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Abstract 

Though statistical testing is commonly practiced, the logic of statistical tests is 

confusing, thinking about distributions is difficult, and the way statisticians formulate 

expectations as probability distributions is poorly understood. To support instruction, the 

statistics education community has increasingly utilized simulation-based pedagogies that 

place the logic of statistical inference at the core of instruction. Might this approach support 

and sustain the development of graduate students' statistical thinking, especially during 

statistical testing? How do graduate students, who have completed a simulation-based 

course, think while conducting statistical tests, months after completing the course? 

To answer these questions, a multi-modal multiple descriptive case study of six 

graduate students in the educational sciences was conducted. Data sources included audio, 

video, and gaze recordings, analytic memos generated by the researcher, as well as written 

artifacts generated by the participants. Participants generated concept maps for the logic of 

statistical tests, conducted statistical tests using statistical software, interpreted results from 

statistical tests, and participated in a retrospective video-cued interview. Data were 

analyzed through an interpretivist epistemological stance and employed the constant 

comparative method to identify relevant moments across all data artifacts to credibly 

describe participants’ thinking.  

Results suggest that students’ planning (i.e., deciding what to do and when to do it) 

was generally quite good. However, students generally struggled in monitoring and 

evaluating their plan (i.e., ensuring that the plan was being executed correctly, and that no 

changes to the plan were needed). Furthermore, they generally did not seem to think about 

null models, core to the logic of statistical testing. Instead, they focused on point and 



 

 vi 

interval estimates for statistics of interest, and primarily thought about sampling variability 

in terms of a bootstrap dot plot, if at all. 

This study is one of the first to examine graduate students’ statistical thinking 

several months after the completion of a simulation-based introductory course. How 

students were thinking – generally able to reproduce a plan for analyzing the data consistent 

with what they were taught, and with a focus on variability through the examination of a 

bootstrap dot plot – suggests that statistics instructors might anchor instruction about 

statistical tests to descriptive statistics and their interpretation and contextualization. 

Furthermore, it suggests that the likelihood approach to statistical inference, evaluating 

hypotheses against given data, may be conceptually easier for students to think about.  
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Chapter 1: Introduction 

 Statistical tests, and their seemingly incomprehensible mathematics, reign with 

tyranny across the sciences (e.g., Lambdin, 2012). At least, this is how it used to be 

(Wasserstein et al., 2019).  

With scholars decrying a bastardization of the classical statistical testing procedure 

that has promulgated throughout common practice (e.g., Cohen, 1990; Gigerenzer, 2004), 

many are turning away from statistical tests and their misunderstood null hypotheses and 

p-values. Some argue that we should shift to a different school of statistics, such as the 

Bayesian school (e.g., Kruschke & Liddell, 2018). Some argue that we should abandon 

testing in favor of estimation alone, prioritizing confidence intervals and estimates of effect 

sizes (e.g., Cumming, 2014).  

Yet, none of these proposals resolve the issues at the heart of the matter – the logic 

of statistical tests is confusing (delMas, 2004), the manner in which statisticians formulate 

their expectations as a probability distribution is poorly understood (Nickerson, 2000), and 

more generally, reasoning about distributions is difficult (e.g., Reading & Reid, 2006).  

These problems are not new – there has always been confusion in the application 

of statistical testing methods (e.g., Boring, 1919). Over the years, statistics educators have 

tried many ways to improve their teaching and communication of statistical theory and 

practice, and starting in the 1980s, they began to utilize simulation-based pedagogies.  

Simulation-based inference (SBI) as it became to be known continued to slowly 

blossom into full-fledged SBI curricula. The statistics education community generally 

believed that this pedagogy was more apt to developing students’ conceptual understanding 

of statistics, by placing the logic of statistical inference at the core of instruction and 
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eschewing units on probability that was mathematically challenging for many students 

(Cobb, 2007).  

By 2022, evidence from a small yet growing body of research generally supported 

the claim that SBI curricula were at least no worse than traditional parametric-based 

introductory curricula at developing students’ conceptual understanding (Brown, 2019). 

While SBI curricula had been predominantly utilized to teach undergraduate students, 

some master’s levels courses were also taught using SBI pedagogies (e.g., Brown, 2021).  

Here then is a potential amelioration for problems with statistical testing in 

scientific practice – SBI, a recommended pedagogical approach to developing students’ 

statistical thinking, may be a useful tool in training graduate students. As researchers 

applying statistical methods or practitioners interpreting statistical results, graduate 

students need to understand the logic of statistical inference (e.g., APA, 2017; GAISE, 

2016). As science is fundamentally about theory generation and theory testing, graduate 

students need to be fluent in at least one mechanism of statistical testing, as statistical 

testing and inferential thinking are an integral aspect of scientific thinking (Dunbar & 

Fugelsang, 2005). Might SBI curricula be able to support graduate students' development 

of statistical thinking and an understanding of the core logic of statistical testing? 

This is the central purpose of this dissertation, which considers the case of graduate 

students who have completed a master’s level introductory statistics course utilizing an 

SBI curriculum. How do these graduate students think when they conduct statistical tests?  

A thorough understanding of their thinking allows us to evaluate the potential 

benefits of an SBI curriculum for these students, identify conceptual difficulties that can 
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be addressed with pedagogical reform, and inform reformation in the practice of statistics 

to address extant controversies and crises.  

To answer this question, Chapter 2 begins with a review of the logical foundations 

of statistical testing, and subsequently presents recent research on students' thinking within 

and after having completed an SBI introductory level statistics course. This background 

information sets the foundation for the main study conducted as part of this dissertation, 

the investigation of graduate students' thinking in statistical tests. Chapter 3 describes the 

study design and Chapter 4 reports the study results. Chapter 5 summarizes the study results 

in light of previous work about what is known about graduate students' thinking, and 

includes discussion of possible directions for future research, teaching, and practice. 

Chapter 2: Background 

What is statistical testing? What is the core logic of a statistical test? Does this 

change when statistical tests are conducted with SBI methods, instead of parametric-based 

methods? This chapter first presents a short history and philosophy of classical significance 

testing to answer the question “What is the core logic of significance testing?”. The chapter 

next briefly describes the philosophy and history of statistical thinking in statistical tests 

within the simulation-based approach to significance testing. Next, this chapter 

summarizes recent research focused on the following questions: 

• To what extent do students’ difficulties, documented within parametric-based 

statistics curricula, persist even in simulation-based curricula? 

• What is students’ understanding of null model simulators?  

• What if any unique aspects to students’ thinking about significance testing emerge 

with simulation-based methods? 
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2.1  What is the core logic of statistical testing?  

 
In early 2020, the World Health Organization (WHO) declared a global pandemic 

due to a novel coronavirus, COVID-19, and attention soon focused on experimental studies 

testing possible cures (WHO, 2020). In one such study, Wang et al. (2020) compared the 

median time to clinical recovery in an experimental group receiving a new treatment to a 

control group that did not – the median time was 21 days in the experimental group, two 

days less than the control group’s median time of 23 days. While 21 days is shorter than 

23 days, this difference could easily occur by a chance coincidence even if the drug had no 

effect whatsoever. Therefore, one should be hesitant to infer that the drug was effective at 

reducing recovery times (based on this evidence alone) since there exists a sufficiently 

plausible contradictory theory.  

This type of reasoning based on a chance model can be traced back to the early 18th 

century (and perhaps may have been in use even earlier; Stigler, 2016). It is an informal 

version of a significance test and is an example of inferential reasoning (Zieffler et al., 

2008). Inferential reasoning and statistical testing are integral aspects of scientific thinking 

and reasoning (Dunbar & Fugelsang, 2005). 

Understanding and using the basic ideas of statistical inference is one of the key 

recommended learning goals for introductory level statistics courses at the post-secondary 

level (GAISE, 2016, Goal 7). Statistical inference refers to the act of using data from a 

sample to probabilistically describe a larger population (Makar & Rubin, 2009). The act of 

making inferences that extend beyond observed data is an inherently uncertain task, and is 

called the problem of induction (Henderson, 2020). While this uncertainty plagues all 



 

 5 

forms of inference, statistical inference is based on utilizing probability to think and reason 

about this uncertainty (Romeijn, 2017).  

Statistical inference can be divided into formal and informal variants. Formal 

statistical inference includes specific computations or formal tests (e.g., interval estimates, 

significance tests) while informal statistical inference refers to a broader set of concepts 

and understanding without requiring specific procedures (Tobías-Lara & Gómez-

Blancarte, 2019). Statistical inference is often further sub-divided into the production of 

estimates and the testing of hypotheses (e.g., Wald, 1939). Estimation and testing might be 

characterized by distinct questions such as “What is the population like?” and “Is the 

population like X?” respectively.  

Significance tests are one type of statistical test of a hypothesis, in which a claim 

about a population is epistemically judged (Moore et al., 2013). In the classical school of 

statistics, this is achieved by considering the expected consequences of a claim against 

observed evidence. The existence of a claim about the population in the significance testing 

procedure often presents difficulties for students, as they must reason about the 

hypothetical claim, the observed evidence, and the unknown truth about a population 

(Vallecillos & Batanero, 1996).  

To establish a clear definition of the logic of significance testing, the next sections 

turn to philosophy and history to provide an answer. Specifically, it examines primary 

historical and philosophical sources that detail the origin of significance testing, before 

describing modern simulation-based curricula and how they attempt to develop students’ 

understanding and thinking about significance tests.   

2.1.1  Philosophy of Hypothesis Evaluation 
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Significance testing is fundamentally about comparing observed evidence to a 

hypothesis. The underlying philosophical theory detailing the relationship of evidence and 

hypotheses is called Confirmation Theory (Romeijn, 2017). Confirmation entails both 

positive affirmation of a hypothesis as well as disconfirmation, or a confirmation of a 

hypothesis’s negation. 

There are generally three approaches to confirmation discussed by 20th century 

philosophers: confirmation by instances, hypothetico-deductive confirmation, and 

Bayesian confirmation (Norton, 2005). Confirmation by instances was formalized in the 

early 20th century by Carl Hempel. Acknowledging the impossibility of induction to 

definitively prove universal truths, confirmation by instances instead focuses on the 

development of a hypothesis relative to observed evidence (Hempel, 1945). Observed 

evidence is said to Hempel-confirm a hypothesis if and only if the evidence can be 

considered an instance of, or is consistent with, the hypothesis. For example, observing an 

individual who is a human and has 10 fingers Hempel-confirms the hypothesis that ‘All 

humans have 10 fingers’, while observing an individual who is a human and does not have 

10 fingers Hempel-disconfirms the hypothesis.  

While the logic of confirmation by instances evaluates hypotheses on the basis of 

observed evidence, the hypothetico-deductive approach to confirmation reasons about 

observed evidence on the basis of a hypothesis. Observed evidence hypothetico-

deductively confirms a hypothesis if and only if the hypothesis implies the evidence, or 

that the evidence is a consequence of the hypothesis (Sprenger, 2011). Similarly, observed 

evidence hypothetico-deductively disconfirms a hypothesis if and only if the hypothesis 
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implies the negation of the evidence, or that the negation of the evidence is a consequence 

of the hypothesis.  

Returning to the previous example, the hypothesis ‘All humans have 10 fingers’ 

implies that an observed human must have 10 fingers, and thus observing such an 

individual hypothetico-deductively confirms the hypothesis. While the results in this case 

are the same as in confirmation by instances, the underlying logic is fundamentally 

different, as hypothetico-deductive confirmation requires postulating expected 

characteristics of observations on the basis of the hypothesis. Aside from these differences, 

both confirmation by instances and hypothetico-deductive confirmation depend on formal 

logic and suffer from many logical paradoxes. Furthermore, and perhaps most relevant to 

statistical inference, neither approach explicitly addresses the uncertainty inherent to 

inference (i.e., neither approach attributes probabilities to either observed evidence or 

hypotheses).  

Bayesian confirmation, on the other hand, explicitly aims to incorporate probability 

into the process of confirmation, and does so by assigning probability values to hypotheses 

(Talbott, 2016). Bayesian confirmation is based on calculating the probability of a 

hypothesis (i.e., P(H)), as well as the probability of that hypothesis conditioned on having 

observed some evidence (i.e., P(H|e)). A hypothesis is Bayes-confirmed by this observed 

evidence if and only if the probability of the hypothesis conditioned on the evidence is 

greater than the initial probability of the hypothesis (i.e., P(H|e)>P(H)), while it is Bayes-

disconfirmed by the evidence if the opposite is true (i.e., P(H|e)<P(H)). In other words, if 

in light of the observed evidence the probability of a hypothesis increases from its previous 

state, the evidence Bayes-confirms the hypothesis. Although Bayesian confirmation does 
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not suffer from the same logical paradoxes that plague confirmation by instances and 

hypothetico-deductive confirmation, it suffers from its own logical paradoxes. However, 

and most importantly when considering a philosophical basis for statistical testing, 

Bayesian confirmation is dependent upon choosing an interpretation of probability that 

allows probability to be assigned to statements and hypothesis. 

There are generally four recognized philosophical interpretations of probability: 

relative frequency, propensity, logical, and subjective (Hájek, 2019). In the relative 

frequency interpretation, probability is defined as the limit of the relative frequency of a 

repeatable event (von Mises, 1939). This interpretation is the most restrictive interpretation 

of probability, as the relative frequency is undefined for non-repeatable events and is not 

used to assign probabilities to statements. For example, the probability that a fair coin lands 

head when flipped is well-defined, while the probability that a particular vase will break 

when dropped is not, as flipping a single coin is a repeatable event while dropping a single 

vase is not a repeatable event (after the first occurrence of it breaking).  

The propensity interpretation accounts for this by expanding on the relative 

frequency interpretation to include the tendency or disposition of an event occurring 

(Popper, 1959). The propensity of an event becomes manifest as the event's relative 

frequency in the case of repeatable events, such as flipping a coin, but is still well defined 

for non-repeatable events, such as dropping the vase.  

Both the relative frequency and propensity interpretations are considered physical 

probabilities, as they are physical characteristics of an event such as a ‘coin flip’ or a ‘vase 

drop'. In contrast, the logical and subjective interpretations are considered epistemic, 
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dealing with what individuals or communities of people believe or know, and are well-

defined even when applied to statements.  

In the logical interpretation, probabilities represent a degree of belief or credence 

in a statement for a community of rational persons with the same information (Keynes, 

1921). For example, a group of paleoanthropologists might ascribe a probability of 0.85 to 

the Out of Africa Theory, a statement that modern humans originated from the African 

continent and subsequently migrated across the world. However, this interpretation does 

not leave room for dissent, and if two persons from the same community of rational persons 

with the same information assign different probabilities to a statement, at least one of them 

must be wrong. The subjective interpretation accounts for this by interpreting probability 

as the representation of an individual (rational) person’s degree of belief that a statement 

is true (de Finetti, 1937).  The subjective interpretation is thus the most liberal of the four 

interpretations of probability.  

While probability in the logical and subjective interpretations are uniquely able to 

ascribe probabilities to hypotheses, in both interpretations, ascribing probabilities to events 

is also well-defined, and may even be equivalent to values that may be ascribed by the 

physical interpretations of probability, although not necessarily so. For example, within a 

physical interpretation of probability, the probability of a ‘coin flip’ resulting ‘heads’ may 

be .50. If an individual, or a group of individuals for a logical interpretation of probability, 

believes that the probability of the coin landing ‘heads’ is equal to .50, then all 

interpretations would assign the same probability value to the ‘coin flip’ event. In this way, 

philosophically speaking, the logical and subjective interpretations of probability can be 

utilized in all the same ways that the physical interpretations can be used, plus some.  
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As statistical inference utilizes probability to reason about the uncertainty of 

inferences, the choice between the physical interpretations of probability and the epistemic 

interpretations of probability is fundamentally intertwined with the different approaches to 

confirmation and their methods for reasoning about the relationship between observed 

evidence and a hypothetical claim. Classical statistics was heavily influenced by scholars 

who subscribed to a physical interpretation of probability (Romeijn, 2017). These scholars 

rejected the radical subjectivism advocated by scholars such as de Finetti, and with it, 

interpretations of probability that supported ascribing probabilities to candidate 

hypotheses.  

Since physical interpretations only assign probabilities to events, these founding 

scholars of the classical approach to statistics necessarily adopted an approach akin to 

hypothetico-deductive confirmation, taking a hypothesis as given and reasoning about the 

consequences of that hypothesis in terms of the probabilities the hypothesis ascribed to all 

possible events. This choice required that observed evidence be treated as a single event 

from an infinite collection of events based on a repeatable process, thus allowing it to be 

ascribed a probability of occurring. A hypothesis could then be made about the probability 

of such events occurring, or the relative frequency of observing such an event in an infinite 

repetition of the evidence-generation process (e.g., Neyman, 1937). On this basis, an 

inference could be made about the hypothesis, and quantitatively described in terms of the 

quality of or support for the inference with notions such as significance, likelihood, or 

confidence.  

In this manner, significance testing, one of the first approaches to formally 

evaluating statistical hypotheses, concerned itself with the probabilistic consequences of a 
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given hypothesis, and whether observed evidence deviated significantly from a 

hypothesis’s probabilistically expected events. 

2.1.2  Classical Statistical Testing  

 
Expressions of probability to describe events long predate the formalization of 

modern statistical inference and significance testing. The first known formal probability 

calculation for an observed event under a candidate hypothesis hails from 1710, when John 

Arbuthnot analyzed the number of births by biological sex when examining birth records 

from the London area over 82 years (Stigler, 2016). Arbuthnot observed that in all 82 years 

there were more male births than female births, but first considered the plausibility of 

random chance producing the observed pattern before drawing conclusions. Arbuthnot 

hypothesized and assumed the chance of more male births in any one year was equal to 

0.5, with the other potential outcome being more female births. Arbuthnot then specified a 

probability model to describe expected patterns produced by random variation based on 

this assumption. Using this model, Arbuthnot calculated that if the assumption was true, 

then the probability of all 82 out of 82 years having more male births was roughly equal to 

0.02 septillionths (i.e., 2 * 10-25). With such a low probability, Arbuthnot concluded that 

the assumption must have been incorrect.   

Two centuries later, such assumptions were codified as null hypotheses, their 

associated probability distributions as null models, and the probability calculations of the 

observed evidence as p-values (Fisher, 1925, 1935). While Fisher was not the first person 

to write about significance testing (e.g., Pearson, 1900), the popularity of Fisher’s 1925 

book Statistical Methods for Research Workers and 1935 book The Design of Experiments 

spread these concepts to a wide audience beyond the realm of statisticians, popularizing 
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their use (Stanley, 1966). Fisher (1935) defined the null hypothesis as the basis for the 

specification of a probability distribution, and that this probability distribution (i.e., the null 

model) would in turn serve as the basis for a significance test.  

To Fisher, null hypotheses were a characteristic of all experiments, and experiments 

existed solely to give evidence a chance at disproving a null hypothesis. The experiment 

functioned as an infinitely repeatable event, often with a component random process, 

enabling a physical interpretation of probability to be assigned to possible outcomes based 

on the null hypothesis of the experiment. These probabilities could then be interpreted in a 

manner akin to a probabilistic hypothetico-deductive disconfirmation of the null 

hypothesis. 

For a hypothesis to qualify as a null hypothesis, Fisher stipulated that it must be 

exact in its specification of a probability distribution which could subsequently be used to 

create an exact statistical criterion. The probability distribution represents “the frequencies 

with which the different results of our experiment shall occur” (Fisher, 1935, p. 190).  

