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1. Introduction

During the past four years, | have been déveloping curricula and
computer software for teaching probability and data analysis ac the
inrroductery high-school and college level. The approach T've taken
emphasizes the use of real data, where “telling a ‘story” takes priority over
testing hypotheses, and in which mathematical formalism is kept to a
minimum (see Cobb, 1992; Scheaffer, 1990; Warkins ¢z 4/, 1992).

A major question I have considered is how probability cught to be
integrared into this néw data-rich ‘curriculum: There are two major reasons
for keeping probability in the data-analysis (or statistics) ‘Curriculum. First,
at some point in the process of constructing theories that account for
patterns in data, it is important that students consider alternative
explanations. Among these is the possibility that some outcome of interest
resulted from chance. Second, probability is an important concept in its
own right (Falk and Konold, 1992). It comprises a world view and should
not be viewed a necessary evil that must be faced if students are to
understand statistical inferefice.

In deciding how to relate probability and data analysis, T have adopted
an approach Julian Sifnon began advocating in the late 1960s. Simon
describes his approach as having grown ouc of his frustration warching
graduate students do silly things when trying to test a statistical hypothesis
(Simon and Bruce, 1991). He began designing physical experiments from
which he hoped they could build up sound probabilistic understandings.
These eventually developed into a resampling approach that promised a
more Intuitive take on probability and data analysis, and which made the
connections between the two fields more apparent. Of course, Simon didn’t
invent Monte Carlo methods, nor the randomization tests he would come
to employ, but be was among the first to see their educational porential, and
long before the computer was widely available.
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Rather than elaborate Simon’s argument here, I briefly describe two
software tools we've developed, highlighting aspects that emphasize the
relation between probability and daea analysis. T also report some results
from our primary test site, a high school in Holyoke, Massachusetts.

2. Modeling a problem with Prob Sim

Most educational probability-simulation software comprise several
ready-made models (e:g., coin model, die model). Students load the
appropriate model, draw samples, and then see resules displayed. The
software thus offers empirical demonstrations of various facts and principles,
such as the law of large numbers and the binomial disuibution. The
software we have designed, “Prob Sim”, includes no ready-made models.
Rather; the student must build the model, specifying the approptiate
sampling procedure and analyses in order to estimate the probability of
some event. The process of building a simulation model is at least as
important as, if not more important than, drawing the appropriate
conclusions from the results. To illustrate, T'll describe one of our activities
entitled “LAPD” (see Konold, 1993, for another example).

Students begin by reading excerpts from The New York Times account
(March 18, 1991) of the beating of Rodney King by officers of the Los
Angeles Police Department. After reporting thar “ar least 15 officers in
patrol cars converged on King”, the article broaches one of the issues that
made this incident explosive: “In what ather police officers called a chance
deployment, all the putsuing officers were white. The force, which numbers
about 8,300; is 14% black”, ‘ ,

Students are asked to build a model of this situation to estimate the
probability of finding no blacks in a random sample of 16 officers. This
problem has generated lively discussions in our test sites. When students
care deeply about a problem, they are more willing to persist through
difficulties. Moreover, they learn that application of probability theory is
not limited ¢o rolling dice and blindly drawing socks out of dresser drawers.

2.1 Building a model

I demonstrate below the various stages through which students progress
in modeling this situation, illustraring the steps with screen shots from Prob
Sim. In Fig. 1, 2 mixer has been filled according to the information
provided in the article. There are a total of 8,300 elements, 1,162 of them
labeled B (Black) and 7,138 labeled V' (Not black). The non-replacement
option has been selected to preclude the possibility of having the same
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slement {officer) in a sample more than once.
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Figiive 1. A sampling model for the LAPD problem

The Run controls on the far left shows the sample size set at 16, and
number of repetitions set (somewhat arbitrarily) at 100. After the Run
burton is pressed, the computer draws 16 elements from the mixer without
replacement, repeating this a total of 100 times. This is analogous to
looking at 100 occasions when 16 randomly-selected officers appeared on a
crime scene. The sampling process is animated in the lower part of the
Mixer window. The results of each repetition are displayed in a Data
Record window {(not.shown).

After the block of 100 repetitions has been drawn, results can be
analyzed as shown in Fig. 2. The Analysis window in this case shows the
number (and proportion) of occurrences of each of the 17 possible
unordered outcomes. Ten percent of the samples had 0 B's. Thus, a first
estimate of the probability that a “chance deployment” would include no
black police officers is .10.

