DEVELOPMENTS OF TEACHERS’ KNOWLEDGE FACETS IN TEACHING STATISTICS WITH DIGITAL TOOLS MEASURED WITH RETROSPECTIVE SELF-ASSESSMENT

Ralf Nieszporek, Rolf Biehler, Birgit Griese
Paderborn University, Germany
ralf.nieszporek@math.upb.de

Due to changes in the state curriculum of the German federal state of North Rhine-Westphalia, teaching statistics using graphic calculators, particularly for simulations, has become a focus of attention. This created a high demand for professional development (PD) courses in statistics. Considering this demand and approved concepts for learning and teaching statistics we created a PD course aimed at focusing on fundamental ideas and a pedagogically advantageous use of digital tools for simulations and interactive visualizations. Retrospective self-assessed questionnaires were used to measure the developments in participants’ content, pedagogical, and technological knowledge. Our analysis shows interesting findings regarding heterogeneity in gaining new knowledge, for example in respect to handling pupils’ misconceptions, didactically appropriate use of digital tools, or planning and conducting lessons.

CONTEXT OF THE PROFESSIONAL DEVELOPMENT COURSE

After the implementation of new national standards (KMK, 2012) in Germany and a new state curriculum in North Rhine-Westphalia (NRW), teaching probability and statistics became mandatory for the syllabus and for the final examination (Abitur). In addition, the use of digital tools like graphic calculators (GC) became mandatory in schools. Dealing with these changes was and still is a challenge for upper secondary school teachers and led to an enormous need for professional development (PD). In 2013, the Paderborn department of the German Center for Mathematics Teacher Education (Deutsches Zentrum für Lehrerbildung Mathematik, DZLM) consisting of experienced school teachers and researchers created a PD course called “stochastics compact” (Biehler, 2016) to address this need. In total there were six implementations of the PD course, starting in 2013. The presented research is related to the latest version of the PD course. This course took place in 2017 in cooperation with the regional school administration in Arnsberg and consisted of five one-day modules. Each module had a different topic, stretching from an introduction to upper secondary statistics and probability education with digital tools and simulations over conditional probability and stochastic independence to hypothesis testing with authentic examples. The focus in this article is on the module introduction to hypothesis testing.

THEORETICAL FRAMEWORK

Course Concept

The course concept is based on the standards and design principles of the DZLM (Barzel & Selter, 2015). The creators also considered different results from stochastics education research. This led to a concept that (among others) takes typical students’ mistakes into consideration and considers teachers’ difficulties when teaching probability and statistics. A frequent mistake is the misinterpretation of large and small p-values in the context of hypothesis testing. Therefore, the introduction to hypothesis testing starts with p-value testing followed by testing with predefined significance level. This sets the stage for understanding the meaning of the test results and of the p-values. The course also incorporates approaches, which had been successfully tested in university courses or experimental classrooms like designs for teaching hypothesis testing (Prömmel 2013) or Bayesian reasoning (Wassner, Biehler, Schwegnoch & Martignon, 2004). The course developers also bore in mind how technology like GCs or other digital tools can support the teaching and learning of probability and statistics (Biehler, Ben-Zvi, Bakker, & Makar, 2013).

The modules were designed on the basis of “fundamental ideas” in statistics and probability (Burrill & Biehler, 2011; Biehler & Eichler, 2015). The module on the introduction to hypothesis testing is built up in four steps:
1. A comprehensible introduction to hypothesis testing with p-values
2. A comprehensible transition to hypothesis testing with predefined significance levels
3. Interpretation of test results with special emphasis on language sensitivity and typical mistakes
4. Hypothesis testing and of the mathematical modeling circle

Whereas these steps are related to classroom content, a second important design aspect is related to the facets of professional knowledge, which teachers should master when teaching this content. The underlying competence model is based on Ball’s, Thames’ and Phelps’ (2008) work and its enhancement by Wassong (2017). The competence facets that were covered in the PD course and later partly measured in the questionnaire for the topic an introduction to hypothesis testing can be found in table 1.