The statistical criterion, or significance level, demarcates the threshold beyond 

which observed evidence would, in relation to the null hypothesis, present a logical 

disjunction – either an extraordinary coincidence has occurred or the hypothesis is likely 

incorrect (Fisher, 1956). Observed evidence laying beyond the significance level thus 

constituted “rational grounds for the disbelief it engenders [in the null hypothesis]” (Fisher, 

1956, p. 43).  

Any hypothesis meeting the criteria for exactness could be chosen and given a 

chance to be disproved by this procedure. Thus, to Fisher, the null hypothesis was simply 

the hypothesis to be nullified via experimentation (Cohen, 1994). Fisher alternately 
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referred to the probability distribution specified by the null hypothesis as the “random 

sampling distribution on the null hypothesis” (Fisher, 1935, p. 62) and the “sampling 

distribution completely determined by the null hypothesis” (Fisher, 1935, p. 192). Today, 

we call this distribution the null model.  

In this way, the existence of a null model is exactly the characteristic that makes a 

candidate hypothesis a null hypothesis. These null models thus provide the means to 

establish statistical criteria with which to compare observed data to the null hypothesis, all 

in the service of the potential nullification of a hypothesis through experimentation. 

2.1.3  Alternate Approaches to Statistical Testing 

 
A significance test taking a hypothesis as given and considering evidence that the 

hypothesis implies is only one approach to statistical testing. Recall that confirmation by 

instances takes the observed evidence as given and considers whether the evidence 

contributes to the development of a hypothesis. In this manner, one can consider the 

plausibility or credibility of potential values of a parameter given some observed sample 

statistic. Hempel called this an inductive-statistical explanation, while modern scholars 

consider plausibility by using what is known as a likelihood function (Barnard, 1967). This 

approach is an example of one of the major schools of thought for statistical inference, 

known as the Likelihood school. The Likelihood school differs from the classical school 

by emphasizing the likelihood function, and conducting both estimation and testing 

procedures by evaluating the entire likelihood function based on the observed evidence in 

a manner akin to abductive reasoning (Edwards, 1972). 

Along with the classical school and the Likelihood school, the third of the three 

most popular schools of thought is the Bayesian school (Bandyopadhyay & Forster, 2010). 
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The Bayesian school fundamentally differs from both the Likelihood school and the 

classical school by relying on an epistemic definition of probability and assigning 

probabilities to hypotheses, through either a logical or subjective interpretation. The 

probability of the hypothesis prior to the collection of new evidence is called the prior 

probability, and the probability conditioned on the new observed evidence is called the 

posterior probability. In this manner, parameter values with posterior probabilities less than 

their prior probabilities are Bayes-disconfirmed.  

Not only are there multiple approaches to the evaluation of a single hypothesis 

based on observed evidence across the three major schools, but each school of statistics 

also has a different approach to generating decision rules for selecting between competing 

hypotheses than their approach about epistemic judgements about evidence or hypotheses.  

Within the classical school, the hypothesis testing approach is most common for 

generating decision rules, and seeks to minimize errors associated with incorrectly 

choosing one hypothesis over another. This is done by specifying decision criteria based 

on comparisons of the probability of observing events given each candidate hypothesis 

(Neyman & Pearson, 1928). In the Likelihood school, the likelihood ratio test is used to 

identify whether two models significantly differ by comparing their likelihood functions, 

while maximum likelihood estimation simply selects the most likely hypothesis on the 

basis of a likelihood function (Edwards, 1972). In the Bayesian school, the Bayes factor, 

the ratio of the posterior probability of two hypotheses, is used to select the hypothesis with 

the higher probability (Jeffreys, 1961).  

A classical hypothesis test can be considered a before-data decision rule, specified 

without incorporating observed evidence, whereas the likelihood and Bayesian approaches 
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explicitly include the observed data in the selection of one of the competing hypotheses 

through the likelihood function or posterior probability distribution, which itself is partially 

based on the likelihood function (Hacking, 1965). 

It is important to note that the task of selecting between competing hypotheses is 

fundamentally different from one in which the goal is to make an epistemic judgement 

about a single hypothesis. In these decision-based approaches to statistics, the goal is 

explicitly to provide a strategy for selecting one out of a set of competing hypotheses. 

Neyman characterized this method not as a theory of inference, but a theory of behavior 

(Neyman, 1952). Neyman rejected significance tests that only explicitly considered a single 

hypothesis, believing that researchers necessarily subconsciously consider an alternative 

hypothesis to be true if the single candidate hypothesis is rejected, and that it would be 

better to explicitly consider two candidate hypotheses. Epistemic judgements about these 

accepted hypotheses, (i.e., to what extent you should believe in the truth of the selected 

hypothesis), were de-emphasized for their perceived impossibility to account for all the 

relevant facts. Thus, while modern null hypothesis significance testing has adopted aspects 

of the decision-based nature of classical hypothesis testing, its roots as a method for 

statistical inference and making epistemic judgements based on probabilities about 

hypotheses hails from classical significance testing.   

2.1.4  Students’ Struggles and Criticism 

 
To create a method that both specified a decision rule and made epistemic 

judgements, many researchers fused the decision error minimization approach with the 

significant difference approach to form null hypothesis significance testing (NHST; 

Lenhard, 2006). Perhaps unsurprisingly, this has led to much confusion among students, 
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statisticians, and textbook writers (Gigerenzer, 2004). The underlying logic of NHST has 

also been critiqued by researchers and practitioners along with the hypothetico-deductive 

reasoning it is based upon, being described as “bone-headedly misguided” (Rozeboom, 

1997, p. 335). Forgotten in this fusion is the fact that Fisher as well as Neyman and Pearson 

vehemently disagreed with each other’s approaches, with Fisher even suggesting a limited 

role for the hybrid NHST in statistical inference (Rao, 1992). However, by the late 20th 

century, NHST could be commonly found across introductory statistics textbooks 

(Nickerson, 2000). 

Whether as part of NHST or truer to the early 20th century version of the 

significance test, thinking about null models is not trivial for students. Confusion and 

misconceptions have even been found in several textbooks and among statistics instructors 

and statisticians (e.g., Brewer, 1985; Falk & Greenbaum, 1986; Haller & Krauss, 2002; 

Mittag & Thompson, 2000). A review by Castro Sotos et al. (2007) of empirical research 

conducted between 1990 and 2006 identified five major struggles students had and 

common errors they made related to aspects of NHST concerning the significance testing 

approach:  

(1) Misunderstanding the logic of the test, i.e., the conditional nature of the 

hypothetico-deductive approach, by incorrectly conditioning on the observed evidence; 

(2) Difficulty specifying hypotheses and conflating hypotheses with decision 

rules;  

(3) Misinterpreting p-values as the strength of an effect; 

(4) Misunderstanding the inherent uncertainty in inference and viewing test 

results as deterministic; and 
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(5) Conflating statistical and practical significance.  

Nickerson (2000) found many of the same beliefs among researchers and published 

papers in the psychological sciences. Additionally, Nickerson found some papers 

purporting a belief that failing to reject the null hypothesis is equivalent to proving it true, 

or that rejecting a null hypothesis proves a theory that predicted it would be false (both of 

which are theoretically erroneous).  

Many of the recommendations Nickerson (2000) found being advocated for in the 

then current literature harken back to the core logic and procedures espoused by early 20th 

century statisticians such as Fisher and Neyman but forgotten through the decades. For 

example, using non-nil null hypotheses or providing specific alternative hypotheses were 

requirements in significance testing and hypothesis testing respectively as originally 

specified, but fell out of use in NHST. Further recommendations advocate distinguishing 

between the substantive contextual research question and the statistical hypothesis, re-

emphasizing the role that a researcher’s intuition plays in inference, just as it was 

emphasized by Fisher (1925) and Neyman and Pearson (1928).  

Some critiques go further at striking at the underlying philosophy and recommend 

Bayesian approaches or emphasize abduction through likelihood-based inference (e.g., 

Rozeboom, 1997). Despite these disagreements about what to teach and how to teach it, 

only recently have calls been made to eliminate statistical procedures for the evaluation of 

hypotheses, instead focusing entirely on estimation (Cumming, 2014).  

Nevertheless, significance testing and hypothesis testing continue to be a central 

part of statistical inference and a key learning goal in modern introductory level curricula 

(GAISE, 2016). Furthermore, the core purpose of significance testing, to probabilistically 
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reason about the relation between a candidate hypothesis and observed evidence, is 

fundamental to all statistical inference across all schools of thought and all interpretations 

of probability. 

2.1.5  Simulation-Based Significance Testing 

 
With the advent of modern computing in the late 20th century, statistics educators 

began calling for the use of simulation in the classroom to supplement the traditional 

mathematical aspects of statistical inference which students often found difficult to 

comprehend (e.g., Glencross, 1988). Null models historically took the form of probability 

models specified with parametric probability distributions (e.g., Z, T, χ2, F). After selecting 

the appropriate probability distribution as a null model, the significance level (i.e., the 

threshold beyond which observed evidence would, in relation to the null hypothesis, 

present a logical disjunction) could be identified by referring to regularly published tables 

or via manual calculations. 

By the late 20th century, automatic hand-held calculators replaced probability tables 

(Moore, 1992), and some statistics educators saw in simulation-based methods an 

opportunity to reconsider the way students are taught the core ideas of statistical inference 

(e.g., Ernst, 2004). Simulation-based methods utilize simulators to generate probability 

distributions, rather than parametrically defined probability distributions. Compared to 

these parametric-based predecessors, simulation-based methods were thought to be more 

conceptually accessible for students (e.g., Budgett et al., 2013).  

In a paper denouncing the then consensus introductory statistics curriculum as 

obfuscatory, costly, and fraudulent , Cobb (2007) articulated a set of core principles known 

as the three R’s – “Randomize data production, Repeat by simulation to see what’s typical, 
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and Reject any model that puts your data in its tail” (p. 13). These principles served as a 

basis for what is known as simulation-based inference (SBI) in introductory statistics 

curricula (Rossman & Chance, 2014). 

Simulation-based inference generally refers to the use of a statistical model defined 

by a simulator to perform statistical inference (Cranmer et al., 2020). A simulator is any 

tool that can enact simulation, or in a statistical context, any computational algorithm that 

defines a population and assumes a data generating process to randomly generate multiple 

sets of sample data (Carsey & Harden, 2014). Simulators for statistical inference utilize 

resampling, a statistical procedure that reuses data from an observed sample in the service 

of statistical inference (Chernick, 2012).  

While there are many types of resampling techniques such as bootstrapping, 

jackknifing, cross-validation, and randomization, introductory curricula overwhelmingly 

focus on bootstrapping and randomization (Brown, 2019). A bootstrap resampling 

procedure iteratively samples with replacement from the original dataset until the original 

sample size is reached. This process is used to mimic the process of random sampling from 

a population, with the original sample operating as an estimate of the population 

distribution. A randomization resampling procedure rearranges or regroups observations 

from the original dataset, a process used to mimic the process of random assignment into 

experimental groups.  

Compared to its parametric-based predecessor, simulation-based inference 

generates an approximation of the null model via simulation rather than an approximation 

based on an algebraically derived theoretical probability distribution. 
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Seizing upon the pedagogical potential of simulation, statistics educators began 

creating ad-hoc simulation-based tools to develop students’ understanding of various 

introductory level concepts in the late 20th century (e.g., delMas et al., 1999). Echoing these 

efforts, Cobb (2007) called on statistics educators to utilize simulation to free themselves 

and their students from the technical complexity and burden of expressing the sampling 

distribution mathematically, arguing that 21st century statistics instruction need not tether 

itself to the parametric-based methods once utilized out of necessity.  

Before long, collections of activities became entire curricula, and simulation 

applications and software were either adopted or specifically designed for SBI curricula. 

The Rossman-Chance applets initially developed by Chance and Rossman (2006) were 

incorporated into the Introduction to Statistical Investigations curriculum (ISI; Tintle et al., 

2020), the Change Agents for Teaching and Learning Statistics (CATALST) curriculum 

was developed around the TinkerPlots software (Konold & Miller, 2005; Zieffler et al., 

2021), and StatKey was designed specifically for the Statistics: UnLOCKing the Power of 

Data curriculum (Lock5; Lock et al., 2021; Morgan et al., 2014).   

These SBI software tools vary greatly in the degree to which users specify the 

characteristics of a simulator. For example, TinkerPlots requires users to construct models 

using a variety of resampling devices such as mixers and spinners (see Justice et al., 2018, 

for a detailed explanation of the user interface of TinkerPlots), whereas StatKey requires 

users to select one of several models identified by their functionality (e.g., Bootstrap 

Confidence Interval for a Single Mean, Randomization Hypothesis Test for a Difference 

in Proportions).  Furthermore, each curriculum approaches simulation-based inference in 

a different way: ISI focuses on randomization before connecting simulation to parametric-
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based methods (Tintle et al., 2011); Lock5 focuses on bootstrapping before introducing 

randomization and ultimately making the connection to parametric-based methods (Lock 

et al., 2021); and CATALST focuses on model creation through model eliciting activities 

(MEAs) before introducing randomization (and notably does not introduce students to 

parametric-based methods; Garfield et al., 2012; Justice et al., 2020). Despite their 

differences, all three curricula emphasize the role of simulators in statistical inference (and 

additionally all utilize active learning methods to promote student learning).  

While simulation provides a different method of generating a null model than its 

parametric-based predecessor, simulation-based inference differs from Fisher’s approach 

only in using a simulator as opposed to mathematical derivations when determining the 

expected frequencies with which different results for an experiment may occur. Cobb’s 

second R, “Repeat by simulation to see what is typical” (Cobb, 2007, p. 13) satisfies the 

requirement of Fisher’s “sampling distribution completely determined by the null 

hypothesis” (Fisher, 1935, p. 192). Cobb’s three Rs were not a repudiation of Fisher, but 

rather a return to Fisher’s core principles for inference and the importance of 

randomization. For example, Cobb’s third R, “Reject any model that puts your data in its 

tail” (Cobb, 2007, p. 13) is based on the same thinking as rejecting a null hypothesis based 

on Fisher’s “rational grounds for the disbelief it engenders” (Fisher, 1956, p. 43). 

2.1.6  Summary of the Philosophy and Logic of Statistical Testing 

 
What is statistical testing? A statistical test is a method of comparing the 

probabilistic consequences of a given hypothesis to observed evidence, to make inferences 

about the world. 
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What is the core logic of a statistical test? The key feature that makes a test a 

statistical test is the selection of a hypothesis that specifies a probability distribution for the 

possible outcomes of a study, which is called a null model. This exact criterion is what 

makes a hypothesis a null hypothesis, and what makes the test a statistical test.  

Does the core logic of a statistical test change when statistical tests are conducted 

with SBI methods? No. The core difference between simulation-based approaches to 

significance testing and their parametric-based predecessors is that a simulator represents 

a data generating process under a null hypothesis, rather than a parametric probability 

distribution explicated through equations (Cobb, 2007; Fisher, 1935). Thus, in SBI, the key 

feature that allows a null hypothesis to be tested is its simulator that specifies an underlying 

null model. With increased training efforts and a nascent evidence basis, simulation-based 

methods appear to be ascendent as a pedagogical tool for introductory level statistics, 

placing increased importance on students’ thinking about null models and null model 

simulators.  

However, the classical approach to significance testing utilizing null hypotheses, 

null models, and p-values have long drawn criticism from practitioners and theorists alike 

(Cohen, 1994). Debates over their utility and appropriateness have occurred almost 

continually since their formalization in the early 20th century (e.g., Berkson, 1938; 

Gigerenzer, 1993; Hogben, 1957; Morrison & Henkel, 1970; Nickerson, 2000; Wasserstein 

et al., 2019). Beyond students’ difficulty in learning the method, much of the critique of 

the classical approach to significance testing has been centered around either its process of 

drawing conclusions or its underlying logic (e.g., Gigerenzer, 2004; Rozeboom, 1997). 

Despite such controversies, significance testing continues to be a central part of statistical 
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inference and a key learning goal in modern introductory level curricula, including 

simulation-based curricula (GAISE, 2016). 

2.2  Students’ Difficulties and Understanding with Simulation-Based Inference 

 
The late 20th century and early 21st century have seen the emergence of simulation-

based methods and software tools to teach statistical inference, replacing the parametric-

based methods and probability tables of the early 20th century (Rossman & Chance, 2014), 

all in an attempt to alleviate students’ difficulties by placing the logic of statistical inference 

at the core of instruction (Cobb, 2007). These new tools have led to the development of 

new SBI curricula which have, especially since the early 2010s, begun to be rigorously 

evaluated. Preliminary evidence suggests that these new SBI curricula may lead to 

marginal improvements in students’ understanding (Brown, 2019). However, despite some 

observed changes in the way students reason about statistical inference with simulation 

(Case, 2016), some evidence suggests that many students still struggle to apply, explain, 

and justify inferential procedures with these SBI methods (e.g., Noll & Kirin, 2017).  

With increased training efforts and a nascent evidence basis, simulation-based 

methods appear to be ascendent as a pedagogical tool for introductory level statistics. The 

core difference between these simulation-based approaches to significance testing and their 

parametric-based predecessors is a simulator representing a data generating process under 

a null hypothesis (Cobb, 2007; Fisher, 1935). The key feature that allows a null hypothesis 

to be tested is its simulator that specifies an underlying null model. As more simulation-

based curricula and software tools are developed, and as calls for the reform of statistics 

instruction explicitly recommend the elimination of significance testing, there is a need for 

research examining students’ understanding of significance tests in simulation-based 
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curricula and of null models in SBI. In particular, (1) to what extent do students’ 

difficulties, documented within parametric-based statistics curricula, persist even in 

simulation-based curricula, (2) what is students’ understanding of null model simulators, 

which are core to the logic of the simulation-based statistical test, and (3) what if any 

unique aspects to students’ thinking about significance testing emerge within simulation-

based pedagogies.  

The first studies evaluating curricula primarily teaching simulation-based inference 

occurred in the early 2010’s. Since then, three general types of evidence have been the 

focus when examining students’ understanding and thinking: (1) students’ responses to 

forced-choice assessment items (e.g., Tintle et al., 2011), (2) students’ responses to 

constructed-response assessment items and other written assignments (e.g., Frischemeier 

& Biehler, 2013), and (3) observations and interviews of students when conducting 

simulation-based inference tasks (e.g., Noll et al., 2018a). Together, this diverse body of 

evidence suggests that curricula primarily teaching simulation-based inference may lead to 

higher gains in students’ understanding of significance tests. However, students may not 

understand null models and simulators as well as they understand how to draw conclusions 

from a significance test. Furthermore, students’ thinking about null model simulators 

appears more complex than current theories and conjectures account for. The next section 

summarizes relevant evidence assessing students’ understanding before discussing 

evidence related to their reasoning and thinking. 

2.2.1  Students’ Understanding of Simulation-Based Significance Testing 

 
Preliminary results from comparative studies have generally found that, on average, 

students’ gains in conceptual understanding are higher with introductory level simulation-
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based curricula than traditional parametric-based curricula. A review by Brown (2019) 

identified 13 multi-classroom studies comparing student learning outcomes between 

classes, curricula, or in comparison to results from a previously published study. All but 

one of these studies had group sample sizes of at least 100, with two large scale studies 

including over 10,000 total participants (Chance et al., 2018; VanderStoep et al., 2018). 

All studies used the Comprehensive Assessment of Outcomes in Statistics (CAOS; delMas 

et al., 2007) or a modified version of it to assess student learning outcomes. In general, 

Brown (2019) found that students in simulation-based inference groups performed no 

worse than traditional inference groups in terms of their total scores on these assessments. 