2.2 Repeating the experinent

In many textbook examples of simulation, the experimental component
ends here. But it is important not only to estimate the probability of some
event, but to get some sense of the range (or variability) in thar estimate
given the number of repetitions. Indeed, the notion of chance is not
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apparent in a probability value per se, but in the variability of result over
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Figure 2: The analysis window showing the-resnlts of 100 repetitions

replications of an experiment. To replicate an experiment in Prob Sim, the
student has only to press the run button again. Another random sample is
drawn, and the Analysis window updates to show the new results.

Students replicate the experiment about 10 times, plotting the results on
a line plot which helps to emphasize the variability in the process. They
then pool their results to come up with a final probability estimate. For the

10 results plotted in Fig. 3, the pooled estimate of P (0 blacks) is .109.

X
X X X
X X X X X X

567 8910 1112131415 16 17
Percentage of samples with no B

Figure 3. Line plot of result of 10 replications




IASE/ISI Satellite, 1993: Clifford Konold

C KONOLD 203

in comparing results obtained in other groups, students discover that
sere is considerably: less vanabxhty among the pooled. estimates of the
ferent groups than there is in the 10 estimates they g()t in their own
weoup. Students thus see empirical demonstrations of the law of large
ambers long before encountering a formal description. I've used such rashs
in short two-weelc workshops in which I've never formally introduced the

woof latge numbers. According to performance on post-test items; these
dents show significant gains in understanding the effects of sample size
on the variability of a sampling distribution.

When they can, students also work out theoretical probabilities,
Through comparing these to their empirical values, they gain confidence in
the: simulation process as well as-an appreciation for the power of
muthematical theoiy and formalism.

2.3 Questioning assumptions and making decisions

In the process of model building, various assumptions are made.
Students are asked, forexample, vo consider how the fact that pelice officers
often arrive in pairs might affect the probability in question if partners tend
to be of the same race. If they can; they build and run models consistent
with these new assumptions and discuss the implications of their results, It
is- through addressing the assimptions incorporated into any mode! that
students begin to understand what the process of modeling involves. In
order to determine the predictive value of the simulation resules, students
must decide if and how various considerations affect the real situation. In
some cases they can alter the model to take into account an additional factor
{e:g., have police arrive on the scene in same-race pairs). If they can’t do
this, they can often predict the direction of biases introduced by their
simplified model. Through this process of comparing a model to the target
situation, students cormie to realize that though they can’t avoid simplifying
assumptions, the more aware they are of the limits of a particular model, the
more informative the data from that model becomes.

At the end of the lab, students discuss the problem of deciding, based on
their information, whether it was just chance that none of the responding
officers were black. And, of course, the probability of the event is only one
of the relevant pieces of information. More important are the subsequent
testimony of the officers and the sensibility of any conspiracy theories that
explain why black officers weren’t on the scene. In other words, the
probability of some event is never the only or last word in making some
decision related to that event.

Sach discussions seldom occur uatil instruction moves beyond the realm
of coins and dice. Prob Sim is an important tool in supporting discussion of
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this type, because it can be used to model engaging problems too complex
for students to tackle formally. Prob Sim’s simplicity, and the speed with
which sufficient data can be generated, gives students the time to design a
sampling model, collect adequate data, draw conclusions, and discuss
implications of the findings. In the next section; I:show how we build on
ideas introduced in modeling probabilistic situations when we move on to
data analysis.

3. - Data analysis using DataScope

We designed a data-analysis progtam -called “DaraScope” for use in
introductoty courses stressing exploraroty data analysis in which students
waork ‘with real data. Qur primary objective is for students to learn basic
data-analysis techniques for exploring relationships among various variables.
By using multiple-variable data sets, we give students the opportunity to
explore questions of particular interest to them. DaraScope encourages
students to make initial judgments of relationship by visually comparing
plots. This is demonstrated below using data obtained from a questionnaire
administered to 84 students in two high schools in western Massachuserts:
Ambherst Regional and Holyoke High. Amherst is a small college cown,
while Holyoke is a larger, industrial city. The information collected on each
stadent included gender, age, birth order, family size, marital status of
parents, religious activity, rating of school performance, educational level of
parents, curfew times, working hours and wages, and time spent on
homework. Students spend about two weeks exploring various questions in
this data set, among them the question of whether holding an after-school
job adversely affects school performance.