<table>
<thead>
<tr>
<th>Knowledge type</th>
<th>Content Knowledge (CK)</th>
<th>Knowledge of Content and Teaching (KCT)</th>
<th>Knowledge of Content and Students (KCS)</th>
<th>Special Content Knowledge (SCK)</th>
<th>Technological Content Knowledge (TCK)</th>
<th>Technological Pedagogical Content Knowledge (TPCK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Knowledge of fundamental ideas of hypothesis testing, its procedures, and validity</td>
<td>Knowledge of how to plan and implement a lesson for introducing hypothesis testing either with p-value or with predefined significance level</td>
<td>Knowledge of typical mistakes and language errors regarding the interpretation of test results</td>
<td>Knowledge of how to react adequately on pupils’ reasoning on the meaning of small and large p-values, and of how to react adequately to statements on the validity of various interpretations</td>
<td>Knowledge of how to use digital tools for visualizations and calculations in the context of hypothesis testing</td>
<td>Knowledge of advantages and disadvantages of the use of digital tools and possible misconceptions regarding hypothesis testing</td>
</tr>
</tbody>
</table>

Table 1. Competence facets which were covered in the PD course

Questionnaire Concept

On the basis of this course concept a questionnaire was developed. The above-mentioned content facets are reflected in the retrospective competence self-reports questionnaire (short form: ReCoS). Figure 1 shows the arrangement of the four content facets (rows) and eight competence facets (columns) creating the two-dimensional matrix of the ReCoS. The competences in the columns measure different dispositions referring to situation-specific skills and performance. This follows the model competence viewed as a continuum (Blömeke, Gustafsson & Shavelson, 2015). The teachers were asked to grade their knowledge before and after the course, from 1 (excellent) to 6 (inadequate) into the questionnaire.

Figure 1. Excerpt of the retrospective competence self-reports questionnaire (ReCoS) for the module introduction to hypothesis testing.

A knowledge test was not a feasible tool to measure the competence levels of the participants in the project. The reasons for this decision were various: besides organizational difficulties (lack of time for a detailed knowledge test due to a tight PD course schedule), acceptance on behalf of the teachers, ethical concerns were crucial and the lack of an adequate and valid test finalized this point. Therefore, self-assessment was used. To avoid inaccuracy effects in self-assessed data like response shift, carry over, or sensitization for a topic (see Wilson & Putman, 1982), a retrospective instrument was used. Other researchers successfully utilized retrospective measurements instead of a pre/post-test-design in other research contexts (e.g. Lam & Bengo, 2003, or Nimon, Zigarmi & Allen, 2010), which supports this decision.
RESEARCH QUESTIONS

The following research questions were evaluated. This paper focuses on the first two questions, but it is planned to present results for the other two at ICOTS10:

1. How did the self-reported competence level of the participants develop during the PD course?
2. What differences can be found in the developments of the specific content levels of the module introduction to hypothesis testing?
3. What differences can be found in the developments of the competence levels of specific competence facets of the module introduction to hypothesis testing?
4. Are there any relations between participants’ individual preconditions and level of motivation and their competence development?

DATA COLLECTION

The sample of the PD course consists of 60 upper secondary school teachers from two course locations. The questionnaire was distributed at the end of the module, therefore the participants knew about the content of each topic facet and the knowledge imparted when they were filling in the items.

RESULTS

There is no evidence for statistical differences between the two PD locations (mean differences: \(p \geq 0.112 \) Mann–Whitney U test). So the data was combined for further analysis. The self-assessed levels of each competence facet after the PD was significantly higher (\(p \leq 0.001 \), calculated with a Wilcoxon signed-rank test because normal distribution could not be assured) than before the PD. Every level of the content facet hypothesis testing with p-values before the PD was judged lower than those of others content facets. The increase (difference of grades after and before) of the competences relating to hypothesis testing with p-values was higher than those of the other facets (see Figure 2).

After the PD, the competence level was rated between grade 2 (good) and grade 3 (satisfying). There were no substantial differences between the competence facets of the different content facets, which is contrary to what was expected. It was anticipated that competences closer to classroom practices would be rated significantly lower, because of missing opportunities for field-testing. That was not the case and could be an indication for the effectiveness of the practice-related concept of the course.

![Graph showing increase of self-assessments](image)

Figure 2. Increase of the self-assessments via ReCos from before compared to after the PD course. 1 point is equated to an increase of one grade

DISCUSSION AND REMARKS

Regarding the first research questions there is a recognizable subjective increase of the competence levels in all content and competence facets. As expected, the topic facets hypothesis testing with p-values was new to most of the participants, thus the teachers initially assessed themselves as rather low. Here, the PD course effected a substantial increase of the competence in these topic facets compared to all others. The increase compensated the initial differences in
competence so that after the course the competences in all facets were almost identical.

For the presentation at ICOTS 10 it is planned to present a more detailed exploration of the questionnaire structure and the response behavior of the participants.

This article is an excerpt of a larger research project, which includes different kinds of questionnaires like assessment of learning targets (Frank & Kaduk, 2015) or Stages of Concern questionnaires (Biehler & Nieszporek, 2017). For future analysis, we intend to associate the results from these data with the results of ReCoS, aiming at new insights and potentially finding correlations between competence increase and personal requirements.

REFERENCES