Notably, VanderStoep et al. (2018) found that when stratifying students into three groups 

by their pretest scores, gains in overall understanding were higher for students in the ISI 

curriculum for students in the low and middle pretest score groups, and Chance et al. (2016) 

found that students’ gains in understanding were comparable for students with instructors 

both new to simulation-based curricula and instructors more experienced with SBI.  

The use of simulation also appears to shape the way in which students understand 

statistical inference. In one of the only comparative qualitative studies of high school 

students’ understanding of statistical inference in both traditional methods and simulation-

based methods, Case (2016) found that students perceived traditional methods to be an 

easier procedure to enact, exemplified by one student’s comment that “if you know when 

to do the test and you know how to do the test, you don’t really have to understand what 

you’re doing” (p. 93). Case also noted differences in students’ interactions with the various 

tools of traditional inference, predominantly the graphing calculator, and the tools of 

simulation-based inference, either physical manipulables or software, and suggested that 
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these differences shaped how students learned and what they understood about statistical 

inference. Noll and Kirin (2016) similarly noted that utilizing the TinkerPlots software 

framed students’ thinking when approaching statistical inference tasks. This section next 

explores how simulation-based inference affects students’ understanding of null models 

with significance testing. 

2.2.1.1  Students’ Understanding of Null Models 

 
In seven of the studies identified by Brown (2019) that evaluated the ISI 

curriculum, students’ scores on Tests of Significance items were consistently higher for 

students in the ISI simulation-based curriculum than in traditional parametric-based 

curricula (see Table 1). Furthermore, students’ scores from those in the ISI curriculum were 

generally higher on average for Tests of Significance items than the Confidence Interval 

items and the Sampling Variability items, which focused on general ideas about sampling 

variability such as the law of large numbers. 

Hildreth et al. (2018) found a similar pattern when comparing students’ scores from 

sections utilizing the CATALST curriculum and the Lock5 curriculum to two traditional 

parametric-based curricula – the average posttest score on three items from CAOS 

measuring understanding of p-values for 1584 students in traditional curricula was 62.8% 

(see Appendix A for more about these CAOS items), while the average posttest score on 

the same items was 82.1% for 770 students in the CATALST curriculum and 83.8%  for 

758 students in the Lock5 curriculum. Similar results in overall comparisons between 

curricula were found by Garfield et al. (2012) when comparing the CATALST curriculum 

to a traditional parametric-based curriculum. Garfield et al. utilized the Goals Outcomes 

Associates with Learning Statistics assessment (GOALS), based on sixteen items from 
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CAOS but with an additional seven items explicitly focusing on the use of simulation 

methods to draw inferences. Average student scores were higher for students in the 

CATALST curriculum, and were also, on average, higher for the seven simulation-based 

inference items compared to three items related to confidence intervals and four items 

related to sampling variability. 

It is important to note that the assessment used by all these studies was either CAOS 

or a derivative of it. All six CAOS items in the Tests of Significance topic and all nine 

items in the corresponding ISI assessment topic only concern the correct interpretation of 

p-values and the decisions to be made based on this result, corresponding with Cobb’s third 

R, Reject (see Appendix A). While there are items on both assessments that assess students’ 

understanding of the purpose of randomization, these items do not explicitly relate to the 

relationship between random processes and a null hypothesis, and thus do not relate to null 

model simulators or null models in any direct manner. Similarly, there are no items on 

either assessment that address Cobb’s second R, Repeat by simulation.  

Studies explicitly examining students’ understanding of simulation in significance 

testing appear to identify gaps between students’ understanding of the interpretation of the 

results of a significance test, their understanding of study design characteristics’ relation to 

appropriate conclusions, and their understanding of null models and the role simulators 

play in simulation-based significance tests. A later version of the GOALS instrument, 

GOALS-4, was utilized by Sabbag et al. (2015) and consisted of 20 total items, five of 

which assessed students’ reasoning about p-values (based on items from CAOS), and two 

of which assessed students’ understanding of null models (see Appendix B). Students’ 
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scores were on average lower for the two items assessing understanding of null models 

than the for the five p-value items.  

Frischemeier and Biehler (2013) found similar evidence suggesting that students 

may not understand null models as clearly as they understand interpreting p-values. They 

provided their students, pre-service mathematics teachers, with a randomization test plan 

(Table 2) consisting of six steps to help support the structural aspects of their thinking along 

with an example solution to the Extra Sensory Perception (ESP) task (Rossman et al., 

2001). After completing the ESP task, Frischemeier and Biehler (2013) studied students’ 

use of TinkerPlots when performing randomization tests on the Muffins task (Biehler et 

al., 2003). They analyzed submitted written work from 11 student pairs at the end of the 

course and compared these responses to expected correct solutions, rating each step of the 

plan as successfully completed or not. They found that 10 out of 11 teams correctly created 

a null model using TinkerPlots, even though only 8 out of 11 teams correctly formulated a 

null hypothesis. Students were similarly successful in specifying the test statistic (10 out 

of 11) but struggled with successfully calculating a p-value and drawing conclusions from 

the test based on the null model they specified (5 out of 11 in each step).  

Taken together this evidence suggests that understanding how to draw conclusions 

from significance tests may not imply an understanding of the central role null models play 

in significance tests nor the essential role of null model simulators in simulation-based 

tests. Furthermore, it suggests that understanding how to interpret p-values may not imply 

an understanding of the relationship between p-values and their underlying null models. 

However, such an interpretation of this evidence is tenuous at best – inferences based on 

students’ responses to different GOALS-4 items depend on the marginal reliability and 
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distinctness of these items when measuring differences in students’ understanding, and 

inferences based on the frequency of correct responses to written tasks depend on the 

quality of the rubric distinguishing between correct and incorrect responses. Nevertheless, 

differences in average correct responses on each item in GOALS-4 and the varying 

proportion of correct responses according to Frischemeier and Biehler’s (2013) 

randomization test plan highlight that there may be gaps in students’ understanding. Yet, 

neither study provides evidence of students’ reasoning and thinking that may identify 

which of the parts of conducting a significance test students may have struggles with, nor 

how they conceptualize the task of conducting a significance test and if students’ thinking 

at all differs from researchers’ expectations. 

2.2.1.2  Students’ Creation of Null Model Simulators 

 
Some students’ difficulties in conducting simulation-based significance tests may 

be explained by students’ struggles in utilizing simulation software such as TinkerPlots to 

model the exact characteristics of a null hypothesis and its underlying null model. To 

further explore how students understand null models, both in terms of its function 

statistically as well as how to utilize the TinkerPlots software to successfully create a null 

model simulator, Biehler et al. (2015) examined submitted written work from 18 pairs of 

pre-service mathematics teachers, who were recruited two months after they completed an 

introductory statistics course.  

These students were then given the Verdienststrukturerhebung [Structure of 

Earnings Survey] (VSE) task based on data collected by the German Statistisches 

Bundesamt [Statistics Bureau] (Figure 1). Students were asked to fill out a blank 

randomization test scheme, a slightly modified version of Frischemeier and Biehler’s 
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(2013) test plan, and their answers were rated as ‘successful’ if they adhered to expected 

solutions. Approximately 89% of participants (16 of 18 pairs) correctly specified a null 

hypothesis (step 2). However, Biehler et al. (2015) found that most participants did not 

provide a clear description of how the null hypothesis would be translated into a null model 

with TinkerPlots, and due to large variation in students’ responses did not rate them as 

successful or not. Furthermore, they found that participants struggled with the initial 

creation of the null model in TinkerPlots – only 56% of participants (10 of 18 pairs) 

correctly populated the sampler, 72% (13 of 18 pairs) correctly set the number of 

repetitions, and 50% (9 of 18 pairs) correctly specified sampling without replacement. Yet, 

this may not be due to a lack of understanding about a null model, as Maxara and Biehler 

(2007) found evidence that students struggle translating probabilistic models into 

TinkerPlots outside the context of a null model and significance testing. 

Given students’ ability to correctly specify a null hypothesis in both Biehler et al.’s 

(2015) study and Frischemeier and Biehler’s (2013) study, and their difficulty correctly 

specifying a null model simulator with TinkerPlots as found by Biehler et al. (2015), two 

potential explanations emerge – students struggle to utilize TinkerPlots to realize their 

conceptually well-defined null models, or perhaps they struggle to understand the 

relationship between the null hypothesis and its underlying null model. Furthermore, as 

both Frischemeier and Biehler (2013) and Biehler et al. (2015) provided the randomization 

test plan to students as part of their instruction, it may also be that the plan is difficult for 

students to learn as part of a learning trajectory, or that students’ thinking about 

significance tests and their internal schema for conducting such tests are not isomorphic to 

this test plan.  
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Explicitly building off the work by Biehler et al. (2015), Noll and Kirin (2017) 

sought to explore why students struggled with the initial creation of the null model 

simulator in TinkerPlots. They observed students while solving the Dolphin Therapy task 

(Figure 2), and focused their analysis on the three TinkerPlots steps associated with 

populating a mixer, setting the number of repetitions, and specifying replacement. Noll and 

Kirin found that populating the mixer was directly linked to students’ interpretations of the 

null hypothesis, and students did not specifically deliberate this point outside of discussions 

about the null hypothesis. Students were also intuitively able to specify the correct number 

of repetitions based on the total sample size.  

However, students appeared to struggle with determining whether the device 

should be set to ‘with replacement’ or ‘without replacement’. Two groups of students who 

correctly chose ‘without replacement’ simply compared this task to a previous activity, 

without explicitly acknowledging that this selection allowed the TinkerPlots device to 

mimic the random allocation process. The two groups who incorrectly chose ‘with 

replacement’ did so for different reasons. One group desired to maintain the same chance 

of improving for each individual in the device. The other group hoped to model a bootstrap 

resampling process to facilitate generalizations of their results, despite bootstrap 

resampling being incongruous with the original study design of the problem.  

Noll and Kirin (2017) also noted that students struggled to operationalize the null 

hypothesis’s statement of ‘no difference’ at the group level and instead modeled an equal 

chance of improving or not improving for each individual. This struggle was also noted by 

Biehler et al. (2015), despite students being able to correctly specify a null hypothesis 

utilizing mathematical symbols. However, these struggles may simply be due to the 
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idiosyncratic features of specifying ‘replacement’ in TinkerPlots, which may be unintuitive 

for students as they learn to conduct significance tests and conceptualize null models.  

Nevertheless, together these two studies suggest students may struggle to utilize 

TinkerPlots to transcribe null hypotheses into null model simulators. Furthermore, the 

correct specification of a null hypothesis with mathematical symbols does not appear to 

imply that students can correctly operationalize the null hypothesis as a null model. 

Despite these errors in correctly specifying the characteristics of a null model 

simulator and justifying these choices, Noll and Kirin (2016) found evidence that students 

are generally able to utilize TinkerPlots to create their intended null model simulators. To 

provide a more detailed account of how students relate aspects of statistical problems to 

the TinkerPlots models they construct, Noll and Kirin (2016) used an inductive coding 

method to analyze students’ written work on a significance testing task. They examined 

undergraduate non-statistics major students’ construction of models in TinkerPlots by 

evaluating their answers to a question from the Models of Statistical Thinking assessment 

(MOST; Garfield et al., 2012), called the Facebook Task (Figure 3). Despite large 

variability in the types of models students created, only seven of 33 students justified their 

design choices in a manner contradictory to the features of their constructed device, while 

23 students created models consistent with their justification and explanations (although 

three of these students created incorrect models). This evidence appears to imply that 

within the context of the Facebook task, students were able to use TinkerPlots to realize 

their desired models. 

Building on the findings of Noll and Kirin (2016), Noll et al. (2016) found evidence 

that students generally understand the role that a null model simulator plays in simulation-
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based inference. Analyzing the Facebook task again, along with the Music Note task 

(Figure 4), Noll et al. (2016) examined students’ explanations in terms of how they related 

to four conjectured phases of inferential reasoning. Noll et al. (2016) hypothesized that 

students’ thinking occurred in four phases in which students: (a) appropriately construct a 

TinkerPlots model corresponding to the null hypothesis; (b) use the model to generate a 

single trial and suitably represent its outcome; (c) generate multiple trials to create a 

distribution (i.e., the null model); and (d) utilize the results from all three previous phases 

to draw conclusions. Noll et al. found that even when students struggled to construct an 

appropriate TinkerPlots model corresponding to the null hypothesis, they were able to enact 

simulations and reason about the null model correctly. Two common errors were 

incorrectly assuming that ‘by chance’ implies a probability of .5 and designing a null model 

simulator based on the observed results rather than the specifications of a null hypothesis. 

It should be noted that the Facebook task and Music Note task are both theoretically 

isomorphic and have a substantially different study design than the Dolphin Therapy task, 

which requires different settings in TinkerPlots. Specifically, students do not have to 

specify ‘without replacement’ for the Facebook task, a setting which proved difficult for 

students studied by Noll and Kirin (2017). Therefore, students’ ability to utilize TinkerPlots 

to realize their intended models may be limited both by gaps in their understanding of the 

full TinkerPlots functionality as well as gaps in understanding null hypotheses across 

various contexts and statistical content. Similarly, their understanding of the role of 

simulation and their ability to enact simulation may only be limited to situations in which 

the resampling method required is bootstrap resampling, as is the case in the Facebook task 

and Music Note task. For example, one group of students studied by Noll and Kirin (2017) 
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incorrectly attempted to utilize bootstrap resampling in the Dolphin Therapy task, despite 

the problem requiring randomization resampling. Nevertheless, it appears that, at least in 

some scenarios and tasks, students are able to successfully create null model simulators 

with TinkerPlots. 

2.2.1.3  Summary of Students’ Understanding of Null Models and Null Model Simulators 

 
Preliminary evidence from evaluations of students in simulation-based curricula 

suggest that simulation-based inference may improve students’ understanding of 

significance testing compared to the traditional parametric-based inference, particularly in 

terms of interpreting p-values (e.g., Hildreth et al., 2018; VanderStoep et al., 2018). Yet, 

an understanding of the conclusions that can be drawn from a significance test may not 

imply that students also understand the role that null models play in significance testing 

(Frischemeier & Biehler, 2013; Sabbag et al., 2015). While students struggle to create null 

model simulators in TinkerPlots (Biehler et al., 2015; Noll & Kirin, 2017), for some 

problems they seem generally able to use TinkerPlots to represent their intended models 

(Noll & Kirin, 2016). Furthermore, within some problem contexts, students seem to 

generally understand the role of simulation with regard to the null model simulator and 

significance testing (Noll et al., 2016). Therefore, students’ struggles with simulation-

based significance testing may be due to: 

(1) idiosyncrasies of particular problem contexts and types of statistical study 

designs,  

(2) difficulties extracting a null hypothesis from context,  

(3) converting the null hypothesis into a specific null model simulator, or 
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(4) ensuring that the null model simulator contains complete information to 

facilitate the creation of a null model in TinkerPlots.  

Although converting a null hypothesis into a null model is not a problem unique to 

simulation-based significance testing, simulation appears to inform the way students 

approach statistical inference (Case, 2016). There is evidence that when taught with 

curricula that utilize TinkerPlots, students approach significance testing tasks with 

TinkerPlots models in mind (Garfield et al., 2012; Noll & Kirin, 2016). Thus, simulation-

based curricula, especially those utilizing TinkerPlots or similar software that make explicit 

students’ representations of the null model in the form of a null model simulator, may be 

able to provide researchers an insight into students’ thinking and their processing of 

contextual and statistical information in significance testing tasks. However, the role these 

software tools play in shaping students’ understanding of significance testing remains 

largely unexplored.  

2.2.2  Students’ Thinking about Null Model Simulators 

 
Despite difficulties and errors that students make when conducting simulation-

based significance tests (e.g., Biehler et al., 2015), some evidence suggests that students 

are, under certain circumstances, generally able to utilize TinkerPlots to create intended 

models and understand the role null model simulators play in SBI (Noll & Kirin, 2016; 

Noll et al., 2016). Studies by Noll and Kirin (2016) and Noll et al. (2018b) found large 

variability in the types of TinkerPlots models students created when solving the Facebook 

task (see Figure 3) and the NFL task (Figure 5) respectively. One possible explanation for 

students’ errors is difficulty in extracting a null hypothesis from a problem context and the 
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complete characteristics manifested in the null model simulator that the null hypothesis 

specifies. 

Beyond difficulties in specifying TinkerPlots sampler characteristics such as draw, 

repeat, and replacement, approximately half of Noll and Kirin’s (2016) students working 

on the Facebook task created a single device that focused only on the day of the break-up, 

while the other half created a linked device that separately accounted for individual couples 

that broke up and day of the break-up. Similarly, in completing the NFL task, 

approximately half of Noll et al.’s (2018b) students created a single device focusing on 

either the winner of the coin flip or the winner of the game exclusively, while the other half 

created a linked device that separately accounted for both. These tasks are mathematically 

isomorphic – ‘Given a breakup has occurred, what is the chance it occurred on Monday?’ 

is equivalent to asking, ‘Given a team has won the coin flip, what is the chance it will win 

the game?’. Yet, students creating linked-devices in the Facebook task had more errors and 

difficulties specifying the device, while students creating single devices in the NFL task 

had more errors and difficulties specifying the device. In both cases, students creating 

linked devices experienced difficulty analyzing and summarizing the results from their 

samplers and struggled to account for the conditional nature of the task.   

Two studies by Noll et al. (2018a, 2023) suggest that an inherent human 

predisposition for narrative sensemaking may explain how students construct null model 

simulators as well as how they interpret them. In general, narrative thinking and reasoning 

processes can help students organize information into a coherent structure (e.g., Clark & 

Rossiter, 2008). Furthermore, statistical models may be inherently narrative, as they “bring 
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forth important aspects of a problem, contain an underlying statistical structure of a 

process, and are purposeful (used to make sense of a problem)” (Noll et al., 2018a, p. 1269).  

In examining video-recordings of students completing the Music Note task (see 

Figure 4), Noll et al. (2018a) noticed that students appeared to focus on narrative 

characteristics of the problem context when constructing TinkerPlots models. For example, 

many students constructed TinkerPlots models based on the temporal sequence of the 

problem context, ensuring that their models accurately reflected that “the teacher plays the 

note … and then the student guesses it. And so, it’s not at the same time” (p. 1274). This 

strong link between the TinkerPlots model (and the null hypothesis it is meant to represent) 

and the original problem context could also produce a narrative tension until subsequent 

contextual details were added by the students. One student highlighted this tension by 

stating “My only problem with this, is that it doesn’t really put into play what the student 

really knows about the music” (p. 1274) to which a group mate responded that under the 

instructions of the problem “the student doesn’t really know anything about music, so it’s 

totally random” (p. 1274-1275). Students also valued TinkerPlots models for their 

communicative power, preferring models that they perceived accurately told the story of 

the problem task. This evidence suggests that students’ creation of null model simulators 

is dependent on a process that integrates both a specific null hypothesis and the story 

structure of the problem context, and successfully resolves tensions between the two.  

Even when students are able to successfully create a null model simulator, they may 

not understand the random and repeatable process it represents. A study of in-service 

statistics teachers by Justice et al. (2018) utilized structured interviews to examine teachers’ 

understanding of null model simulators as a data generating process (DGP). A DGP 
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approach to null model simulators exemplifies Konold et al.’s (2007) theory of 

understanding distributions through modeling and the core principle of randomization as a 

data production process (Cobb, 2007; Fisher, 1935).  The teachers in the study explicitly 

focused on creating null model simulators that replicated the manner in which the original 

data was produced, emphasizing some elements such as the temporal sequence of the study 

that do not affect the simulation results. In doing so, Justice et al.’s participants 

unanimously viewed the null model simulator’s role as facilitating comparisons between 

the hypothesis and the evidence that could lead to an inference or conclusion. While this 

comparison is fundamental to the task of a significance test, it emphasizes the null model 

simulator’s by-product (i.e., the null model, and ultimately, the p-value) rather than the 

random data generating process that it represents, and which is important to think about 

when conceptualizing the null model simulator’s core purpose and role in significance 

testing. However, while these teachers teach the CATALST curriculum, they were not 

trained with it as students, and their understanding of null model simulators in relation to 

the null model may be a residual effect of their parametric-based statistical training. 

