
FAST-AND-FRUGAL TREES FOR DECISION-MAKING  
 

Laura Martignon1, Ulrich Hoffrage2, Jan Woike3, Tim Erickson4 and Joachim Engel1  
1Ludwigsburg University of Education, Ludwigsburg, Germany 

2University of Lausanne, Lausanne, Switzerland 
3MaxPlanck Institute for Human Development, Berlin, Germany 

4Epistemological Engineering, Oakland, CA, USA 
martignon@ph-ludwigsburg.de  

 
Fast-and-frugal trees for classification/decision are at the intersection of three families of models: 
lexicographic, linear and tree-based. We briefly examine the classification performance of simple 
models when making inferences out of sample, in 11 medical data sets in terms of Receiver Operating 
Characteristics diagrams and predictive accuracy. The heuristic approaches, Naïve Bayes and fast-
and-frugal trees, outperform models that are normatively optimal when fitting data. The success of 
fast-and-frugal trees lies in their ecological rationality: their construction exploits the structure of 
information in the data sets. The tool ARBOR, a digital learning tool, which is a plug-in to the freely 
available data-science education software CODAP can be used for constructing and interpreting fast-
and-frugal classification and decision trees.  This paper is an abridged version of work by Woike, 
Hoffrage & Martignon on the integration of classification and decision models into a common 
framework (Woike, Hoffrage & Martignon, 2017). 
 
INTRODUCTION 

Fast and frugal trees are models for classification and decision based on several pieces of 
information: Imagine a physician who wants to either confirm the presence of a particular disease 
given a set of observations or assure her patient that she does not need worry. In the Bayesian 
approach the physician begins with a prior probability, i.e., the base rate of the disease which is the 
probability P(D) that disease D is present. She then observes evidence E in the form of a set of cues 
(observations, symptoms, tests) and, based on these symptoms, assesses the probability that the 
evidence will occur if the disease is present and the probability that the evidence will occur if the 
disease is not present. For one piece of evidence E she computes P(D|E), also called the posterior 
probability of the disease, given the evidence: 
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As a flurry of empirical findings have shown, this seemingly simple formula causes systematic errors 
when used by students of probability courses and even specialists (doctors, for instance). Changing the 
information format to so called natural frequencies has proven to greatly facilitate not just physicians’ 
information processing but that of overall adults, as well as school students. Here the decision-maker 
imagines a group people with and without the disease, and then subdivides this population into 
subclasses (having or not having the disease), which are again subdivided according to the test results 
(positive and negative). Importantly the proportions of these subclasses correspond numerically to the 
original probabilities involved (observe that this is possible as long as probabilities are rational 
numbers). The necessary computation at the end involves simple arithmetic: the number of true 
positives divided by the sum of the number of true positives and the number of false positives. The 
beneficial effect of this format has been tested in a variety of applied domains, such as medicine, law, 
and education. It has furthermore been shown empirically that the beneficial effects of natural 
frequencies extends to more complex situations than those involving just one cue (symptom, test, or 
feature). Participants who know about the base rate or prior probability of a disease and have the 
statistical information about two independent tests or symptoms (specifically, their sensitivities and 
false-alarm rates) in terms of probabilities find it hard to infer the probability of the disease being 
present if both tests were positive. When they are provided with the corresponding information in 
terms of natural frequencies, about three quarters of the participants work out the correct (i.e., 
Bayesian) solution. Thus the facilitating effect of natural frequencies is generalizable to more cues. 
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Nevertheless, there are obvious limits to the number of cues people can cope with. Making inferences 
under uncertainty even when provided with “natural” information formats becomes cumbersome when 
the number of cues exceeds what people can handle. One problem is limited memory, another is 
“brittleness or lack of robustness:” As the tree grows, the number of end nodes becomes ever larger, 
and the number of cases per end node becomes ever smaller. For some of the nodes the decision 
maker may not even have encountered specific cue‒value combinations. Also, it is quite possible that 
for some specific combinations of cue values, the few cases encountered do not to generalize to new 
cases. It is here that heuristics become handy: The potentially huge full tree with natural frequencies 
and 2n+1 nodes when n is the number of cues can be pruned systematically into a minimal tree that may 
eventually come to use the same set of cues when necessary, often stopping after having checked just 
a few of them. This minimal tree turns out to be simple in construction, accurate in prediction and 
even robust for generalization.   

