. In this paper we use a variation of the tasks used 
by Sánchez and Valdez (2013, 2017) to analyze prospective teachers’ reasoning in the context of 
sampling; more specifically, to evaluate if the prospective teachers are able to build an urn model 
consistent with results from a sample and whether they use the model to compute the probability of a 
given result in the next trial. The variation consists in requesting that participants justify their 
responses. 
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METHOD 
A sample of 139 students preparing to become mathematics teachers in secondary education 

(ages 12–17) took part in the study as a part of a workshop directed to improve their knowledge of 
probability education. Half of these students had completed a university degree in mathematics and the 
remainder had undertaken other scientific subjects (e.g., statistics, physics, chemistry, architecture, or 
engineering). These students were following a masters’ course with pedagogy, didactic, and curricular 
contents that complemented their previous university studies. These prospective teachers were given 
the task reproduced in Figure 1, adapted from Sánchez and Valdez (2017), to be solved individually. 
After their written responses were collected, we performed a content analysis (Krippendorff, 2013). A 
priori categories were developed from Sánchez and Valdez (2017) and were adapted and expanded 
when analyzing the responses. To assess the reliability of the procedure, another researcher reviewed 
all coding, and disagreements were discussed until consensus was obtained. 
 
Two urns A and B contain 10 balls each, some of which are black and the others white. We make 
1000 extractions from each urn, each time returning the ball to the urn after it has been extracted. In 
urn A, we obtained 324 white balls and 676 black balls. In urn B the results were 510 white balls and 
490 black balls. 
Question 1. How many white and black balls do you think there are in urn A? And in urn B? Justify 
your answer. 
Question 2. What is the probability of drawing a black ball in the 1001st draw in urn A? What is the 
probability of drawing a black ball in urn B? 

 
Figure 1.  Task given to prospective teachers 

 
In Question 1, participants were asked to estimate the number of white (w) and black (b) balls 

in each urn, using the results given from a sample of 1000 extractions from each urn. Because the 
sample size and the results are independent, the probability of each colour must be estimated from the 
relative frequency. For the first urn, the values are 0.324 (w) and 0.676 (b), and the values are 0.510 
(w) and 0.490 (b) for the second urn. The expected value of the number is given by the product of the 
relative frequency of each colour and the number of balls in the urns, or 3.24 and 6.76 for the first urn 
and 5.1 and 4.9 for the second. Because the number of balls is a natural number, rounding provides the 
best estimation for numbers of black and white balls. After the most probable composition of the urns 
has been determined, participants should apply the classical definition to answer the second question. 
Thus, the probabilities in the first urn are 0.7 (b) and 0.3 (w), and 0.5 (b and w) in the second urn.  
 
RESULTS 
Estimating the Urns’ Composition  

Responses to Question 1 about the estimation of the number of black and white balls in the 
two urns have been classified as follows: 
• Correct response, suggesting there are 3 white and 7 black balls in the first urn and 5 balls of each 

colour in the second urn. This response involves relating the sample to the population and being 
able to estimate the parameter (proportion of black balls) in the population, when the statistics 
summary (proportion of black balls in the sample) is known. 

• Providing an interval of values, such as, for example, “there are between 3 and 4 white balls in 
box A” (P18). This answer is incorrect because 325 is a very unlikely value in the assumption that 
the number of white balls is 4, as can be seen with the value Z = −4.9 (highly significant) in the Z 
test to check the assumption of obtaining 325 balls or less for the urn with 4 white balls. 

• Just suggesting that there are fewer white balls than black balls in urn A, thus not providing an 
exact number of balls and therefore failing to relate the results in the sample to the population 
from which the sample was drawn. 

• Replying that the number of balls in each urn cannot be known because it is a random situation, 
and anything is possible. 

Results are provided in Table 1. Most prospective teachers solved the tasks successfully and 
were able to relate the urn composition with the results of sampling, using their CCK of sampling. 
However, we observed errors in an important proportion of participants, suggesting lack of CCK: 
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5.8% of them misinterpreted variability in sampling by suggesting an interval including a highly 
unlikely urn composition. Further, 10.8% of them stated that any urn composition was possible, thus 
demonstrating the equiprobability bias (Lecoutre, 1992); 5% replied that there were more black 
marbles; and another 6.5% provided no response. 

 
Table 1.  Proposed composition of urns in Question 1 

 
Number of white and black balls  Percentage 
Correct: Urn A: (3w,7b), Urn B: (5w,5b) 71.9 
Providing an interval of values for each urn 5.8 
Urn A: More black balls 5 
Anything is possible 10.8 
No response 6.5 

 
In the following paragraphs, the justifications given for the composition of the urns are 

analysed, using the prospective teachers’ HCK of sampling. These justifications were classified as: 
• Correct justification: The participant justified that the requested probability was estimated by 

analysing the ratio between the numbers of black and white balls in the 1000 extractions and 
approximating the number of black and white balls in the urn.   

• Correct justification: The requested probability was estimated by computing the relative frequency 
or percentage of balls of each colour in a sample of 1000 trials, and then determining the expected 
number of balls of each colour by multiplying the estimated probability by 10 (number of balls in 
the urn). Finally, rounding the number of balls to the nearest integer. 

• Correct justification: Some students also set up and solved an equation by equalling the ratio of 
black and white balls in the results and inside the urn. Finally, they rounded the results.  

• Correct justification: The participant based their justification on the convergence of the proportion 
or of the sample mean to the population proportion or by quoting the law of large numbers.   