2.2.3  Summary of Students’ Understanding and Thinking about Simulation-Based 

Significance Testing and Null Model Simulators 

 
Simulation-based inference has captivated statistics educators through several 

hypothesized benefits (e.g., Cobb, 2007). Simulation-based curricula such as ISI, 

CATALST, and Lock5, may lead to higher gains in students’ understanding related to 

drawing conclusions from significance tests and interpreting p-values, a task that has 

historically befuddled students as well as some instructors (e.g., Nickerson, 2000). 

However, simulation-based approaches also entail unique aspects to conducting 
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significance testing, namely in the specification and utilization of a null model simulator 

in simulation software such as TinkerPlots. 

While students are, in certain circumstances, generally able to understand the roll a 

TinkerPlots model plays in significance tests (Noll et al., 2016) and are sufficiently fluent 

with TinkerPlots to specify their intended models (Noll & Kirin, 2016), students struggle 

to operationalize the null hypothesis as a null model simulator in TinkerPlots (e.g., Biehler 

et al., 2015; Noll & Kirin, 2017). Students struggle to resolve tensions between statistical 

hypotheses and characteristics of the problem context such as the temporal sequence of 

events or their personal beliefs about what should or should not affect the results of a study 

(Justice et al., 2018; Noll et al., 2018a). This struggle to integrate the null hypothesis with 

the problem context leads to a wide variety of operationalizations of the null model 

simulator (Noll & Kirin, 2016; Noll et al., 2018b), and a strong preference for simulators 

that communicate ‘the story’ of the original study and strictly adhere to its design (Justice 

et al., 2018; Noll et al., 2018a).  

Furthermore, students may view the purpose of a null model simulator only in terms 

of its product, the null model and p-value attained once simulation is enacted, and not in 

terms of the random and repeatable data generating process as specified by the null 

hypothesis that the null model simulator represents (Justice et al., 2018). Therefore, while 

simulation-based methods do appear to improve some aspects of students’ understanding 

of and thinking about significance testing, there is a need for further research aimed at 

developing students’ ability to transcribe a null hypothesis into a null model simulator, 

emphasizing the intermediary importance of the exactness of the null model, and its 

purpose in significance testing. 
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2.3  Summary of Current Research on Students’ Thinking about Null Models 

 
One of the key tools of science is the evaluation of hypotheses through 

experimentation and testing. Statistical inference explicitly aims to utilize probability when 

thinking and reasoning about the strength of inferences about such hypotheses. While there 

are many schools of thought on how to approach statistical tests, one of the most common 

methods found throughout textbooks and 20th century practice is a significance test, or its 

derivative method, null hypothesis significance testing (NHST). To conduct a significance 

test, an individual first specifies an exact probability distribution for possible outcomes of 

an experiment based on a candidate hypothesis, which is known as a null model under and 

is based on a null hypothesis. Then, observed evidence is compared to this null model, and 

when the observed evidence differs from the expectations based on the null model, the 

candidate hypothesis is considered (probabilistically) nullified. This thinking and 

reasoning follows the hypothetico-deductive approach to confirmation, with the added 

element of the specification and utilization of probability.  

Beyond methodological and philosophical critiques of this method, students have 

historically struggled to conduct this significance testing procedure. However, new 

curricula based on simulation appear to lead to larger gains in students’ understanding 

about significance testing than their parametric-based predecessors. These simulation-

based methods present their own challenges for students, with students often struggling to 

transcribe a null hypothesis into a null model simulator that subsequently can generate the 

null model. As these simulation-based methods appear to frame students’ understanding 

and approach to significance testing, new research is required to understand how students 
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grapple with and think about this unique intersection of simulation software and statistical 

hypotheses.  

Biehler et al. (2015) proposed a framework explicating the thinking required to 

complete simulation-based significance testing (Figure 6). The framework describes three 

levels successively dependent on each other – a statistics level dependent on the problem 

context and a software level dependent on the statistics level. It is in completing the 

transition from the problem context to the statistics level that students have the greatest 

difficulty – extracting a statistical problem from a given task, determining an appropriate 

null hypothesis, and explicating a null model simulator that specifies all characteristics to 

be transcribed from the null hypothesis to generate a null model (e.g., Noll & Kirin, 2016; 

Noll et al., 2016). However, it is unclear whether students’ difficulties creating null model 

simulators are due to a lack of conceptual understanding of null hypotheses and null models 

or difficulty in processing problem tasks as presented to them.  

Noll et al. (2018a, 2023) found evidence that students were sensitive to the narrative 

structure of a task. When reading a text, individuals construct a referential situation model 

of what the text is about utilizing working memory and based on the text’s characteristics 

(Graesser et al., 1994). Working memory is the cognitive mechanism that facilitates the 

storing and processing of information (Baddeley, 2003). Working memory both processes 

information and facilitates long term storage of information, and thus there is a trade-off in 

the efficiency of working memory to simultaneously achieve both (McCutchen, 2000). For 

example, increased organizational structure of information can support improvement in 

text recall (Meyer & Freedle, 1984). Students’ difficulties resolving tensions between the 
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null hypothesis and the problem context may thus be a function of the text characteristics 

of the problem task provided to them. 

It is worthwhile to reiterate that many students are novices with regards to formally 

reasoning about probability and statistics. When considering the Facebook task (see Figure 

3), the Music Note task (see Figure 4), and the NFL task (see Figure 5), experts might 

readily see the same mechanism and statistical structure in each task (e.g., a simple urn 

model). This translates to a single TinkerPlots device with two outcomes, the event of 

interest and its complement.  

However, each of these tasks resulted in students producing a wide variety of 

TinkerPlots models and presented unique challenges for students in transcribing the null 

hypothesis into a null model simulator. While structurally isomorphic in terms of their 

statistical content and underlying probability models, the story or text structure of each task 

as presented to students was notably different. For example, the Music Note task separately 

describes how the music teacher plays a note at random before introducing how the student 

provides an answer or guesses the note played, while the NFL task does not separately 

discuss the coin flip procedure and the act of winning or losing the game (Noll & Kirin, 

2016; Noll et al., 2018b). This variation in text characteristics may explain variation in the 

formulation of a null model and a null model simulator in students’ responses. 

Furthermore, students appear to prefer models with communicative power in 

relation to the problem task. Noll et al. (2018a) documented one student’s view that “[the 

single device model] is more efficient if you’re just trying to get the distribution, but if you 

want to like, tell the story of what happens, this [linked device model] or the two spinners 

more accurate displays what’s actually happening” (p. 1277).  
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This preference for communicative models may also provide an opportunity to 

facilitate the development of students’ understanding of null model simulators. By 

presenting significance testing tasks with text characteristics that embed statistical 

information essential to the exact specification of a null model and null model simulator as 

a natural part of the story of the task, students may be able to better abstract this 

information, facilitating transcription of the null hypothesis into a null model simulator. 

This may also present opportunities to scaffold students’ understanding of null models by 

successively omitting statistically irrelevant information in problem tasks linked to the 

gradual suppression of information in a TinkerPlots model (i.e., collapsing a linked device 

to a single device, or condensing a mixer with all possible outcomes in the sample space to 

an urn model with only two outcomes).  

Another possible explanation for students’ struggles through the lens of Biehler et 

al.’s (2015) framework is that students appear to view the purpose of a null model simulator 

only in terms of its product (i.e., the results of the simulation), and not for its role as the 

representation of the null hypothesis nor the random and repeatable data generating process 

underlying the null model (e.g., Justice et al., 2018). While students are generally able to 

think and reason from the results of the simulation to statistical inferences and conclusions 

about the problem context, they struggle to reason from a real problem to a statistical 

problem and to the null model simulator (e.g., Noll et al., 2016). Biehler et al. (2015) 

postulated that some students may have an internal schema for randomization test 

procedures using TinkerPlots, but lack a conceptual understanding linking a null model 

simulator, in terms of both its represented process and its enacted product, with statistical 

inference and the logic of significance testing. While this theoretical framework specifies 
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a ‘statistical’ level, this may not be a distinct level in students’ minds, which may also 

explain their conflation of process and product when considering the purpose of a null 

model simulator. 

2.3.1  Limitations of Current Research 

 
One glaring limitation of the body of research examining in detail students’ 

thinking about significance testing in simulation-based curricula through the early 2020s 

is that nearly all of the studies utilized the TinkerPlots software, and have only been 

conducted in one of two curricula, either the CATALST curriculum or the curriculum 

developed by Frischemeier and Biehler (2013) and Biehler et al. (2015). Studies evaluating 

the ISI and Lock5 curricula primarily do so through the use of either CAOS or CAOS-

based assessments which thus far have not included items specifically addressing students’ 

thinking about null models and null model simulators. Furthermore, the studies by 

Frischemeier and Biehler (2013) and Biehler et al. (2015) recruited pre-service 

mathematics teachers, while the studies by Noll and Kirin (2016, 2017) and Noll et al. 

(2016, 2018a, 2018b, 2023) recruited mostly liberal art majors, many of whom identified 

as poor math students (Noll & Kirin, 2016). Therefore, it is nearly impossible to disentangle 

curricular effects, individual and group differences, and the differences in research methods 

when making inferences about students’ understanding of and thinking about significance 

tests based on this body of empirical evidence. Nevertheless, these studies provide an 

important first glimpse at students’ understanding and thinking, and document for the 

empirical record students’ struggles in these simulation-based approaches to significance 

testing. 



 

 45 

Perhaps it is by coincidence that most of the studies documenting students’ 

performance on assessment items related to significance tests were evaluations of the ISI 

curriculum, while most of the studies documenting students’ thinking about significance 

tests through observation or written work utilized the TinkerPlots software and the 

CATALST curriculum. While Hildreth et al. (2018) found that students’ understanding of 

statistical inference was comparable between the CATALST, ISI, and Lock5 curricula, 

TinkerPlots requires its users to create null model simulators from scratch, as opposed to 

the Rossman-Chance applets or StatKey which provide pre-constructed null model 

simulators or require only partial specification of its characteristics. Although these 

software tools do not require students to explicitly construct null models, it does not mean 

they do not build an understanding of some or all aspects of the null model, as they still see 

and interact with the product of the enacted simulation, the null model.  

While TinkerPlots provides a useful mechanism for researchers to observe 

students’ creation of null model simulators and thus also of null models, the current body 

of research leaves open the question as to what learning benefits such explication has for 

students, and to what extent current research findings are simply the result of TinkerPlots’s 

idiosyncrasies. As more simulation-based curricula emerge (e.g., Çetinkaya-Rundel & 

Hardin, 2021), and other simulation software are developed, it is important to verify that 

current research findings are not unique coincidences dependent on the specific curriculum 

or software utilized in previous studies, and if there are differences in students’ 

understanding and thinking about significance tests across curricula and software tools, and 

to which curricular and software specifications these differences may be related. 
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Despite the propagation of simulation-based methods, relatively little is known 

about their effects on students’ reasoning and thinking about null models. Many commonly 

used assessments of students’ understanding do not explicitly include items that address 

students’ understanding of null models and null model simulators. While such items are a 

part of the other assessments (e.g., GOALS, MOST, Garfield et al., 2012; Introductory 

Statistics Understanding and Discernment Outcomes assessment, I-STUDIO, Beckman, 

2015), students’ results utilizing these assessments have not been reported at the item level. 

Secondary data analyses can shed further light on the distinction between students’ 

understanding of interpreting results from significance tests and their understanding of the 

role null models and simulation play in significance tests. Similarly, several assessments 

include items concerning study design and random processes such as random sampling and 

random allocation, but not explicitly in relation to null hypotheses (e.g., CAOS, delMas et 

al., 2007; Inferences from Design Assessment, IDEA, Fry, 2017). Including items that 

correspond to all three R’s of Cobb’s framework for simulation-based significance testing 

(i.e., ‘Randomize’, ‘Repeat’, ‘Reject’) can help shed further light on students’ 

understanding and thinking about null model simulators and null models, which are core 

to the logic of significance testing, and thus the main emphasis of simulation-based 

pedagogies.   

A focus on the relationship between study design and null models, meant to foster 

students’ understanding of the data generating process that the null model simulator 

represents, also provides a unique opportunity to incorporate null models in Model 

Eliciting Activities (MEA; e.g., Garfield et al., 2012) which are already a part of some 

simulation-based curricula. While MEAs typically ask students to build a model based on 
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real-world patterns, a Null Model Eliciting Activity might instead focus on predicting real-

world patterns based on a model. These Null Model Eliciting Activities may aid in the 

development of students’ understanding of and thinking about the variability specified in 

null hypotheses and ultimately the transcription of a null hypothesis into a null model 

simulator. 

Previous research on students’ thinking about null model simulators also invites the 

use of several promising frameworks for future research. As noted by Noll et al. (2018a), 

humans use narratives and stories to help make sense of their experiences and organize 

their knowledge (Clark, 2010; Schank, 2000). Future research can investigate the role that 

narratives may play in how students create, make sense of, and understand null models in 

simulation-based software. Additionally, research can explore the potential of instructing 

students using statistical narratives and its effects on students’ comprehension, processing, 

and recollection. 

2.3.2  Problem Statement 

 
Despite the propagation of simulation-based methods, relatively little is known 

about their effects on students’ reasoning and thinking about null models, core to the logic 

of statistical testing. Furthermore, current studies have utilized a limited set of research 

methods and designs, and have also been used on a limited set of students. What is graduate 

students’ thinking in statistical tests? Graduate students are a population that have 

historically struggled to learn statistical testing (Nickerson, 2000), and for whom there is a 

clear need to learn statistical testing (e.g., APA, 2017). What might a distal measure of 

students’ thinking reveal (beyond the two month delay of Biehler et al., 2015)? How much 

of what students are taught do they remember? This is not a question of transfer, such as 
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that asked by Beckman (2015). Instead, this is a question of memory and lasting impact 

that may extend into graduate students’ careers as scholars and researchers.  

After an extended delay subsequent to the completion of an introductory statistics 

course using an SBI curriculum, what is graduate students’ thinking in statistical tests? 

2.4  Review of Theories and Methods for Researching Students’ Statistical Thinking 

 
To support the selection of research methods to investigate the aforementioned 

question, this section briefly reviews the background theories and evidence relevant to the 

objects of study (i.e., statistical tests and their null models), as well as the orienting 

framework for analysis and a brief review of methods utilized in similar studies. 

2.4.1  Orienting Framework 

 
To explicate and analyze students’ thinking about significance testing, this study 

builds off of the work of Noll et al. (2018a, 2023) by utilizing statistical narrative as an 

orienting framework. Humans use narratives to help make sense of their experiences and 

use narration as a sense-making medium (Clark, 2010). Narratives are so pervasive to 

human cognition and the human experience that some have even dubbed our species homo 

narrans (Fisher, 1984; Rowe et al., 2007).  

At its most fundamental, narrative is a way to help organize knowledge (Schank, 

2000). Narratives organize a unique sequence of events or happenings, which are only 

given meaning through their place in an overall configuration, called a plot or fabula 

(Bruner, 1990). A plot is the basic scheme of events, which can be either thematic, 

structural, or a combination of both (Jahn et al., 2010). Narratives are more than just an 

amalgamation of episodes, instead communicating both plot and events together as one 

meaningful aggregate totality (Ricoeur, 2005). Narratives thus must have an overarching 
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conceptual scheme providing contextual meaning to individual events (i.e., a plot), and 

must draw together multiple events, happenings, or actions that are thematically unified to 

achieve a particular goal (Polkinghorne, 1995). 

Statistical narratives are the stories we tell as part of the process of statistical 

thinking (Noll et al., 2018a). Statistical narratives integrate events from a problem context 

with statistical entities and software functionality. While specific research on students’ 

statistical narratives is nascent, statisticians have long argued that statistical thinking 

resembles features of narrative reasoning and thinking. Cobb and Moore (1997) discuss 

statistics in terms of a dialog between statistical models and data, and research by Noll et 

al. (2018) and Justice et al. (2018) highlight the communicate power with which students 

and teachers alike think about statistical models.  

As narratives describing events are constructed post-hoc, they cannot serve as a 

method for explicating students’ in-the-moment thoughts. A retrospective self-constructed 

reflective narrative may represent what each individual has retained from the thinking 

episode. Thus, they may so provide a current state of thinking at the moment of reflection, 

but likely not all thinking that had occurred during the problem-solving task itself. The 

narrative may not include false paths and garden paths. It may only include what the person 

considers to be relevant, or true, or what they believe represents a coherent and consistent 

set of relationships among each action and interaction undertaken. It is well known that 

memories can be easily altered via suggestion, either by the self or by external factors (e.g., 

Loftus & Pickrell, 1995). Furthermore, reflections may represent students’ retrospective 

reasons for the choices and moves that were made during the problem-solving episode, 

which may not be the same as their in-the-moment reasons. 
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However, retrospective narratives can still serve an effective role as a tool when 

considered as a cognitive instrument (Robinson & Hawpe, 1986). While not all of the 

thoughts students may have had during the problem-solving process will be evident in a 

self-constructed reflective narrative, their choice of what to include and what not to may 

be indicative of key relevant moments of their thinking as well as their statistical 

knowledge.    

Therefore, this proposal takes as given, based on prior theory and evidence, that 

statistical narratives ubiquitously exist as a psychological construction during acts of 

statistical thinking and reasoning. Furthermore, it is assumed that they are produced 

through the integration of a problem context, prior statistical knowledge both of concepts 

and procedures, and the functionality of the specific statistical tools utilized during the 

thinking process. As a unified overarching scheme, statistical narratives make visible the 

logical structure of an individual’s retrospective thinking, and while they may not fully 

reveal all aspects of the thinking process during the problem-solving task, may be 

predictive of an individual’s thinking during tasks. Finally, incorporating traces of 

statistical thinking such as gaze paths and video records of task completion help to, at least 

partially, reconstruct in-the-moment narratives as may have occurred internally to each 

participant during task completion.  

2.4.2  Defining Thinking 

 
While researchers in the field of statistics education generally describe statistical 

thinking as ‘thinking like a statistician’, there is currently no consensus definition for 

statistical thinking (Le, 2017). Some researchers have attempted to define statistical 

thinking in terms of expected behavioral responses when interacting with statistical stimuli, 
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such as recognizing the omnipresence of variability or recognizing the need for data (e.g., 

Moore, 1990; Snee, 1993). Others have attempted to define statistical thinking in terms of 

expected cognitive processes, such as an interrogative cycle or investigative cycle (e.g., 

Wild & Pfannkuch, 1999). Exacerbating the problem is that the term statistical thinking is 

often used interchangeably with the term statistical reasoning, which is often defined in 

terms of more concrete actions such as explaining statistical procedures or interpreting 

statistical results (e.g., Ben-Zvi & Garfield, 2004). 

More generally, researchers in the fields of cognition, metacognition, and epistemic 

cognition typically define thinking as a metacognitive process (Kitchner, 1983). For 

example, Moshman and Tarricone (2016) define thinking in relation to inferences, where 

inference is the generation of new knowledge, thinking is the metacognitive self-regulation 

of inferences, and reasoning is the epistemological self-regulation of thinking – “In 

thinking, one deliberately controls one’s inferences on the basis of one’s knowledge about 

inference in general and awareness of one’s own inference” (p. 54).  