These minimal trees have been called fast-and-frugal trees for classification and decision. By 
now, after their conceptual inception in 2003 (see Martignon et al., 2003), they have become popular 
even in the Machine Learning community. We have evidence that their properties and advantages can 
be taught to school students in ninth and tenth grade with success. 

We begin by shortly presenting the most famous known example of fast-and-frugal tree, i.e., 
the one for assessing whether a patient arriving at the hospital suffering from severe chest pain is at 
high risk for myocardial infarction and should be assigned to the Coronary Unit or is moderately in 
danger and can be sent to a regular bed (the first such tree was described by Green and Mehr, still 
under the name of “Take The Best” in 1997). The data on 89 patients with severe chest pain were then 
collected in a Michigan Hospital and we use them here for modeling by means of two different trees in 
Figure 1: ST denotes a particular pattern of extreme elevation in the electro cardiogram, CP denotes 
chest pain, OS denotes “at least one other of 4 typical symptoms,” “+” denotes present, and “–” 
denotes absent. Numbers in circles denote numbers of patients. Panel B: Fast-and-frugal classification 
tree obtained by pruning the natural frequency tree. Questions in rectangles specify which cues are 
consulted for each patient in the corresponding circle in Panel A. Depending on whether this cue value 
is positive or negative, either a new question is asked or the tree is exited and a decision is made 
(oval). The accuracy of these classification decisions is shown by the “patient numbers” below these 
oval exit nodes: The number of those who actually had a heart attack is displayed in a gray circle; the 
number of those who did not, in a white circle. All patients to the left of the vertical bar in Figure 1B 
are classified as high risk: all patients to the right, as low risk (Figure adapted from Woike, Hoffrage 
& Martignon, 2017). 
  

 
 

Figure 1: A full natural frequency tree (A) and the corresponding fast and frugal tree (B) 
 
MATHEMATICAL PROPERTIES OF FAST AND FRUGAL TREES 

The fast and frugal tree in Figure 1(B) presents a bold vertical bar that splits the cue profiles in 
two groups: those that are to the left of this bar and those that are to the right. The cue profiles to the 
left correspond to patients who are classified as being at high risk of a myocardial infarction.     

Obviously patients with cue profiles [1, 1, 1], [1, 1, 0], [1, 0, 1], [1, 0, 0], or [0, 1, 1] are 
classified by the fast and frugal tree as being at high risk, and those with [0, 1, 0], [0, 0, 1], or [0, 0, 0] 
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as low risk. This splitting profile is a characteristic of fast and frugal trees. In fact they may be viewed 
as models that classify objects lexicographically. To explain this some mathematical rigor is required. 
We assume n that we work with n binary cues and two classes or categories, C1 and C0 (corresponding 
to the presence of disease and absence of disease, respectively). Without loss of generality, we also 
assume that cues are inspected in the order c1, c2, . . ., cn and that for i = 1, 2, . . ., n, cues are coded so 
that in case an object x exits the tree at the i-th level, it is assigned to category C1 if xi = 1 and to C0 if 
xi = 0.  

Definition: A cue profile x is lexicographically larger than a cue profile y (x > y) if and only 
if there exists 1 ≤ i ≤ n such that xi = 1 while yi = 0 and xj = yj for all j < i.  
If neither x > y nor x > y, then x and y obviously coincide. 

 
The following result establishes a characterization of fast and frugal trees as lexicographic classifiers 
based on splitting profiles (Martignon et al., 2003; Martignon et al., 2008). 
 

Result 1: For every fast and frugal tree f there exists a unique cue profile S(f)—called the 
tree’s splitting profile—so that f assigns x to C1 if and only if x >l. Furthermore, for every 
cue profile S there exists a unique fast and frugal tree f, such that S(f) = S (see Martignon et 
al. 2003). 

 
In Figure 1(B), let x1 = 1 if and only if the ST segment is elevated, x2 = 1 if and only if chest 

pain is the main symptom, and x3 = 1 if and only if any of the other four symptoms are present. Also 
let C1 represent high risk and C0 low risk. The splitting profile of this tree is [0, 1, 0]. The bold vertical 
bar marks the position of the splitting profile. All cue profiles to the left of the bar are 
lexicographically larger than the splitting profile. As result 1 states, these cue profiles are assigned to 
the high risk category C1. The full “natural frequency tree” that adopts the same convention of placing 
positive (negative) cue branches to the left (right) does not have a splitting profile: If a threshold of .1 
is adopted against which the posterior probability is compared, then the classifications for the eight 
distinct cue profiles are, from left to right, C1, C1, C1, C0, C1, C0, C0, and C0. For the fast and frugal 
tree, in contrast, the classifications for the four distinct cue profiles are, from left to right, C1, C1, C0, 
C0.  