DataScope encourages exploration by allowing students to form
subgroups of some variable based on the values of some other, presumably
related, variable. For example, Fig. 4 shows the box plots for hours of

homewotk (HWHRS) and hours spent working (JOBHRS) for Amherst and
Holyoke students (in the case of JOBHRS 4at’Ambherst, the median is the
same as the Lst quartile, as indicated by the double-thick line). The number
of cases in each box plot is displayed to the right of the plot. This is
important to include as students will frequently draw conclusions without
considering the number of cases represented by each box plot. The plots
below suggest thar Amherst students spend more time on-homework than
working a part-time job,-and that the opposite is true of Holyoke students.
This trend is consistent with common(y-fefd stereotypes of tle cwa tawas.
. Ic is cempring to conclude from Fig. 4 thac those with jobs spend fess
time on homework than those without jobs. However; whenn HWHRS are
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“grouped” by the categorical variable JOB, students discover the reverse
appears to be true — students with a job seudied an average of three hours-
per-week more than those without 2 job.

HWHRS, AMHERST =31

HWHRS HQLYQKE n=51

JOBHRS; AMHERST n=31

JOBHRS, HOLYOKE n=51

H 1

6] 20 40

Hours per week

Figure 4. Box plots of hovnerwork hotiss andjob hours for Amherse and Holyoke students

job = no n=26
n=56
0 5 10 15 20 25

Homework hours per week

Figure 5. Box plots of homework hours for situdent-with and-without jobs

At this point, students reconsider their expectations and develop theories
that might explain these data. One possibility that those who work also
study more because they have learned to effectively manage their time. Or
maybe the students wich jobs are older and have mote homewotk assigned.
Some of these explanations can be investigated by locking at other variables
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in the data set. However; among the explanations to consider is the possi-
bility that the difference was dueto the “luck of the draw” —that with:a bet-
ter ot larger sample, no diffetence would be found. In my experience, stu-
dents do not spontaneously raise this possibility, even when they have been
using resampling rechniques; as described above to estimarte probabilities.
They will judge differences between two medians as important in one case,
and unimportant in another; apparently making the judgment based on the
distance berween the two medians, as it appears on the computer screen.
They do not spontancously evaluate this difference with respect to the
vatiability (Le., to the JQRs as shown in the box plots). Therefore, before
showing them how we might determine the probability of a difference
occurring by chance; I typically must remind them that this is a possibility.

3.1 Randomization tests in DaraScope

Below is a demonstration of how DataScope is used to estimate the one-
tailed probability of observing a difference at least as large as the one
observed in the sample above. The method is based on the randomization
procedure as originally developed by Fisher (see Barbella etaf, 1990). This
involves randomly reordering one of the variables (without replacement) to
estimate the probability of the observed difference under the null hy-
pothesis. With DataScope, the student can first do this “manually”, o
develop a sense of what the compurer is doing. A “reorder” command
randomly reorders the values of one of the selected variables (in this case,
the values for HWHRS). That is, the values of HWHRS are randomly
reassigned to cases. Once reassigned, the variable name appears in the data
table with the symbol ® on both sides to remind the student that the
column has been randomized (another command will restore the original
order). A box plot of this randomly ordered variable, again grouped by the
job variable, can be viewed. Given that the values of HWHRS have been
randomly assigned, any difference between the medians of the two groups
(with orwithout jobs) is due to-chance. In the example shown in Fig. 6, this
difference is -1 (sub-tracting the median of the upper plot from the median
of the lower plot).

Once students understand the procedure, the computer can. be in-
structed to repeatedly reorder the variable and compute the difference
between medians of the job and no-job groups, recording these in a new
data table as illustrated in Fig. 7. In this case the computer has been
instructed to draw 100 random samples. The fitst few differences that were
obrained are shown in Fig. 7 in the “Resampling” data table. The first value
is the observed difference, -3. In the background you can see the variables
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sefected (V1 -and G1) in the primary data rable. The values in HWHRS are
being randomly reordered.

job=no n=26
n=56
0 5 10 15 20 25

®HWHRS®

Figure 6. Homewarklonrs randowmly assigned 10 job. and nojob groups

HS Survey 90

PARENTS! COLLEGE !SGNVGU_!@HWHR‘S& J0B
Resampling of HIVHRS vl Gl
B D.M. , 10] no
¥ ] 71 4yes
1 -3 151 yes
2 % 101 -ues
3 15 : . 101 no
4 -25 04 ues
5 =15 31 Yes
6 -5 111 Ues
7 0 201 yes
8 0 6 uesy
e | 150 ..no
s . poerd 15] yes
segaratecﬁundecided 10 15 yes

Figare 7. Table of differences between median HWHRS for jub itnd 1o:job groiips in successive
resampling runs,

After the 100 random differences have been obtained, the results can be
displayed in a histogram as shown in Fig, 8. In this instance, 25 of the
samples had a difference at least as large as -3. Thus, an estimate of the one-
tailed p value is .25. Additional repetitions could be conducted for a more
precise estimare. This same procedurc is used in DaraScope to test the
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statistical significance of a value of 7, and of frequency countsin a 2 X 2
table.