Although metacognition and self-regulation are related as they are both types of 

cognitive control processes (Schunk, 2008), metacognition is typically defined in terms of 

conscious processes and the active coordination of strategies to accomplish a task (e.g., 

Howard et al., 2000). Conversely, self-regulation is typically defined in relation to specific 

actions that are undertaken, such as planning, revising, or checking (e.g., Baker & Brown, 

1984). Furthermore, self-regulation is often defined as those regulatory responses to 

attention stimulated by one’s environment, while metacognition is often defined as 

judgements or evaluations resulting from the mind of the individual as the initiator or 

trigger (Dinsmore et al., 2008).  
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Taken together, metacognitive self-regulation refers to individuals’ decisions in 

choosing and monitoring appropriate actions, or put rather simply, making up one’s mind 

about what to do (Bailin et al., 1999). There are generally three components to 

metacognitive self-regulation – planning, monitoring, and evaluating (Schraw & 

Moshman, 1995). Planning includes goal setting and the selection of appropriate strategies, 

monitoring includes self-checking on the progress of actions towards achieving one’s 

goals, and evaluating includes revising one’s goals and strategies when necessary (Schraw 

et al., 2006). In this way, metacognitive self-regulation is the link between goal setting and 

action, and the continual recalibration of actions to align with one’s goals. 

As thinking is inherently dependent on goal setting, one’s purpose is thus central to 

thinking (Kaplan et al., 2009).  Purpose is typically described as having three components: 

(1) perceived purpose for a specific task amidst a given scenario, (2) the identification of 

relevant self-processes, and (3) the actions perceived to be relevant to achieve the identified 

process for a particular purpose (Maehr, 1984). As perceived purpose is subjective to the 

individual, it is entirely possible if not probable that students interpret a task in different 

ways, perhaps even in different ways from those intended by task writers. They may thus 

adopt different purposes for engaging with the task, leading to different types of actions 

and thus metacognitive self-regulation (Kaplan et al., 2009; Winters et al., 2008). 

Therefore, planning as a component of thinking, and subsequently monitoring and 

evaluating the initial plan, is dependent on an individuals’ initial perceptions of a task’s 

purpose. 

Acknowledging the variation in operational definitions of statistical thinking 

utilized by statistics education researchers as well as the prevailing approaches utilized by 
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researchers studying cognition and metacognition, this dissertation defines statistical 

thinking to be the metacognitive self-regulation of statistical inferences (and statistical 

inference as the generation of new statistical knowledge or the statistical generation of new 

knowledge). Put another way, statistical thinking is the management of taking statistical 

actions, or deciding what to do when faced with a statistical problem and monitoring these 

actions’ progress. 

2.4.3  Measuring Thinking 

 
The lack of a single consensus definition for thinking has led to researchers utilizing 

a wide variety of tools to capture empirical evidence of thinking. A systematic review of 

research on thinking by Dinsmore et al. (2008) found that 73% of articles investigating 

self-regulation utilized self-report as their measure and 20% utilized observation. For those 

articles investigating metacognition, 24% utilized self-reports and 20% utilized 

observations. Additionally, 31% of papers reviewed utilized performance ratings, 12% 

utilized think-alouds, and 13% utilized interviews. One possible explanation of this variety 

is that metacognitive and self-regulatory practices are not always conscious or explicit 

choices and, therefore, may not be available to study participants to explicate and are thus 

difficult to capture (Winne & Perry, 2000).  

 As a result, many researchers are experimenting with creating new methods to 

investigate thinking. For example, Nicholas (2018) argues for the utilization of multiple 

videod events to provide a robust empirical basis for researchers’ claims. In studying 

parents’ thinking when reading to their children, Nicholas captured video recordings of the 

parent-child interaction, a post-hoc interview with the parent, and a delayed retrospective 

video-cued interview with the parent in which the parent was played selected clips from 
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the original video recording. The data produced by these different sources allowed 

Nicholas to analyze the phenomenon in greater detail than when using only one source 

alone.  

 Similarly, Dinsmore et al. (2008) argue that researchers have an opportunity to use 

subtle techniques to investigate thoughts, and to build tasks that not only will elicit 

metacognitive and self-regulatory awareness and reflection, but which will provide an 

opportunity for researchers to document subtle actions without intruding on the 

participants’ thought processes.  

 One common tool used to study statistical thinking is the think aloud procedure. In 

a typical think aloud protocol, participants are encouraged to concurrently produce a verbal 

account of their thought processes during statistical acts. However, as participants produce 

verbalizations in the midst of problem solving, thinking aloud is an intrusive act that can 

change participants’ thinking itself. For example, Baumann et al. (1992) found evidence 

that instructing students to think aloud led to an increase in their self-awareness and 

monitoring. While retrospective productions of a verbal account do not suffer from the 

problem of invasiveness, some researchers argue that the retrospective nature of these 

accounts do not accurately reflect the in-the-moment thought processes participants 

engaged in during problem solving. For example, participants with higher metacognitive 

skills may be able to more accurately retrospectively recall the strategies they used (Muijs 

& Bokhove, 2020). As a result, researchers have debated about the fidelity of think aloud 

interviews as a method to investigate thinking, with some arguing for it and some against 

(e.g., Ericsson & Simon, 1998; Smagorinsky, 1998).  
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 An alternative to the individual think aloud protocol is group protocols, which allow 

researchers to capture the discourse and interaction between participants and make 

inferences about their thinking through methods from discursive psychology (Wiggins, 

2016). While group tasks introduce social factors that must also be accounted for in 

analyses, they also ameliorate task discomfort, and make some types of decision making 

easier to observe (Schoenfeld, 1985). However, the social dynamics at play in group 

settings also cannot be ignored, as a dominant participant can skew the discussion. 

Especially if participants have not previously established a social dynamic, a spontaneously 

developing dynamic amidst a problem-solving task may further obscure the measurement 

and capture of evidence of each individual’s thinking.   

 Due to the methodological concerns of individual and group think aloud strategies, 

a growing number of researchers argue for pure observational methods that can capture 

participants’ thinking (e.g., Whitebread et al., 2009). These methods focus on capturing 

traces rather than think aloud statements. Traces are the observable signs of thinking that 

participants exhibit during a task (Dent & Koenka, 2015). These include actions such as 

underlining a passage, or even extended fixation and gaze towards a particular object. Some 

researchers have successfully utilized gaze-paths as recorded by eye tracking software to 

stimulate detailed verbal explanations of thinking in retrospective interviews (e.g., Cho et 

al., 2019; Hyrskykari et al., 2008). 

 While the utilization of traces avoids the invasive effect that think aloud procedures 

have, traces may not be able to fully capture thinking, and making inferences about 

thinking based only on these traces is an inherently uncertain venture for researchers. 

However, it is important to note that a similar critique can be made of think-aloud 
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protocols, in their inability to fully capture thinking, and that there is no consensus on 

which methods are better suited for which research questions. Some research has shown 

that thinking, cognition, and neural activity changes when participants are asked to think 

aloud (e.g., Durning et al., 2013; Fan et al., 2019), although the extent to which the think 

aloud protocol adulterates participants’ naturalistic reasoning and thinking is debatable. 

For example, some researchers argue that thinking is inherently narrative, and therefore, 

thinking aloud is simply the external manifestation of a pre-existing internal monologue 

(see Cowan, 2019).  

 Perhaps more important than the method of data collection is the development of 

the task itself, as any observable action or behavior taken by a participant is inherently 

dependent upon the task they are interacting with (Maher & Sigler, 2014). Thus, any 

inferences made from data elicited by a task is dependent on the task’s characteristics. 

Goldin (2000) argues that researchers must thoughtfully examine which characteristics are 

controllable, and which they have controlled for, as well as those they have not, to make 

valid and generalizable claims from interview data. Specifically, Goldin focuses on the 

content of the task, including the structure of the content presented, and its expected 

interaction with participants’ cognitive structures.  
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Chapter 3: Method 

 
 To investigate the complex cognitive process of statistical testing and thinking 

about null models amidst the logic of statistical tests (after having completed initial 

instruction and training in statistics), to inform the design and modification of statistics 

curricula, and to support the burgeoning body of educational research on simulation-based 

pedagogies in statistics education, this dissertation focused on graduate students’ thinking 

when conducting statistical tests. Furthermore, as the goal of graduate level statistics 

courses is to prepare graduate students for their own research, the focus of the conducted 

study was on graduate students’ thinking seven months after the completion of a graduate 

level simulation-based introductory statistics course.  

3.1  Research Questions and Study Purpose 

 
 The goal of this dissertation was to investigate the following questions:  

(1) What is the nature of graduate students’ thinking when conducting statistical tests?  

(2) Do graduate students think about null models when conducting statistical tests, and 

if so, how? 

 To describe graduate students’ thinking when conducting statistical tests and their 

thinking about null models in such tests, a case study approach was utilized to explore how 

each participant was thinking. Specifically, a multiple descriptive case (Merriam, 1988) 

based on multiple participants and multiple tasks was used to facilitate a description of how 

participants were thinking. Each case was a unique participant, and there were six cases. 

 The purpose of the study design was to elicit rich and detailed data regarding 

students’ statistical thinking when conducting statistical tests. A small group of six 

graduate students participated in a set of structured interviews to generate detailed 
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information about their thought processes and conceptual understanding (see Figure 7). 

These results were intended to form an empirical record of these graduate students’ 

statistical thinking in statistical tests. 

 Specifically, information from a semi-structured interview (the Concept Mapping 

Task) was intended to elicit empirical evidence of a conceptual model of students’ thinking 

when conducting statistical tests (i.e., what is it that graduate students say that they will do 

when conducting a statistical test). Information from a task-based interview (the Statistical 

Testing Task) and retrospective interview (the Video-Cued Interview) was intended to 

provide empirical evidence of students’ thinking when conducting statistical tests (i.e., 

what is it that graduate students do when conducting a statistical test). Information from a 

semi-structured interview (the Statistical Testing Interview) was intended to elicit evidence 

of students’ thinking about null models and the extent to which this thinking depended on 

features of the software application utilized. All recruitment and study procedures were 

approved by the Institutional Review Board at the University of Minnesota 

(STUDY00016330). 

3.2  Case Selection and Participants 

 
Selecting cases required two considerations, how the participants would be selected 

and how the content for each task would be selected. The population of interest was 

graduate students who had completed an introductory statistics course utilizing a 

simulation-based approach to statistical inference. For expediency, the recruitment pool 

was limited to only students who had completed EPSY 5261, a master’s level introductory 

statistics course at the University of Minnesota Twin Cities utilizing the Lock5 curriculum 

(see Appendix D for relevant excerpts of a EPSY 5261 course syllabus). While there will 



 

 59 

be some differences in statistical thinking based on course format (in-person vs. online), 

the instructor’s experience, and the participants’ prior mathematics and statistics 

experiences and their grade in the course, the purpose of this study was simply to describe 

participants’ statistical thinking at a level of detail hitherto unexplored for graduate 

students instructed with simulation-based approaches, and thus participants from all 

sections of EPSY 5261 were included in the eligible participant pool regardless of 

instructor or course format.  

Participants were recruited from the pool of graduate students who had completed, 

within the past academic year as of the time of study recruitment, the introductory level 

simulation-based course in statistics offered at the University of Minnesota through the 

Department of Educational Psychology, EPSY 5261. This course generally followed the 

Lock5 curriculum and utilizes both simulation-based methods with either the StatKey or 

randomizeIt software application (delMas, 2021) as well as parametric-based methods 

(predominantly those based on the t-distribution) with the R software application (R Core 

Team, 2021). Two in-person sections plus an additional two online sections of this course 

were typically offered each fall semester with a total enrollment of approximately 50 total 

in-person students and 80 total online students. In spring semesters, one in-person section 

and one online section were typically offered with total enrollment of approximately 15 in-

person students and 30 online students. One online section was typically offered each 

summer with a total enrollment of approximately 40 students. Email addresses of eligible 

participants were culled from course rosters, and eligible participants were contacted via 

email to participate in the study (see Appendix C).  
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A simple convenience sample of six students who had completed EPSY 5261 was 

used for this study. A total of 18 eligible participants volunteered, coincidentally all but 

one of whom were from in-person sections of EPSY 5261 in the Fall of 2021. Therefore, 

three participants were selected from each in-person section offered, with an attempt made 

by the research to balance the degree programs each student was a part of across each 

section. An initial screening verified that participants were familiar with both simulation-

based methods utilizing StatKey or randomizeIt as well as parametric-based methods 

utilizing R for statistical testing. The selected participants were then provided with an 

electronic consent form and more information about the study (see Appendix E).  

Participants were offered financial compensation for participation, in the form of 

an Amazon Gift Card, to incentivize study participation and retention. Participants were 

allowed to withdraw from the study at any time, in which case they would have been 

replaced in the study. However, no participants withdrew. Thus, each of the six participants 

completed the study in full and received $50. 

Students of EPSY 5261 were exposed to two different software applications, 

StatKey or randomizeIt for simulation-based approaches to inference, and R for parametric 

equation-based approaches to inference. While idiosyncrasies in terms of the user interface 

as well as differences in the theoretical approaches they had been instructed to use with 

each software application varied, these differences were endemic to the nature of the EPSY 

5261 course, and therefore, endemic to students’ thinking about statistical tests. Including 

both software applications in this study provided an opportunity to triangulate each 

individual students’ thinking about statistical tests. This facilitated capturing students’ 

statistical thinking as a robust phenomenon, by situating statistical thinking in diverse 
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contexts and technologies. Therefore, participants completed one problem with simulation-

based approaches through StatKey or randomizeIt and one problem with parametric-based 

approaches (i.e., the t-test) through R. 

It is important to note that in the EPSY 5261 curriculum, StatKey or randomizeIt is 

utilized by students to conduct statistical tests in weeks 7–10 of the 15-week semester, 

while R is utilized by students to conduct statistical tests using parametric distributions in 

weeks 11–15 (see the Course Calendar included in Appendix D). Students are also taught 

how to use R to compute summary statistics to produce graphic displays of data in weeks 

2–3 of the semester, and again practice these skills in weeks 11–15. Students utilize 

StatKey or randomizeIt to compute confidence intervals in weeks 4–6 of the course.  

As the use of R for statistical tests came last, and the use of StatKey or randomizeIt 

came in the middle of the semester, there may have been a recency effect (Baddeley & 

Hitch, 1993) that could have affected the results of this study – students may have forgotten 

more about SBI and StatKey or randomizeIt than they had forgotten about parametric-

based tests and R, simply as a function of the instructional sequence. However, this should 

not have affected their conceptual understanding if their concept of a null model was the 

same between both simulation-based methods in StatKey or randomizeIt and parametric-

based methods in R.  

3.3  Materials 

 
The study consisted of a single session containing four separate components: a 

concept mapping task, a statistical testing task, a statistical testing interview, and a video-

cued interview. All participants completed all four components. Additionally, at the end of 

the study, a detailed case history was obtained from each participant regarding their 
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experiences in EPSY 5261 as well as their experiences with statistics in general both before 

and after completing the course, including additional coursework, research, and other 

training.  

3.3.1  Concept Mapping Task 

 
The first task that participants completed was the concept mapping task. The 

purpose of the concept mapping task was to establish a baseline of students’ conceptual 

model for the logic of statistical testing and the role null models play (i.e., what they 

thought they should do when conducting a statistical test). This task also served to establish 

participants’ perceived purpose of engagement in conducting a statistical test, which would 

subsequently ground their planning, monitoring, and evaluating in statistical tests.  

The concept mapping task took the form of a semi-structured guided interview, in 

which a series of open-ended questions were used by the researcher to elicit students’ 

thoughts and internal logic (see Appendix F for the instructions explained by the researcher 

to the participants as well as the pre-prepared prompts that the researcher planned to use to 

elicit participants’ thinking). Specifically, participants were asked to “draw a concept map 

for the logic of a statistical test” using pen and paper, with the researcher probing with 

follow-up questions to help participants add additional detail to their concept map.  

Data collected from this task included the concept map drawn by participants, notes 

taken by the researcher during the task, an audio recording of the researcher and participant 

while completing the task, and a video recording of the concept map as it was being drawn 

by the participant. 

3.3.2  Statistical Testing Task 
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After completing the concept mapping task, participants next completed the 

statistical testing task. The purpose of the statistical testing task was to observe students’ 

statistical thinking as it was applied to conducting statistical tests using both simulation-

based methods in StatKey or randomizeIt and parametric-based methods in R (i.e., what is 

it that they actually do when conducting a statistical test).  

All participants completed two different problems as part of the statistical testing 

task, with participants utilizing simulation-based methods through StatKey or randomizeIt 

for one, and parametric-based methods through R for the other.  

The two problems were based on contexts utilized in prior research by Biehler et 

al. (2015) and Brown (2021) to create the possibility of future cross-study comparisons. 

The first problem selected was the Verdienststrukturerhebung [Structure of Earnings 

Survey] (VSE) task utilized by Biehler et al. (2015). The VSE task is based on data 

collected by the German Statistisches Bundesamt [Statistics Bureau]. In the VSE task, 

students compare the monthly salaries of 861 women and men from 2006. Students first 

explore the data by comparing the distribution between two groups before they are 

prompted to conduct a null hypothesis test. The second problem selected was the Airplane 

Delays (AD) task utilized by Brown (2021). The AD task is based on data collected by the 

US Department of Transportation. In the AD task, students analyze the average delay time 

for Delta Airlines flights leaving the Minneapolis-St. Paul airport in 2019. 

The two problems used in the statistical testing task, the VSE problem and the AD 

problem based on the VSE task of Biehler et al. (2015) and the AD task of Brown (2021) 

respectively, were constructed such that they were as similar as possible in terms of three 

criteria to control for potential confounding characteristics: both had a difference in means 
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as the parameter of interest, both utilized study designs with random sampling, and both 

were presented in a manner as homogenous as possible in terms of text characteristics (see 

Appendix G1 for the instructions the researcher provided to participants for this task, and 

Appendices G2 and G3 for the prompts provided to participants for each problem). 

Data collected from the statistical testing task included notes taken by the 

researcher while the participant was completing the task, an audio recording of the 

researcher and participant while completing the task, a recording of the computer screen, 

and a recording of the participants’ gaze while completing the task.  

All participants completed the task utilizing an eye tracking apparatus that captured 

their gaze as they interacted with the software applications on their computer. The purpose 

of utilizing eye tracking was to capture a non-invasive trace of participants’ thinking, 

particularly the way in which they monitored the task. Furthermore, it was thought that 

extended periods of gaze on a single object could provide an insight into the role that each 

piece of statistical information, and each software function, played in participants’ 

statistical thinking. Additionally, this gaze recording would be part of the stimulus 

presented to participants in a retrospective interview. This evidence, when combined with 

the recording of participants’ actions, their think aloud record, and the video-cued 

interview, were designed to provide a robust multi-modal perspective on participants’ 

statistical thinking. 

3.3.3  Statistical Testing Interview 

 
The next task participants completed was the statistical testing interview. The 

purpose of the statistical testing interview was to probe students’ thinking about null 

models across multiple statistical software applications and approaches to inference. 
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Therefore, the statistical testing interview focused on prompts that were likely to be highly 

discriminating in terms of students’ thinking about null models.  