It can also be shown that a fast and frugal tree can be identified with a weighted linear model 
for classification with non-compensatory weights. In other words, fast and frugal trees can thus also be 
seen as belonging to the class of linear classifiers with non-compensatory weights. We recall that in 
linear models for classification, each cue ci has a weight wi > 0 and for each cue profile x = [x1, x2, . . ., 
xn], the score R(x) = Σi xi wi is computed. A scalar threshold h > 0 charactezises classification in the 
sense that item x is assigned to C1 if and only if R(x) > h. A linear classifier in which all weights are 1 
is called Tallying. The following result relates linear and lexicographic inferences for classifications 
(Martignon et al., 2008). 

 
Result 2: For every fast and frugal tree f there exist h > 0 and wi > 0 where wi > Σ k > i wk for i 
= 1, 2, …, n − 1, so that f makes identical classifications with the linear model with weights 
wi and threshold h. For every linear model with weights wi > 0 so that wi > Σ k > i wk for i = 1, 
2, …, n − 1 and a threshold h > 0, there exists a fast and frugal tree f that makes identical 
categorizations (the proof appears in Martignon et al., 2008). 

 
For example, the Green and Mehr (1997) tree in Figure 1(B) makes identical classifications with the 
linear model with R(x) = 4x1 + 2x2 + x3 and h = 2 (they both assign [0, 0, 0], [0, 0, 1] and [0, 1, 0] to C0 
and all other cue profiles to C1). Result 2 states that fast and frugal trees are equivalent to non-
compensatory linear models in the sense that the two make the same classifications. Note, however, 
that Result 2 does not imply that it is impossible to distinguish empirically between fast and frugal 
trees and noncompensatory linear models.  

We will show how a fast and frugal tree, like the one displayed in Figure 1(B), may be 
constructed. The two important features of a fast and frugal tree are its ordering of cues and its exit 
structure. Keeping in mind that n cues allow for n! different orderings, the task of selecting useful 
orderings is not trivial. In fact, the task of finding the ordering that leads to best performance is NP-
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complete (Schmitt & Martignon, 2006). Implementing orderings and searching for those with good 
performance would be too complex and far away from the spirit of a simple heuristics program which 
we propagate here. We propose heuristic principles for constructing trees. 

In our approach, the ordering of cues is determined by their relationships with the criterion. 
Fast and frugal trees assume cues to be independent of each other, conditioned on the criterion. They 
are “naïve” in the same sense in which “Naïve Bayes Networks” are naïve.  

For just one cue, say in the specific medical example above, its Positive Predictive Value 
(PPV) is the proportion of patients suffering from the disease among all patients for whom the cue is 
positive (or in its high state, i.e., p(D|E)), and the negative predictive value (NPV) is the proportion of 
patients without the disease among all patients for whom the cue is negative (or in its low state, i.e., 
p(–D|–E)).  

In general, PPV and NPV indicate how diagnostic a cue is given that it has a positive or 
negative value, respectively.  
 
HOW DO FAST AND FRUGAL TREES PERFORM? 

Three large classes of classification strategies have been extensively evaluated in one common 
framework (Woike, Hoffrage & Martignon, 2017): full natural frequency tree, naïve Bayes and several 
variants of fast and frugal trees. The evaluation methods are, on the one hand, computations of the 
average between the PPV and NPV of a strategy, that is the overall diagnosticity of the strategy, and, 
on the other, the well-known ROC curves for measuring the sensitivity of a strategy, based on 
Receiver Operating Characteristics diagrams. These curves plot sensitivity (percentage of correct 
identification among patients with the disease) against false alarm rate (incorrect identifications 
among patients with the disease; the complement of the specificity) as the classification threshold is 
gliding from 0 to 1. Fast and frugal trees do not use such thresholds and hence their classification 
performance cannot be represented as a curve, but just by one point per construction principle. Each 
data point in the ROC diagram reveals these two proportions, but it is mute about the underlying 
absolute frequencies. The same data point can signal a high or a low accuracy depending on which of 
the two errors occurs how often. In other words, ROC curves display “normalized frequencies”, rather 
than natural frequencies. We now list the different versions of very simple fast and frugal trees: 
  

Rakes (R). Following Martignon et al. (2003) we will refer to a tree that has all exits to the 
same side as a rake. The tree that orders cues by PPV and that has all exit nodes on the left will be 
abbreviated by R+, and the one that uses NPV and has all exit nodes on the right by R-.  