-6 -4 0 2 6

Difference between medians
Figure 8. Sampling histogram displaying results of 100 resamplings

4. Educational sutcomes

I have found, as have Simon and Bruce (1991), that students are
enthusiastic about probability and statistical inference when approached
through resampling. Bug, do students using this approach learn more than
they do in a traditional course? Simon ez al (1976) compared student
performance in courses taught using resampling vs. conventional methods.
Given problems that could be solved using methods taught in either course,
students in courses using the resampling approach consistently outscored
students using the traditional approach.

Many or most students who take an introductory course will never need
to conduct a statistical test or determine a probability precisely. They do,
however, as members of a complex and increasingly technological society,
require a basic understanding of uncertainty and the savvy to evaluace
“research” claims in the mass media. Accordingly, though students should
be able to solve problems using methods they have been taught, it is even
more important that they understand basic concepts which underlie these
methods. Konold and Garfield (1993) have developed items to assess
understanding of these basic ideas. Below is one of our problems, adapted
from an item in Falk (1993, p. 111).

The Springfield Meteorological Center wanted to determine the accuracy of
their weather forecasts. They searched their records for those days when the
forecaster had reported a-70% chance of rain. They compared these forecasts to
records of whether or not it actually rained on those particalar days.
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The forecast of 70% chance of rain can be considered very accurate if it rained
E

4.95% - 100% of those days.

b. 85% ~'94% of those days:

&75% - 84% of those days.

dv65% - 74% of those days.

£:55% - 64% of those days.

This problem was desagned to assess whether a student understands that
z probability is a quantitative measure of uncertainty (or frequency of
occurrence). It is difficule to imagine how, without this understanding, a
student could correctly interprer a p value, e.g., that if we estimate the
probability in the LAPD problem as .10 this means that xoughly 10% of the
time when a random sample of 16 officers is selected, there will be no blacks
among them.

Fig, 9 shows the frequency of responses to the various ogmons in the
weatfier probfem By 199 students we have administered this item to before
instruction. Porty-three students (32%) selected the correct range 65-74,
which includes within it the normative value of 70%. The majority of
students (36%), selected the hlghest range, suggesting that'they expect rain
to occur neatly all of the time when it has been forecast with a 70%
probability. This answer may be based on an approach to uncertamty that is
prevalent among adults across a range of pmblcms Because it is based on
the belief that the objective in probabilistic situations is to predict the
outcome of a single trial, I have referred to this as the “outcome approach”

{Konold, 1989).

0y
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95-100 ~ 8594 75-84 65-74 5564
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Figure 9. Frequency of responses before instruction of 199 students 1o the weather problem
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One of my instructional objectives, thetefore, is for students to realize
that a probability value typically tells us litde or nothing about results in the
short run, bur a great deal about results in the long run. Fig. 10 compares
the results on this same problem before (black) and after {gray) instruction.
Correct responses increased only 6% with instruction. The results are
similar across the majority of our assessment items. At a deeper level, many
students after instruction using resampling appear unaware of the
fundamental nature of probability and data analysis.

50+

401

95-100 8594 7584 6574  55-64

Selected range

Figure 10. Frequency of responses before (black) and after (gray) instruction of 199 students to the
weather problem.

I remain optimistic about the instructional benefits of the resampling
approach. T have used it in individual tutoring sessions with students at a
variety of levels who express momentary insight into the logic it employs If
the benefits have not been apparent in our larger implementations, it may
be due to the fact that we have a broad range of objectives and have not
devoted enough time to any particular concept. Too, it is easy to
underestimate the conceprual difficulty of probability and chance. The fact
that probability was a late bleomer, historically speaking, should help alerc
us to the conceptual complexities which are belied by the simple
formalisms. Perhaps looking at development over a single course is too small
a unit of analysis in the case of probability, and we should be thinking
about series of courses over which we can expect to effect and observe
conceptual change.
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