The stimuli presented to participants in the statistical testing interview were related 

to the interpretation of results from statistical tests. Previous research has shown that 

students typically view the purpose of statistical testing in terms of the product of the test 

(i.e., a p-value; Justice et al., 2018; Noll et al., 2018b). A p-value is the result of a 

comparison between the null model and an observed sample statistic. Therefore, the task 

of explaining the logic of a statistical test or the story of a statistical test from statistical 

results was considered a prudent way to elicit students’ conceptions of null models and the 

role they play in statistical testing.  

The statistical testing interview thus presented participants with results from 

several different statistical tests, some of which were presented as output from parametric-

based methods (i.e., t-tests) in R and some of which were presented as output from 

simulation-based methods (i.e., randomization tests) in StatKey (see Appendix H1 for the 

instructions the researcher provided to participants, and Appendix H2 for the stimuli 

presented to participants in this task). Two different statistical measures were utilized 

across the stimuli presented to participants – a difference between the means in two groups, 

and a single group mean. For every stimulus presented with simulation-based methods, 

there was a statistically isomorphic stimulus presented with parametric-based methods.  

Data collected from this task included notes taken by the researcher while the 

participant was completing the task, an audio recording of the researcher and participant 

while completing the task, a recording of the computer screen, and a recording of the 

participants’ gaze while completing the task. 
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3.3.4  Video-Cued Interview 

 
After completing the statistical testing interview, participants then completed a 

video-cued interview. The purpose of the video-cued interview was to further probe 

students’ statistical thinking. Specifically, the goal was to obtain a deeper understanding of 

their statistical thinking while conducting statistical testing tasks and about the role null 

models had in their thinking. The use of a video-cued and gaze-cued interview was 

intended to support a robust investigation of students’ thought processes by supplementing 

the traces of participants’ thinking obtained from the concept mapping task, the statistical 

testing task, and the statistical testing interview.   

In the video-cued interview, the researcher and the participant watched the gaze 

recording of the statistical testing task together. The participants were asked to comment 

on what they were thinking in each moment and the researcher and participant together 

could pause the video to comment on what they noticed from the recording to provide 

additional explanation when needed (see Appendix I). 

Data collected from this task included notes taken by the researcher during the task 

and an audio recording of the researcher and participant while completing the task. 

3.3.5  Pilot Testing 

 
All initial materials, including tasks and interview prompts, were evaluated and 

revised based on a pilot test. Two participants were recruited for the pilot test in total. One 

participant was an expert statistician, with several years of training in statistics as well as 

in teaching statistics, including the EPSY 5261 course. The other participant had also 

received statistical training at an advanced level, well beyond the scope of EPSY 5261, but 
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had never been explicitly taught simulation-based inference in the manner taught in in 

EPSY 5261. These participants were compensated at equal rates as full study participants.  

Feedback and results from this pilot study informed some revisions of the tasks and 

procedures. Specifically, it was decided that a concept map should be collected from 

participants both as the first task and as the last task, as participants may have recalled 

details while completing each task and may not actually remember enough about statistical 

testing to usefully create a concept map at the onset of the study.  

Additionally, in the statistical testing interview, it was decided that the results from 

four of the ten stimuli would be intentionally edited to suppress p-values to force 

participants to think about the process of the statistical test, preventing them from thinking 

in a product-based manner. This manipulation was intended to specifically elicit 

participants’ thinking about null models.  

Finally, it was decided that in the statistical testing task all participants would 

complete the VSE problem using R, before completing the AD problem using StatKey or 

randomizeIt. This procedural change was intended to provide an opportunity for the 

researcher to assess participants’ thinking about null models when using R without first 

priming them to think about null models (which may have occurred had they utilized 

simulation-based software applications first, in which the null model is graphically 

emphasized). If indeed participants’ thinking about null models while using R were to 

change after participants utilized simulation-based approaches, it was determined that 

participants would have an opportunity to articulate this during the statistical testing 

interview and the video-cued interview. These changes were put in place before the six 

former EPSY 5261 students participated in the study. 
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3.4  Data Collection Procedure 

 
All six participants met in-person with the researcher to complete all tasks. The 

participants were told that the study would take approximately 90 minutes to complete. 

Finally, participants were told not to prepare in any way or to review any materials or 

instruction from EPSY 5261 prior to participating in the study.  

Upon meeting, the researcher first introduced the study, verbally reviewed the 

consent form and information sheet (see Appendix E), and obtained verbal consent from 

participants to record the meeting, including the participant’s computer screen, any written 

notes, audio recording, video recording, and gaze recording utilizing eye-tracking software 

and equipment.  

The researcher then introduced the concept mapping task, instructing participants 

to “draw a concept map for the logic of a statistical test”, providing pen and paper to the 

participants to make a drawing (see Appendix F).  

After completion of the concept mapping task, the eye-tracking apparatus was 

calibrated for each participant before participants were provided instructions for the 

completion of the statistical testing task (see Appendix G1). To make explicit their 

thinking, participants were prompted to explain their thoughts aloud and the researcher 

prompted participants to continue verbalizing their thoughts periodically throughout the 

task. All participants were instructed to use R to complete the VSE problem first. The 

original plan was to have participants utilize randomizeIt to complete the AD problem. 

However, for both the first and second study participant, who completed the study on the 

same day, there was a problem with running the randomizeIt application on the computer 

being utilized that was unable to be immediately debugged by the researcher. Therefore, 
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the researcher made the in-the-moment decision to utilize the StatKey application in order 

not to delay or extend the time needed for the participant to complete the study. While 

participants primarily utilized randomizeIt in EPSY 5261, the StatKey application, 

including images and explanations, were a part of the textbook utilized during the course 

(Lock et al., 2021). Additionally, the functionality of the randomizeIt application was 

largely based on the functionality of the StatKey application, but was designed to be 

internal to R. Therefore, the researcher determined that by providing some assistance to 

participants in terms of the procedural fluency required to utilize the StatKey application, 

utilizing StatKey to complete the AD problem would not interfere with the study of 

participants’ thinking, especially given the functional similarity between StatKey and 

randomizeIt. Having made this determination, it was further determined to continue using 

StatKey for all study participants, to ensure similarity in procedures across all participants.  

Upon completion of the statistical testing task, participants were given an 

opportunity to take a short break before the eye-tracking apparatus was re-calibrated. The 

researcher then introduced the statistical testing interview to further probe participants’ 

thinking about null models and the role software applications played in participants’ 

thinking. For each stimulus, participants were asked to tell the story of the test based on 

the results they were presented (see Appendix H1). The researcher also prompted 

participants to explain their thinking further when needed, especially to elicit descriptions 

about the nature of the null model that facilitates the comparison that produces a p-value. 

This was particularly true for the stimuli in which the p-value was intentionally suppressed 

from the output.  
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Upon completion of the statistical testing interview, the eye-tracking apparatus was 

removed and the participant and researcher together watched a recording of the 

participant’s gaze and the computer screen from the statistical testing task. In this video-

cued interview, the researcher further probed the participants’ thinking retrospectively in 

each moment through a semi-structured interview and informal probes (see Appendix I). 

These probes specifically focused on eliciting participants’ reflections of their monitoring 

and evaluating, which were determined to be the more difficult aspects of thinking of which 

to acquire an in-the-moment empirical trace. Additionally, the researcher presented to 

participants a summary of the researcher’s preliminary analysis and notes from the 

statistical testing task and asked the participants to either verify this preliminary analysis 

or to provide additional details to help provide the researcher a more complete 

understanding of the participant’s thinking. 

Finally, participants once more created a concept map for the logic of a statistical 

test before completing a case history. The case history interrogated participants in terms of 

their prior classroom training in statistics, their experiences with statistics professionally 

or as part of a research lab, and their perceptions and attitudes towards statistics. After this 

point, the participants were provided an opportunity to ask any questions about the study 

before the session officially ended. 

3.5  Analysis Plan 

 
 This study utilized a multiple descriptive case study design, specifically one with 

an interpretivist stance (Merriam, 1988). The subsequent sections describe the assumptions 

made prior to analysis (i.e., the frameworks, propositions, stances, and definitions), as well 

as the procedures utilized to analyze the data collected from participants.  
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3.5.1  Assumptions 

 
This study utilized a definition of thinking from the field of epistemic cognition, 

defining thinking as metacognitive self-regulation operationalized as planning, monitoring, 

and evaluating (Moshman & Tarricone, 2016). This is consistent with definitions utilized 

by statistics education researchers. For example, delMas (2004) defines a demonstration of 

statistical thinking as “a person who knows when and how to apply statistical knowledge 

and procedures” (p. 85). 

It was assumed that graduate students with limited experience in statistics (i.e., only 

having completed a single introductory level statistics course) would struggle in thinking 

through statistical problems that deviate even slightly from the benchmark examples 

provided during instruction. This would be reflected in pauses and moments of silence, 

where they were metacognitively self-regulating (i.e., deciding what they should do next). 

It was also assumed that students’ statistical reasoning (i.e., their epistemological self-

regulation of thinking) would be weak, and they would not always be able to articulate why 

they should do something. However, it was further assumed that they would have a variety 

of tools that they would know how to use, and their negotiation of what they do and when 

they do it, in the absence of demonstrable statistical reasoning, could highlight how 

students interact with (1) data, (2) hypotheses, (3) the logic of statistical tests, and (4) the 

interaction between the statistical world and the real world.  

To analyze data artifacts and make inferences about participants’ thinking, this 

study utilized an interpretivist epistemological stance. Interpretivism takes as granted that 

knowledge is subjective and, in the context of case studies, seeks to explain phenomena as 

experienced by the participant, rather than some external ‘objective’ frame. Interpretivist 



 

 72 

case studies are judged by the degree to which findings are consistent with participants’ 

views (i.e., their credibility). The credibility of the findings of this study was designed to 

be supported by (1) providing participants an opportunity to comment on their own 

thinking in the video-cued interview, and (2) providing participants an opportunity to 

‘member-check’ the researcher’s analysis and provide additional comments. 

As the object of this investigation was to describe each students’ statistical thinking 

in statistical tests, and in particular their thinking about null models, the main foreground 

theory was the role of the null model in the logic of statistical tests. A historical analysis 

was used to identify the null model as the key component to the logic of statistical testing. 

The null model was defined as the expression of a (null) hypothesis in the form of a 

probability distribution, without which a statistical test cannot be performed. It is also 

important to note that simulation-based inference attempts to place the logic of statistical 

inference at its core and, therefore, attempts to place the null model at its core. 

3.5.2  Analysis Procedures 

 
To analyze data collected from each participant, this study utilized the constant 

comparative method with an inductive open coding process (Glaser & Strauss, 1967). 

Relevant codes were not a priori determined, but rather, stemmed from what was noticed 

in the data. However, inductively generated codes were ultimately organized into 

categories based on the definition of thinking utilized in this study. Specifically, codes were 

categorized based on whether they addressed planning, monitoring, or evaluating.  

In the constant comparative method, one examines a single data artifact from a 

single case one at a time. Therefore, for each participant, analysis began by examining the 

data artifacts collected from the concept mapping task, the first task that participants 
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completed. Relevant moments were identified and documented in researcher analysis 

memos and assigned initial codes. Then, the analysis continued by moving on to data from 

the second task, the statistical testing task. Initially, only the statistical testing task was 

considered, with relevant moments documented in analysis memos and initial codes 

assigned for each relevant moment. Next, these memos and codes from the statistical 

testing task were compared to those identified from the concept mapping task. This process 

continued for the data from each successive task, and subsequently each participant. After 

the analysis of all cases was completed, the codes were compared across participants to 

ensure that relevant aspects and features of each participant’s thinking were robustly 

described. Importantly, only the codes were compared across participants, and not the 

traces and descriptions of each participant’s thinking. In this way, the analysis procedure 

was designed to roughly encapsulate line-by-line analyses as well as analyses meant to 

characterize participants’ thinking in a manner corresponding to the first and second levels 

of qualitative data analysis as described by Simon (2019).   

As the goal of this study was to describe participants’ thinking and the logic they 

employ during statistical testing, four strategies were utilized to ensure that the data were 

interpreted in a credible manner. First, the design of the study employed participatory 

elements: the video-cued interview allowed participants to view the data they generated in 

the statistical testing task and provide an analysis of their own thinking. Second, the use of 

multiple types and sources of data served to triangulate participants’ thinking, helping to 

ensure that empirically based interpretations of participants’ thinking were not heavily 

influenced by quirks in the data collection or analysis processes nor quirks of a single 

modality or task. Third, participants were provided with an opportunity to member-check 
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analyses and descriptions of their thinking. Fourth, researcher memos were created 

throughout the data analysis process to document and divulge researcher biases that may 

have affected the analysis.  

Data were used to support inferences that could credibly describe participants’ 

thinking. These inferences were limited to the study participants – they were not meant to 

characterize all graduate students who had completed EPSY 5261, nor the efficacy of the 

EPSY 5261 curriculum. Furthermore, no causal inferences were made in terms of the 

reasons as to why participants may have thought in a certain way – the focus was on 

exploring and describing how participants thought. 

To answer the first research question – What is the nature of graduate students’ 

thinking when conducting statistical tests?  – participants’ thinking is described in terms of 

their planning, monitoring, and evaluating in statistical tests. The general definition of each 

as a distinct aspect of thinking was as follows – planning includes goal setting and the 

selection of appropriate strategies, monitoring includes self-checking on the progress of 

actions towards achieving one’s goals, and evaluating includes revising one’s goals and 

strategies when necessary (Schraw et al., 2006).  

In the context of a statistical test, planning might take the form of the specification 

of what steps must be taken and in what order, monitoring might take the form of 

considering whether each step in the process is specified sufficiently and correctly, and 

evaluating might take the form of changing the plan for the test or questioning the 

monitoring process (see Table 3 for examples of codes from various sources and tasks that 

align with each of these components of thinking).  
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For example, one might make a plan to compute summary statistics for two groups, 

then monitor how the information generated supports the overall purpose at hand (i.e., the 

comparison of two groups to answer a research question), and subsequently evaluate 

whether additional computations are necessary or if the way in which the information is 

being connected to the overall purpose needs to be reconsidered. Each of these facets of 

thinking was described for each participant drawing on evidence from all sources of data.  

To answer the second research question – Do graduate students think about null 

models when conducting statistical tests, and if so, how? – participants’ thinking was 

described with a focus on how they thought about sampling variability, and especially how 

they thought about the simulation-based null model they encountered in SBI portions of 

the study. Once more, empirical traces supporting inferences about participants’ thinking 

were drawn from all sources of data and all tasks.   

Furthermore, to protect the identity of the participants, each participant was 

assigned a randomly generated pseudonym unrelated to their gender, racial/ethnic, or other 

sociocultural identity. These names were selected from a list of common names worldwide. 

This process was based on identifying monosyllabic or disyllabic names that were as 

gender, culturally, and linguistically neutral as possible. After a set of six such names were 

selected by the researcher, they were randomly assigned to participants using a random 

number generator.  

Chapter 4: Results 

This chapter presents the results relating to the research questions for each 

participant. As such, it is organized by participant. The section for each participant begins 

with a description of that participants’ relevant background. After that, the results for each 
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of the research questions are presented. It is important to remember that participants were 

asked not to prepare prior to participating in this study. 

4.1  Participant One – Jaci 

 
Jaci took EPSY 5261 in the Fall of 2021, seven months before participating in the 

study. Jaci did not take any other statistics course between completing EPSY 5261 and 

participating in this study. However, Jaci did take a course on educational and 

psychological measurement in the Spring of 2022. To Jaci, the measurement course 

focused on concepts rather than statistical analyses, and Jaci saw the course as mostly 

unrelated to EPSY 5261. While an undergraduate student, Jaci also took a simulation-based 

introductory level course in statistics (based on the CATALST curriculum), although that 

was seven years prior to Jaci participating in this study, and Jaci said that they hardly 

remember anything from that class at all. Aside from the statistical software Jaci used in 

EPSY 5261, and the very limited use of R in the measurement course Jaci took, Jaci had 

not used any other statistical software. 

Jaci very rarely did any statistical analysis for their own work or research, and only 

very rarely discussed statistics with colleagues. Those discussions typically took the form 

of evaluating whether various interventions were empirically sound, but the emphasis was 

typically placed on the study design, especially the sample size and the representativeness 

of the sample, rather than a thorough examination of the analysis and statistical methods. 

Important to remember is that Jaci was asked not to prepare prior to participating this study. 

4.1.1  Jaci’s Thinking When Conducting Statistical Tests 

 
To Jaci, the purpose of a statistical test “is determining whether or not the null 

hypothesis or the alternative hypothesis is true” (Appendix P04-A, 00:09 – 00:16). Put 
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another way, the purpose of a statistical test is to determine “whether or not the difference 

observed in the sample would occur naturally” (Appendix P04-B2, 00:12 – 00:15). To Jaci, 

naturally occurring meant that “regardless of who you sampled you would likely get a very 

similar result” (Appendix P04-B1, 02:44 – 02:50). 

Jaci primarily achieved this determination by generating a bootstrap dot plot from 

the data, and comparing a null hypothesis – typically that “no difference exists” (Appendix 

P04-A, 00:20 – 00:25) or that “no difference is observed” (Appendix P04-B2, 00:34 – 

00:37) – to this distribution to determine whether or not the null hypothesis is likely to be 

true (see Figure 8). Jaci’s determination of likeliness was based on an explicit specification 

of sampling variability, although not in the form of a null model. Instead, Jaci generated a 

distribution with the observed sample statistic at its center, i.e., a bootstrap dot plot. If that 

distribution was “centered very much around zero, this would be more proof that the null 

hypothesis is correct” (Appendix P04-A, 00:58 – 01:20). Whereas, if the distribution was 

not centered at zero, and if zero was in the tails of the distribution, “that would lead us to 

believe more that the alternative hypothesis would be the true answer to the research 

question” (Appendix P04-A, 01:32 – 02:18). 

To Jaci, it was important to generate a large number of simulated trials when 

constructing the bootstrap dot plot. Jaci explained that doing so “provides more trials so 

that I can see what would likely happen under, um, whatever circumstances would occur 

based on the original sample” (Appendix P04-B2, 01:49 – 02:12). Furthermore, to Jaci, 

one purpose of generating more simulated trials was that “there is a certain number where 

it becomes more conclusive” (Appendix P04-D, 10:24 – 10:30). To Jaci, the logic of 

bootstrapping was that “each of these little points signifies a different hypothetical trial 
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based on the data in the original sample” (Appendix P04-D, 12:23 – 12:29). Furthermore, 

“all of the [simulated] data is going to be based around the original sample so the average 

is always going to be pretty similar, but it’s basically just showing where the likelihood of 

each outcome winds up on the spectrum” (Appendix P04-D, 12:34 – 12:49). 

4.1.1.1  Jaci’s Planning of Statistical Tests 

 
Jaci’s plan for a statistical test, after having already acquired the data in hand, began 

with determining which test to utilize (Appendix P04-B1, 01:30 – 01:40). Specifically, Jaci 

noted that “There are different types of tests for finding ‘is there a difference?’ versus ‘what 

is the difference?’” (Appendix P04-B1, 00:25 – 00:30). 

Having determined which test to conduct, Jaci specified a null hypothesis. To Jaci, 

when “the research question is determining whether or not there is a difference … the null 

hypothesis would be that the true difference is equal to zero” (Appendix P04-D, 03:51 – 

04:08). 