• Incorrect response: The participant simply based their justification on the observed results without 
being able to estimate the probability. These students did not provide a specific composition for 
the urns because they could not relate the relative frequency in the sample of 1000 experiments to 
an estimate of the number of black and white balls in the urns. 

• Incorrect application of classical probability: The participant interpreted the experiment outcomes 
as favorable and possible cases.  

• Equiprobability bias: This biased reasoning arose when the participant suggested that any 
composition was possible. Because we dealt with a random experiment, any outcome had the 
same probability.  

 
Table 2.  Justifications given for Question 1 

 
 Justifications Percentage 

Correct 

Ratio between black and white results 13.0 
Frequentist estimation of probability 20.1 
Setting up and solving an equation 7.2 
Convergence of sample proportion/mean or LLN 5.0 

Partly correct Basing on experimental results, correct 22.3 

Incorrect 

Basing on experimental results, incorrect 12.2 
Misapplying classical probability 5.8 
Equiprobability bias 2.2 
Do not justify or confuse justification 12.2 

 
Table 2 lists the justifications given by the participants to Question 1, most of which were 

correct (45.2%). These are supplemented by 22.3% of participants who gave partially correct answers. 
These prospective teachers related estimation and sampling, as well as classical and frequentist 
probability, and were also aware of the properties that this relationship enables. Therefore, they 
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reached the top level (4) of understanding variability in Sánchez and Valdez’s (2017) hierarchy. There 
were fewer incorrect justifications, usually because of not being capable of estimating the population 
proportion using the sample proportion. Those cases of confusing outcomes with favourable or 
possible cases or showing the equiprobability bias were infrequent (only 8%). Another part of the 
sample did not justify their response. 

 
Finding the Probability of a Black Ball in the Next Trial 

In Question 2 students were asked for the probability of obtaining a black ball in the next 
draw, in order to analyse whether prospective teachers used the urn-composition model they obtained 
in Question 1. The answers were classified as follows: 
• Correct answer: The participant used the urn model that he/she has constructed in Question 1. 

Consequently, in the urn A he or she assigned the probability 7/10 and in urn B the probability ½. 
• Partly correct answer: The participant gives the probability of getting black balls in one urn 

without considering the number estimated in response to Question 1.  
• Incorrect answer: The student uses only the results of the 1000 experiments to re-obtain a 

frequentist estimate of the probability, without taking into account that the extraction will be made 
from an urn with only 10 balls. Students who gave this answer built the model but were unable to 
use it to answer the new questions.  

• The participant replies that the requested probability cannot be computed or does not answer.  
In Table 3 the answers to the probability of getting a black ball in each urn (Question 2) are 

presented. We observe a reduction in the correct answers when compared to Question 1. Thus, some of 
the prospective teachers who provided an adequate composition of each urn in Question 1 did not use 
the constructed model to calculate the probability of getting the black ball and then failed in their 
HCK. About half of those who provided a correct composition of the urns now referred only to the 
sample of 1000 extractions, a response inconsistent with the constructed model. Finally, 18% indicated 
that it was not possible to calculate the probability or did not answer. 

 
Table 3.  Responses given to Question 2 

 
Justification Percentage 

Correct Using the urn composition 38.1 
Partly correct Only compute one probability 7.9 
Incorrect Do not take into account the urn composition 36.0 

Suggest it is not possible to compute or do not compute 18.0 
 
IMPLICATION FOR TEACHER EDUCATION 

The results showed that most participants built an urn model adequate for the data provided, 
thus relating the results of sampling to the urn composition and showing understanding of randomness, 
independence, and predictability/uncertainty, which are fundamental to understand sampling according 
to Sánchez and Valdez (2017). However, the remaining participants provided an improbable 
composition of the urn, misinterpreting sampling variability, while others showed the equiprobability 
bias (Lecoutre, 1992) and failed to connect the results of sampling with the random generator 
producing the sample, which is part of CCK. This indirectly also suggests that these prospective 
teachers were unable to link the classical and frequentist meanings of probability. Thus, they did not 
control the subjective and formal components of the situation, which is a component of probabilistic 
reasoning according to Borovcnik (2016).  

In the second part of the task, few prospective teachers used the urn model constructed to 
estimate probability in the next drawing, and others believed that this probability could not be 
estimated. This result suggests that the prospective teachers were not confident in their responses to 
Question 1 and also highlights the difficulties of these participants with modelling in probability which 
is part of their HCK. The construction of the urn involved a modelling process (Chaput et al., 2011), 
which started from reality (the results observed in the 1000 drawings) and then simplified this reality 
to accept certain hypotheses (the total number of balls in each urn is 10; the relative frequency will be 
close to, but not exactly equal to, to the theoretical probability). The last step in the modelling process 
is to work with the mathematical model, in this case, to calculate the probability from the assumed 
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composition in the urn. Students who gave this answer built the model but were unable to use it to 
answer the new questions. All these results were discussed with the prospective teachers, who were 
given the chance to identify their faulty reasoning and main probabilistic biases. The participants 
found the activity to be helpful to recognize the challenging task to teach probability to young 
students. The study implication is the need to improve the probabilistic reasoning of prospective 
secondary school mathematics teachers, who, having received a formal statistical training, lack an 
education in the psychological and didactical components of teaching probability. The value of this 
research is providing information about components to be reinforced in the education of prospective 
teachers. The paper also contributes to the analysis of probabilistic reasoning and its components. 
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