Zigzag trees (Z). We define Z+ as starting with the cue that has the highest PPV among all 
cues and placing it at the top of the diagnostic tree, with the exit node on its left. Subsequently, Z+ 
identifies the cue with the highest NPV among all remaining cues, places it second and with the exit 
node on the right. Then it identifies, for the third position, among the remaining cues the one with the 
highest PPV (and puts its exit node on the left), and so on. Z- follows the same logic but it starts with 
the cue that has the highest NPV, continues with the cue that has the highest PPV, then again the one 
with the highest NPV, and so on.  

Base-rate respect trees (B). We now introduce trees that combine subtrees of the rake and of 
the zigzag type. It is easy to see how zigzag trees suffer from this base-rate neglect. Therefore we 
propose two trees that combine features of rakes and zigzag trees. In the standard variant, denoted as 
B, for a base rate of b<0.5 the first 𝑘 = log&(𝑏)  cues have exit nodes on the right, thereby 
classifying patients into the majority category. These k cues, and their ordering, are determined by 
maximum NPV. The B1 tree is even more biased: It does not start with 𝑘, but with 𝑘 + 1 cues that 
classify objects into the majority category. 

Maximum predictive value trees (M). Our next tree is also quite sensitive to the environment. 
Like for all trees, the position of the exit is determined by whether the cue on this position has been 
picked by its PPV or by its NPV. The tree that is here referred to as M chooses the maximum 
predictive value among all remaining cues.  

Accuracy trees (A). The PPV and the NPV are still considered, not to determine the position 
in the cue ordering, but only to determine the exit node. If for a given cue PPV>NPV, the exit is to the 
left, otherwise to the right. For each of the tree construction principles proposed above, ties in the 
process are broken randomly.  

IASE 2019 Satellite Paper Martignon, Hoffrage, Woike, Erickson & Engel

- 4 -



The data sets for our competition are listed in the following table:  
 

Table 1. Data sets investigated 
 

Panel in 
Figure 3 

Name Criterion Base rate of 
positive criterion 

Objects Cues 

A Alcohol >2.5 pints per day 
consumption 

0.255 
 

345 5 

B Echocardiogram Survival after 
heart infarction 

0.290 
 

62 7 

C Diabetes Diabetes 0.349 
 

768 6 

D Breast Cancer Malignant 
tumors 

0.350 
 

683 9 

E Heart Disease Hungarian Heart disease 0.374 
 

262 10 

F Heart Disease Cleveland Heart disease 0.461 
 

297 13 

G Horse Colic Treated with surgery 
(yes/no) 

0.587 
 

218 6 

H Post-Operative Decision to keep patient 
in hospital 

0.721 
 

86 8 

I Hepatitis Survival of hepatitis 
patients 

0.791 
 

153 7 

J SPECT Heart disease 0.794 
 

267 22 

K Cardiac* Heart disease 0.841 
 

558 8 

 
 

 
 
Figure 2: Table with our data sets and results: Predictive accuracy for profile memorization 
classification, Naïve Bayes, and various fast-and-frugal trees across all data sets, with size of training 
sample of 15%, 50%, and 85%. The performance of the classifier was evaluated in the remaining 85%, 
50%, and 15% of cases. 
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Figure 3: ROC Curves for profile memorization classification and Naïve Bayes, and the corresponding 
data points for various fast-and-frugal trees, separately for 11 data sets (Panels A–K) and averaged 
across all data sets (Panel L), with a training sample of 50% of the objects and performance tested on 
the remaining 50%. As we observe, the overall winners are Naïve Bayes and B1 demonstrating that 
naïve heuristics do not trade off accuracy for simplicity. They are accurate not inspite of their 
simplicity but because of it! 
 
For the possibility of visualizing the construction of fast and frugal tree by means of ARBOR the 
reader can consult the paper by Engel, Erickson & Martignon in this volume.  
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