Jaci then generated (or desired to generate, in the case of using R) a bootstrap dot 

plot, and through it obtain a 95% confidence interval estimate. When Jaci utilized R in the 

statistical testing task, after having generated output from the t-test, Jaci commented 

“should I be trying to make a graph of this?” (Appendix P04-B1, 08:28 – 08:33). When 

pressed by the researcher about what Jaci was hoping to see, Jaci explained that “I think 

seeing the difference itself plotted would help me get a sense for what the … for how stark 

the average difference actually is, under all possible trials” (Appendix P04-B1, 10:30 – 

11:00). Thus it appears Jaci intended to make a bootstrap dot plot. To Jaci, it seems that 

seeing this bootstrap dot plot is a necessary step in determining whether a difference is 

significant. As Jaci further explained, “I can definitely see from running the t-test that there 
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is a difference, but it’s whether or not the difference is significant … Because the computer 

science mean and the engineering mean, the computer scientists mean is lower and since 

both levels of the confidence interval are negative it means that under 95% of these 

circumstances, these trials that we could run, it would always fall in between those two 

values, well it would fall between those two values in 95% of the trials run. So I mean it 

seems likely that there is a difference” (Appendix P04-B1, 11:30 – 12:35). In other words, 

because the value of 0, which is the value of the parameter as specified by the null 

hypothesis, is not contained within the confidence interval, Jaci determined that there likely 

is a difference in the means of each group.  

When utilizing StatKey, Jaci again desired to generate the bootstrap dot plot, but 

incorrectly interpreted the randomization dot plot based on the null hypothesis as the 

bootstrap dot plot based on the observed sample statistic. Thinking that a bootstrap dot plot 

and confidence interval were in hand, Jaci then generated a p-value. To determine whether 

or not the difference was significant, Jaci explained that “I mean I guess looking at the p-

value would be the number one tell. And I think that a low p-value means that it’s pretty, 

it is pretty likely that there is a significant difference” (Appendix P04-B1, 12:42 – 13:03). 

4.1.1.2  Jaci’s Monitoring of Statistical Tests 

 
The primary manner in which Jaci monitored the statistical test (while using both 

R and StatKey) was through examining the upper and lower bounds of the confidence 

interval. For example, when completing the VSE problem in R, after looking at the results, 

specifically the confidence interval, Jaci commented, “okay so it seems like one of them 

[the group means] is lower on average since they [the upper and lower confidence bounds] 

are both negative” (Appendix P04-B1, 07:58 – 08:05). Examining both the upper and lower 
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bounds helped Jaci monitor the center of the distribution. In the video-cued interview, Jaci 

explained that while using StatKey in the AD problem, through looking at the tails of the 

randomization dot plot, then the middle, then again the tails, that “I think I was looking 

essentially to see like, if the, like what the different parameters were, to see whether or not 

they were truly fairly centered around zero, or if there was maybe a difference on either 

side” (Appendix P04-D, 08:02 – 08:25). 

While Jaci’s explanation on the surface may imply that Jaci was only interested in 

the location of the center of the bootstrap dot plot, Jaci actually did factor in the relative 

likelihood of various parameters based on the height of the dot plot. For example, in the 

video-cued interview, Jaci commented that, “looking at the distributions in the middle 

helped me get a sense for like, oh these are the most average outcomes” (Appendix P04-

D, 09:28 – 9:35).  

Additionally, while utilizing StatKey in the AD problem, Jaci focused on the mode 

of the randomization dot plot, noting that, “I am noticing that there are some points 

significantly higher, right underneath the null” (Appendix P04-B2, 02:46 – 02:54; see 

Figure 10). Looking at this mode, Jaci commented that “this is the most likely scenario that 

will ever occur” (3:58 – 04:07). However, this piece of information was not the only piece 

of information that Jaci used to monitor the steps of conducting the statistical test – Jaci 

also noted the center of the distribution, stating that “the mean is still pretty dang close to 

zero though” (Appendix P04-B2, 03:20 – 03:24).  

While utilizing StatKey to complete the AD problem, Jaci also attempted to monitor 

the statistical test by comparing the distribution of the original sample to the distribution 

of the simulated trials (Appendix P04-D, 16:33 – 16:49). Specifically, Jaci was attempting 
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to pay attention to any differences in these two distributions, including differences in shape. 

For example, Jaci noted that the sample distribution was bimodal, while the distribution 

for one particular simulated trial was not (see Figure 9). However, Jaci did not appear to 

remember what to do with this information. Rather, Jaci appeared to simply be searching 

their memory for what distributions typically looked like and noticed anything that was 

different between the two distributions being compared. 

4.1.1.3  Jaci’s Evaluating of Statistical Tests 

 
To Jaci, the bootstrap dot plot was core to the logic of a statistical test, and therefore, 

the main evaluation Jaci performed while conducting a statistical test was in ensuring that 

the bootstrap dot plot could be created. For example, after having generated results from a 

t-test in R as part of the VSE problem, and having drawn a conclusion based on the 

confidence interval and p-value, Jaci still asked, “Should I be trying to make a graph of 

this?” (Appendix P04-B1, 08:28 – 08:33). When prompted to explain what a graph might 

add in terms of answering the research question, Jaci explained that “I think seeing the 

difference itself plotted would help me get a sense for what the … for how stark the average 

difference actually is, under all possible trials” (Appendix P04-B1, 10:30 – 11:00).  

4.1.2  Jaci’s Thinking about Null Models 

 
Although Jaci did think about a sampling distribution for a sample statistic as a key 

component of statistical testing, it was not a null model that Jaci thought about. Jaci did 

not describe sampling distributions under a null hypothesis. Instead, Jaci described the 

sampling distribution as a distribution where “all of the [simulated] data is going to be 

based around the original sample so the average is always going to be pretty similar, but 

it’s basically just showing where the likelihood of each outcome winds up on the spectrum” 
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(Appendix P04-D, 12:34 – 12:49). Jaci was describing a bootstrap dot plot, which might 

be construed as something akin to a likelihood function, but not as a null model. 

Jaci did, however, seem to think about sampling variability as an important part of 

statistical testing. For Jaci, sampling variability was whether or not “regardless of who you 

sampled you would likely get a very similar result” (Appendix P04-B1, 02:44 – 02:50). In 

this way, sampling variability was the key determinant of significance to Jaci. Expressing 

sampling variability would, in Jaci’s own words, “help me get a sense for what the … for 

how stark the average difference actually is, under all possible trials” (Appendix P04-B1, 

10:30 – 11:00). 

To Jaci, this manifestation of outcomes under all possible trials “provides more 

trials so that I can see what would likely happen under, um, whatever circumstances would 

occur based on the original sample” (Appendix P04-B2, 01:49 – 02:12). These 

circumstances helped show Jaci “where the likelihood of each outcome winds up on the 

spectrum” (Appendix P04-D, 12:34 – 12:49). This variability of circumstances and 

likelihood of each outcome appeared to serve as something of a stress test for Jaci, in terms 

of the robustness of the observed sample statistic. Indeed, Jaci commented on the 

exhaustiveness of generating simulated trials, stating that “I remember there is a certain 

number where it becomes more conclusive” (Appendix P04-D, 10:24 – 10:30). To Jaci, it 

appeared that if, based on the observed data, over the course of many simulations there 

were no (or very few) simulated outcomes of a particular parameter, then that parameter 

was unlikely to be true. For example, as Jaci described in the concept mapping task, “if 

[the bootstrap dot plot] was something more like, [draws a bell curve] … let’s say zero was 

right here [off center] … and so that would lead us to believe more that the alternate 
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hypothesis would be the true answer to the research question” (Appendix P04-A, 01:32 – 

02:18). Jaci did however still think in terms of the middle 95% of the bootstrap dot plot, 

equivalent to the confidence interval approach to hypothesis testing, and functionally no 

different from a ‘p < .05’ decision rule. For example, as Jaci described in the statistical 

testing task, “under 95% of these circumstances, these trials that we could run, it [the null 

parameter] would always fall in between those two values, well it would fall between those 

two values in 95% of the trials run. So I mean it seems likely that there is a difference 

[because it doesn’t fall between these values]” (Appendix P04-B1, 11:30 – 12:35). 

However, Jaci did not strictly follow a decision rule when interpreting results. As described 

above, Jaci also made consideration for the relative likelihood of parameters. 

4.2  Participant Two – Kei 

 
Kei took EPSY 5261 in the Fall of 2021, seven months before participating in the 

study. Kei did not take any other statistics course between completing EPSY 5261 and 

participating in this study, nor did Kei take any statistics or quantitative methods courses 

since completing their undergraduate degree. Kei had used SPSS while an undergraduate 

student, but had not used SPSS since, nor any other statistical software outside of EPSY 

5261. 

Kei had not had to do their own statistical analyses for any of their projects. Even 

in Kei’s research lab, all quantitative work was typically contracted out to a statistical 

expert, and the lab rarely discussed statistical methods and analysis. Kei had read journal 

articles that employ quantitative methods, and did focus on reading the methods section, 

but admitted to not always knowing what they were reading. As with all participants, Kei 
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was told not to prepare prior to participating in this study, and acknowledged that they truly 

did not prepare, despite wanting to. 

4.2.1  Kei’s Thinking When Conducting Statistical Tests 

 
Kei’s thinking seemed to be highly based on the manner in which Kei was taught 

in EPSY 5261. This was most evident in Kei’s planning, which seemed to be the result of 

a well-rehearsed rote procedural fluency. However, Kei described being overloaded with 

information when interacting with statistical software while completing this study. Kei also 

admitted that the results felt like a foreign language, and that they knew that certain output 

needed to be generated but did not know what to do with the output once it was generated. 

Kei commented that “the thing is, I wasn’t, like, thinking … I was just trying to plug [stuff] 

in” (Appendix P03-D, 05:26 – 05:34) and that “when I do stats, it’s very, like, procedural” 

(Appendix P03-B2, 03:15 – 03:33). Nevertheless, Kei’s high procedural fluency seemed 

to help Kei focus on the process of the test, rather than only the product of the test (i.e., p-

values).  

4.2.1.1  Kei’s Planning of Statistical Tests 

 
While Kei’s planning did prima facie differ between each of the statistical software 

tools Kei used, there did appear to be a general approach to Kei’s planning that was 

consistent across all software. As seen in Table 4, Kei first began by importing a dataset 

into the software and checking the data to ensure the import occurred successfully. Next, 

Kei examined each group separately. Kei was particularly explicit about the fact that each 

group should be examined separately, and commented that, “I need to see each individual 

graph … and that’s how I was taught, I don’t know any other way” (Appendix P03-D, 

12:30 – 12:36). 
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After examining each group individually, Kei then compared the two groups by 

computing the difference in means. This was quickly followed by Kei interpreting the p-

value and 95% confidence interval estimate. Interesting, the choice of interpreting p-values 

or confidence intervals was dependent on which statistical software Kei was using – Kei 

focused on confidence interval estimates while using R but focused on p-values while using 

StatKey. Kei explained that they focused on the p-value in StatKey for its ease, 

commenting that “I feel like there’s so much stuff to look at in that [StatKey] graph that I 

just shut down … but here [in R] it’s very clear” (Appendix P03-C, 06:25 – 06:40). This 

acceptance of both confidence intervals and p-values as tools to conduct a statistical test is 

also reflected in Kei’s concept map for the logic of a statistical test (see Figure 11) in which 

Kei gives equal prominence to both. However, Kei’s explanation also suggests that Kei 

would have preferred to think about confidence intervals in StatKey, but found it too 

confusing to do so, and thus deferred to the p-value.  

4.2.1.2  Kei’s Monitoring of Statistical Tests 

 
Kei’s monitoring seemed to be entirely based on Kei’s visual memory and 

recognition of familiar output.  For example, when commenting upon how Kei might 

monitor whether ‘checking the data’ had gone well, Kei stated, “I check the data, to see if 

it’s … I don’t really know, I would know if I saw it” (Appendix P03-B1, 03:01 – 03:12). 

Kei also commented that “the thing is, I wasn’t, like, thinking … I was just trying to plug 

[stuff] in” (Appendix P03-D, 05:26 – 05:34). These comments suggest that Kei’s 

monitoring was based on a well-rehearsed routine, perhaps one practiced and reinforced 

by the activities and assessments in EPSY 5261. Furthermore, it suggests that Kei had some 

recollection of what things should look like based on this experience and training in EPSY 
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5261, but that this monitoring was rote in nature. Kei tacitly acknowledged this. In the 

video-cued interview, the researcher commented that after generating summary statistics in 

R, the gaze recording indicated that Kei barely looked at the output generated, to which 

Kei responded “at this point, that’s like a foreign language … I was like I don’t even know 

what to do with that, like, I don’t even know what that means” (Appendix P03-D, 09:48 – 

10:02). 

4.2.1.3  Kei’s Evaluating of Statistical Tests 

 
Many times, Kei commented upon not really knowing what to do with information 

being generated, even though Kei knew that specific pieces of information needed to be 

generated. However, while Kei was not always able to exactly specify in which way their 

plan should be amended, Kei eventually was able to describe what they had wanted to do, 

especially with the help of the researcher. 

For example, in the video-cued interview, Kei commented that “I remember doing 

this code [in R] enough, where like you’re always doing, thematically you’re doing, or 

you’re inserting whatever, like, the theme of the thing” (Appendix P03-D, 07:12 – 07:30). 

In this explanation, Kei gave a clue that the theme of the task, in this case a comparison of 

salaries between majors, was the guiding light as Kei thought about conducting the 

statistical test.  

The importance of the theme of the task was also reflected in how Kei thought about 

the graphs they were generating. For example, as reflected in the gaze recordings, and as 

Kei commented upon in the video-cued interview, “… originally I was looking in the 

middle, but then I was like, ‘which salary makes more?’ … because then I was thinking I 

need to see the ends, or like see if there’s a lot of people towards the end” (Appendix P03-
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D, 18:20 – 1843). The theme of the task – the comparison of the salaries between groups – 

is seemingly what guided Kei to shift their planning and change the way they were thinking 

about the statistical output.  

Similarly, the importance of the theme was again reflected in the statistical testing 

task, where Kei, after trying to interpret a histogram graph they generated as part of the 

VSE problem, looked back at the research question and then stated, “wait a minute, I don’t 

know, I feel like I need to do the other thing … umm, I want to find the average … I think 

I want to find the specific, I don’t know, I don’t really … cuz like ‘is there a difference in 

the average salary?’, so I’d want to find the average” (Appendix P03-B1, 16:00 – 16:38). 

Thus, Kei’s evaluation of their initial plan for which steps should be conducted was 

seemingly based not on the output Kei was generating or the result of any one of the 

specific steps Kei was taking, but rather by the theme of the task.  

4.2.2  Kei’s Thinking about Null Models 

 
It appears that Kei did think of the null model when conducting and interpreting 

results from statistical tests based on SBI, albeit in a hesitant manner. Specifically, Kei 

related the null hypothesis to the center of the distribution and recalled that the tails of the 

null model were an important part of the testing process. 

As seen in the statistical testing interview, Kei related the center of the 

randomization dot plot being zero to the null hypothesis. After looking at the center of the 

randomization dot plot for the question ‘Is average commute time in Atlanta and St Louis 

the same?’ (see Figure 12), Kei commented, “Oh! I guess the null is zero.” (Appendix P03-

C, 01:08 – 01:12).  
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A few moments later, when answering the question ‘Is the average US BMI in 2017 

equal to the average level in 2010 of 28.6?’, Kei noticed that the center of the randomization 

dot plot was 28.6 – the value specified by the null hypothesis for the test for a single mean 

– and paused to reflect on what this meant (Appendix P03-C, 02:20 – 05:28). Kei spent 

several moments thinking about the problem, but eventually did seem to relate the null 

hypothesis value of 28.6 to the center of the randomization dot plot (see Figure 13). Kei 

subsequently drew the conclusion that there was a difference, rejecting the null hypothesis, 

because the p-value was in the tail of the distribution (see Figure 14). During the statistical 

testing task, Kei also commented on the tails of the distribution, albeit not fully 

remembering exactly why they were important, stating “I feel like I do something with the 

tails” (Appendix P02-B2, 06:33 – 06:35).  

However, it is unclear whether Kei recalled that the null model is based on the 

underlying data generating process. In the statistical testing task, Kei commented that part 

of the test required generating samples but did not remember why this had to be done 

(Appendix P03-B2, 04:50 - 05:35). Kei’s concept map for the logic of a statistical test (see 

Figure 11) did reflect a data generating process, but there was no empirical trace of Kei 

thinking about a data generating process while conducting or interpreting results from the 

statistical tests in either the statistical testing task or the statistical testing interview. 

Therefore, there is no evidence to support the claim that Kei did think about the null model 

as based on a data generating process in conjunction with a null hypothesis. 

However, it must be noted that Kei did not mention the null hypothesis at all in the 

statistical testing interview when examining R output, instead commenting that “I feel like 

I can just think about it” (Appendix P03-C, 06:16 – 06:19), answering the research question 
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based on the confidence interval. Null hypotheses were also conspicuously missing from 

Kei’s plan for conducting a statistical test (see Table 4). Thus, while it appears that Kei did 

think about the null model in relation to the null hypothesis, Kei may have only somewhat 

understood and been thinking about the null model’s role in statistical testing.   

4.3  Participant Three – Chau 

 
Chau took EPSY 5261 in the Fall 2021 semester. Chau then subsequently took 

EPSY 5262 – Intermediate Statistical Methods, in the Spring 2022 semester. EPSY 5262 

is a follow-on course to EPSY 5261 offered through the Department of Educational 

Psychology at the University of Minnesota Twin Cities which focuses on statistical models, 

particularly within the multiple linear regression framework. Furthermore, Chau had 

previously taken two statistics courses prior to completing EPSY 5261, one at the 

undergraduate level and one at the master’s level, but both at the introductory level, and 

both at different institutions. Chau explained that they did not really remember much from 

those previous courses aside from t-tests, and also felt that they did not really understand 

statistics until taking EPSY 5261.  

In terms of software, Chau considered themselves an “R newbie”. Chau typically 

had used SPSS to conduct analysis, both as part of classes as well as outside of classes. 

However, Chau explained that whatever software was being used, the important part to 

them was the interpretation of results, something that Chau felt comfortable doing 

regardless of the statistical software used.  

While Chau’s research was mainly qualitative in nature, Chau had experience 

conducting statistical analyses, having served as a co-author on over twenty papers. 

Furthermore, Chau was the main analyst for some of these papers. These papers typically 



 

 90 

included the computation of basic descriptive statistics. In terms of statistical inference, 

these papers primarily focused on the use of t-tests, especially the two-sample t-test and 

the paired t-test. However, it is important to note that Chau completed the majority of these 

papers’ analyses before taking EPSY 5261. As with all other participants, Chau was 

instructed not to prepare or review any materials prior to participating in this study.  

4.3.1  Chau’s Thinking When Conducting Statistical Tests 

 
To Chau, the purpose of a statistical test was to determine whether there existed a 

difference between groups (or between a single group and a hypothesized parameter). This 

was achieved by examining a p-value, and if that p-value was less than .05, then Chau 

determined there was a difference. In general, Chau’s thinking, specifically in terms of 

Chau’s planning, was remarkably consistent across tasks. However, when pushed by the 

researcher to explain their reasoning (even though measuring students’ statistical reasoning 

was outside of the scope of the research questions of this study), Chau seemed to struggle 

to explain why some steps needed to be done as part of a statistical test, only knowing 

firmly that they must be done. Quite simply, Chau stated that if one does not do a statistical 

test then “we cannot say its [the difference is] statistically different” (see Appendix P06-

A, 08:00).  

4.3.1.1  Chau’s Planning of Statistical Tests 

 
Chau’s planning is best evidenced by the concept map for the logic of a statistical 

test that Chau created (see Figure 15), which Chau also followed quite faithfully during the 

Statistical Testing Task. As seen in Chau’s concept map, a statistical test started with Chau 

thinking about a research question, which was instrumental to Chau’s planning of the 

statistical test, as it provided the grounding context (see Appendix P06-A, 04:00). Chau 



 

 91 

saw the research question as specifying the type of test that should be conducted, whether 

it was a one-sample t-test, a two-sample t-test, or some other test. It also specified the 

significance level that Chau would use in interpreting the p-value, which Chau noted was 

conventionally .05 in the social sciences. Finally, Chau saw the research question as 

specifying whether the study was observational or experimental, which had implications 

for the analyses that Chau would conduct (see Appendix P06-B1, 01:00).   

After the research question, Chau then thought about the sampling strategy. 

Ensuring that the sample was randomly selected was very important to Chau, although the 

reasons why are somewhat unclear from the evidence collected. Chau knew that a sample 

being randomly selected was one of the assumptions that must be met for a t-test, but did 

not articulate why this was an important assumption.  

Next, Chau explored the data, by first opening the excel file containing the data 

(see Appendix P06-D, 01:55 – 02:10), and then by computing the sample mean and the 

sample standard deviation (Appendix P06-B1, 07:50 – 08:00). Chau generated both 

summary statistics as well as histograms to examine the data.  

Chau then began to move towards conducting the t-test by verifying several of the 

test assumptions, including the normality of the data, and in general by thinking about the 

sample distribution, the sample size, and the sampling strategy. Chau then conducted the 

t-test, extracting a p-value. To Chau, the p-value was the most important statistic. Chau 

stated that “to answer the question, we use only the p-value” (Appendix P06-A, 06:54 – 

06:58). To Chau, the p-value was what would show whether there was a significant 

difference or not. After Chau had determined that there was a difference, Chau then 
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generated a confidence interval to obtain the estimated difference between groups 

(Appendix P06-A, 07:12 – 07:17; Appendix P06-B1, 12:40).  

4.3.1.2  Chau’s Monitoring of Statistical Tests 

 
As with Chau’s planning, Chau’s monitoring was also remarkably lucid, especially 

when Chau was utilizing R. Generally speaking, Chau made several comments indicating 

what information Chau was monitoring. For example, as Chau read the prompt for the VSE 

problem, Chau commented on the study design, noting that “it’s an observational study” 

(Appendix P06-B1, 01:00). Similarly, as Chau created summary statistics later on while 

working on the VSE problem, Chau monitored which statistics were being generated, 

commenting, “so I have all the data, median, mean, and then quartile, for both of the groups, 

standard deviation” (Appendix P06-B1, 07:50 – 08:00; see also Appendix P06-D, 04:50 – 

05:00). After creating histograms for the VSE problem, Chau, in the video-cued interview, 

commented that they were mainly looking at the shape of the distribution, with special 

attention towards noticing any skew (Appendix P06-D, 06:25 – 06:35). Chau also 

commented on remembering that when the sample size was greater than 30, they did not 

even need to check the shape of the distribution and that it was the summary statistics that 

were the important pieces of information to think about (Appendix P06-D, 06:35 – 07:35). 

Finally, having generated results from a t-test in R, Chau acknowledged that they were 

mainly looking at the test statistic and p-value, and that these were the most important parts 

of the output of the t-test (Appendix P06-D, 09:55 – 10:05).  

When using StatKey, Chau also commented on what pieces of information were 

important to monitor, albeit not live during the statistical testing task but rather 

retrospectively in the video-cued interview. For example, Chau commented that after 
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generating simulated trials, Chau looked at the center of the randomization dot plot and 

then also the mean of all of the simulated trials (Appendix P06-D, 08:00 – 08:15). Chau 

also commented that they usually looked for the confidence interval and the p-value as well 

(Appendix P06-D, 08:45 – 08:55).  

Generally speaking, in both R and StatKey, Chau’s monitoring seemed to largely 

hinge upon the pieces of information needed to verify the assumptions of the t-test, as the 

goal of Chau’s plan was to be able to conduct such a test to obtain a p-value and confidence 

interval.  

4.3.1.3  Chau’s Evaluating of Statistical Tests 

 
Chau’s evaluating seemed to stem from checking the assumptions for conducting a 

statistical test, as Chau specified in the concept mapping task. Particularly, Chau focused 

on the study design, specifically whether the study was observational or experimental, and 

additionally focused on the t-test assumptions such as the normality of the sample 

distributions or the sample size of each group.  

However, one curious episode occurred as Chau was completing the VSE problem. 

Chau had generated summary statistics, a histogram, and verified t-test assumptions such 

as the normality of the data. However, as Chau was typing the function in R to conduct the 

t-test, Chau paused, and then stated, “sorry, I cannot do that because it’s not an 

experimental study, right? So I cannot do the t-test here” (Appendix P06-B1, 08:50 – 

09:00). Chau then proceeded to explain why, stating that “because I need an independent 

and dependent variable, but there is no independent and dependent variable here, so I just 

compare between two groups. So when we compare two groups, when we use the t-test, 

we have the treatment and the experimental group, and then also the treatment group and 
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then also the control group, but there is no control here. So we just use, they have the same 

coefficient here, so we just need to use the standard deviation actually to compare the 

difference, in this case” (Appendix P06-B1, 09:20 – 10:04). Chau then revised their plan 

to utilize simulation-based software tools to conduct bootstrap resampling to generate a 

confidence interval (see Appendix P06-B1, 12:40).  

This is interesting for two reasons. First, Chau utilized the 95% confidence interval 

estimate to determine whether or not there was a statistically significant difference, based 

on whether 0 was contained within the interval. This implies that Chau did not think that 

the bootstrap dot plot and the t-distribution were equivalent methods for expressing the 

sampling distribution for this question. Secondly, when completing the AD problem, Chau 

commented that the context was the same as in the VSE problem, yet for the AD problem, 

Chau stated that they wanted to conduct the t-test in R. Why, if the VSE and AD problems 

were structurally similar, did Chau determine that the t-test could not be done for the VSE 

problem but could be done for the AD problem? The answer to this question is unclear 

based on the data collected.  

4.3.2  Chau’s Thinking about Null Models 

 
It did not appear that null models played a large role, or perhaps any role, in Chau’s 

thinking about statistical tests. In the statistical testing interview, Chau almost exclusively 

focused on whether the p-value was less than .05, even when provided output from 

simulation-based software showing the null model. Similarly, while completing the AD 

problem using StatKey, Chau did not seem to connect the center of the randomization dot 

plot to the null hypothesis, instead drawing the conclusion that there was no difference 

between the groups as the distribution was centered on zero. Thus, it appears that Chau 
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thought the randomization dot plot was actually a bootstrap dot plot. Furthermore, it 

appears that Chau did not explicitly think about null models when thinking about statistical 

tests, nor about the specific manner in which null hypotheses produced probability 

distributions through which the p-values were generated.  

4.3.2.1  Did Chau Think about Sampling Variability?  

 
It appeared that Chau did understand that considerations for sampling variability 

must be made, and were done so through conducting a statistical test, although it seemed 

that Chau did not understand exactly how these considerations played a role and were 

achieved in statistical testing. Thus it appears that Chau did not explicitly think about 

sampling variability while thinking about statistics tests. During the concept mapping task, 

when asked why one bothers with conducting a statistical test, Chau answered that without 

doing a test, “we cannot say it [a difference between two groups] is statistically different” 

(Appendix P06-A, 7:47 – 7:50). When asked to explain what ‘statistically different’ means, 

Chau explained that “statistically different means it’s kind of, you know, we look for, that 

it likely happens for the sample, likely random sample and unlikely random sample 

happens to our population. To test that our randomized sample can represent our 

population, without this kind of statistical analysis, so, we can see only [the] difference 

between means. We can see the difference, but how much the difference [is] we cannot 

know, unless we do this kind of statistical analysis. We cannot know how much [it is] 

statistical[ly] different, only the means. Because the mean is only [the] calculation of the 

average, but how much [it is] different we cannot know. But then [with the test] we can 

prove, we can reject a null hypothesis, or we support [the] alternate hypothesis” (Appendix 

P06-A, 7:52 – 9:12).  
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On the surface, Chau’s answer seems somewhat tautological. However, Chau’s 

comment about “likely random sample and unlikely random sample happens to our 

population” might be an indication that Chau was thinking about sampling variability in 

terms of the sampling distribution under the null hypothesis as specifying what possible 

sample statistics were probable under the null hypothesis and which were not. However, 

Chau did not seem to demonstrate this thinking during the statistical testing task, failing to 

recall that the randomization dot plot is centered on the null hypothesis parameter, and that 

the dot plot is the exact specification of which sample statistics were likely and which were 

unlikely (i.e., the randomization dot plot was the null model). However, the simplest and 

perhaps best explanation is that Chau did not quite remember exactly what role sampling 

variability played in statistical tests, perhaps only remembering that it did play a role in 

some way.   

4.4  Participant Four – Tal 

 
Tal took EPSY 5261 in the Fall of 2021, seven months before participating in the 

study. Tal did not take any other statistics course between completing EPSY 5261 and 

participating in this study. However, Tal had a previous master’s degree, which Tal had 

earned over a decade before completing EPSY 5261. While completing that master’s 

degree, Tal took two basic statistics courses, the first of which was a traditional 

introductory course focusing on descriptive summary statistics as well as inferential 

statistics such as confidence intervals and hypothesis tests, and the second of which focused 

on general linear regression models.  

In previous jobs held by Tal, Tal had often conducted quantitative analyses, but 

almost entirely in the form of computing summary statistics. Tal regularly would compute 
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frequencies, percentages, and averages, but almost never conducted t-tests, or any other 

statistical tests. In Tal’s more recent research work, Tal similarly focused on frequencies, 

especially in analyzing survey responses. Tal rarely used regression or saw anyone else in 

their field use it, as regression was typically considered an advanced method. Similarly rare 

was Tal’s or Tal’s colleagues’ use of formal statistical tests.  

In terms of software, Tal primarily had used SPSS, but only had done so with their 

advisor and on a single research project. Other than SPSS, Tal had not used statistical 

software, nor had Tal ever seen R outside of EPSY 5261. Important to remember is that 

Tal was asked not to prepare for this study. 

4.4.1  Tal’s Thinking When Conducting Statistical Tests 

 
For Tal, the fundamental purpose of a statistical test was to confirm a theory. Tal 

thought about null hypotheses (and research questions) as coming from theories, and when 

a null hypothesis was rejected, Tal thought that this indicated a potential problem with a 

theory. As a result, Tal would subsequently embark on a search for multiple possible other 

theories that might be sensible.  

To Tal, this process of testing was iterative. Tal thought of the process as iterating 

through multiple rounds of evaluations of research questions and results until arriving at 

an understanding of the phenomena being studied – “If it [the result] doesn’t make sense I 

have to go back to theory, even tweak the research question if necessary. Pretty much I 

have to do it again, I have to analyze the result again. And I keep doing that forever, until 

the results are not one that doesn’t make sense. I do that until I get sensible results” 

(Appendix P02-A, 03:44 – 04:07).  
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Null hypotheses to Tal were ideally confirmed – “so if the null hypothesis is true, 

yes, so whatever I was thinking back when I started in my research question, my gut instinct 

was right. So whatever I was thinking, the data proved that whatever I was thinking, 

whatever theory I was thinking exists, it is true” (Appendix P02-A, 04:47 – 05:09). 

However, based on Tal’s thinking in the statistical testing task and especially the statistical 

testing interview, it is unclear to what extent Tal distinguished between research questions 

and null hypotheses – it may be that to Tal, research questions were ideally confirmed 

while ‘no effect’ hypotheses were ideally rejected.  

Alternate hypotheses to Tal were “just the opposite of the null hypotheses” 

(Appendix P02-A, 06:20 – 06:22), and there were always implied alternate hypotheses. 

However, despite the existence of alternate hypotheses, Tal’s thinking was not a decision-

theoretic, nor did Tal think about the purpose of the test as a choice between competing 

hypotheses. Indeed, Tal correctly explained that “if the null hypothesis is not true, that 

doesn’t mean that the alternate hypothesis is true. It [the alternate hypothesis] can still be 

false” (Appendix P02-A, 06:59 – 07:07). To Tal, the test, through the analysis of evidence, 

was about confirming or disconfirming a single candidate theory, amidst the larger process 

of considering multiple theories, individually striking non-sensible ones until a sensible 

arriving at a theory that can be deemed sensible based on the observed evidence from the 

world (see Appendix P02-A, 08:00). 

4.4.1.1  Tal’s Planning of Statistical Tests 

 
Tal’s plan for conducting a statistical test, as Tal described when creating a concept 

map (see Figure 16), started with a theory. This theory then in turn informed a research 

question, which contextualized and applied the theory to a specific phenomenon. It appears 
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that to Tal, research questions were not really interrogative, but rather, laden with specific 

theory-based claims about a specific context. 

Having determined a research question, Tal then determined which statistical 

method would be used to try to answer the research question, including how the data would 

be collected, and which statistics would be used to measure which characteristics. To Tal, 

this was one of the most important steps. As such, once the data was collected, it also had 

to be evaluated for quality. This also guarded against poor data quality as a cause for non-

sensible results.   

At this point, Tal then entered the “software world”. As Tal noted in the statistical 

testing task, “I want to look at the dataset [first]. I usually do that” (Appendix P02-B1, 

01:26 – 01:31). One important part of Tal’s plan centered on the computation of confidence 

intervals. According to Tal, the 95% confidence interval “is how confident that you are that 

that information [the null hypothesis] is within the 95% interval of whatever data you have” 

(Appendix P02-B1, 08:15 – 08:20). Based on this explanation, Tal thought about sampling 

distributions as based on the data (as is the case with a bootstrap dot plot), and not as based 

on the null hypothesis (as is the case with a null model).  

The key step in Tal’s plan was a consideration of the “sensibility” of the data and 

the results – “I have to make sure it makes sense” (Appendix P02-A, 02:18 – 02:20). The 

results had to be contextualized, and Tal ultimately determined whether the results made 

sense or not against the research question and the grounding theory.  

4.4.1.2  Tal’s Monitoring of Statistical Tests 

 
Tal’s monitoring was most clearly evident in the way Tal thought about the nature 

of the observed data that would subsequently be a part of the statistical test. While 
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completing the VSE problem, having generated summary statistics for the salary for each 

group, Tal systematically scanned the output for the computer science group first, before 

scanning the output for the engineering group and making comparisons between the 

groups. Tal made these comparisons one-by-one for each statistic reported by R, stating 

“for engineers, the minimum is way higher, the median is a little higher, maximum [is] 

pretty much the same, mean for engineers [is] a little bit the same, standard deviation for 

engineers [is] a little bit lower. Uh, without really any further tests, my gut feeling, is, 

engineers have a lower range, computer science have a higher range. Uh, both have like 

pretty much the same top salary, and the medians, both medians are a little bit the same. If 

we’re thinking in terms of percentage, … it’s like a 10% difference in median, not 10, less 

than 10, like 7% difference in terms of the median. The mean is like 4% different. So 

without doing an actual statistical test, I would say that engineers on average earn a little 

bit more than computer scientists, and they have a lower range” (Appendix P02-B1, 04:18 

– 05:56). 

It is interesting to note that Tal mentally computed the percentage difference in the 

median and mean salaries between groups, in effect computing an effect size, to facilitate 

Tal’s monitoring of the comparison between groups. It seemed that this statistic, especially 

the 4% difference in means, was an important piece of evidence in Tal’s thinking. It is also 

interesting that Tal commented upon the range, noting that the range in engineers’ salary 

was less than the range in computer scientists. This is an indication that Tal was 

comfortable thinking about a distribution. Similarly, Tal noted in the video-cued interview 

that looking at the five number summary helped Tal visualize the distribution for each 
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group, and that they were trying to picture the distribution (Appendix P02-C, 05:35 – 

06:10).  

In the statistical testing task, Tal seemed to monitor the determination of their initial 

plan by tracking both the comparison of the estimated difference in means against the null 

hypothesis as well as the confidence interval estimate and bootstrap dot plot, especially the 

tails of the distribution. Although Tal incorrectly thought they were looking at a bootstrap 

dot plot when they were actually looking at a randomization dot plot, Tal explained that, 

“What it is giving me is each individual 5000 sample data, of the average difference delay 

time from Seattle and from Minneapolis. And you can see that on the edges [of the 

distribution], there is a lot of differences [between the groups], but there is very little 

quantity of samples that are outside the major mid part of the graph, where [the simulated 

samples] mostly is located. And since the middle is zero, which is ‘no difference’, a lot of 

the data is concentrated around ‘there is no difference’ … It seems there is very little sample 

data showing a lot of differences between the two airports. So I would, without looking at 

the numbers, it suggests to me that my null hypothesis is correct. (Appendix P02-B2, 03:57 

– 05:08).  

Additionally, Tal did not seem to focus on the p-value while monitoring the 

progress of the comparison between groups, nor while interpreting results or justifying the 

interpretation that there is not much difference between the groups. For example, while 

completing the VSE problem, Tal stated that “We have the p-value which is very low, 

which corroborates the null hypothesis that there is no difference in the means. I think the 

difference was like 3 point something percent, which is probably not very significant” 

(Appendix P02-B1, 09:00 – 09:17). In the video-cued interview, Tal explained that they 
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saw the p-value as a number without context (Appendix P02-C, 15:15 – 16:35), and thus 

not as important as effect sizes, confidence intervals, or group means in monitoring nor 

evaluating. Thus, it appears that Tal thought of significance not in terms of statistical 

significance but rather in terms of a practical or meaningful significance based on the 

context of the problem.  

While Tal did occasionally monitor and think of p-values, as was the case in the 

statistical testing task, while completing the statistical testing interview, Tal seemed not to 

think about p-values or include them in the monitoring of the test. Instead, the driving 

factor in Tal’s monitoring seemed to be the context of the problem and the theory or prior 

knowledge underlying that context. An example of this thinking was evident when Tal 

attempted to answer a question about the difference in PISA scores between Finnish 

students and Spanish students (see Appendix H2 for the statistical testing interview 

stimuli). Tal explained that, “knowing what I know of Finnish and Spanish, I would say 

yes, because everybody says great things about Finnish education” (Appendix P02-C, 

15:45 – 15:55). Thus, it appears that Tal’s prior knowledge that “everybody says great 

things about Finnish education” was used by Tal to monitor whether the statistical results 

may have been generated appropriately. 

4.4.1.3  Tal’s Evaluating of Statistical Tests 

 
Tal’s notion of “sensible results” appeared to dominate Tal’s evaluating. However, 

when Tal’s evaluating did result in adjustments to Tal’s plan, the adjustments did not seem 

to result in changes to computations Tal would make, but rather resulted in the re-

examination of the data to ensure integrity, and subsequently the re-evaluation of a theory 

or research question, with Tal questioning its “sensibility”. As previously mentioned, after 
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generating a p-value, Tal focused on the context at hand to determine practical significance. 

As Tal described, “You cannot look at the p-value without … a number by itself doesn’t 

mean [anything], you have to have context. One of the first things that I do is, especially 

when you have a difference in averages, I’m going to see if that means if it’s really 

different” (Appendix P02-C, 15:15 – 16:35). Tal’s process for determining whether a 

difference is ‘really’ different seemed not to rest on p-values or confidence intervals, nor 

any statistical procedure, but rather on the underlying context.  

More generally, while completing the concept mapping task, Tal provided an 

insight into the way they thought about evaluating statistical tests. As previously described, 

if the results were not sensible, then Tal suggested that they would go back to the theory, 

tweaking it, or perhaps tweaking the research question, until they found results that made 

sense given a prevailing theory.  

4.4.2  Tal’s Thinking about Null Models 

 
While Tal’s thinking focused on the use of descriptive statistics, it seemed that Tal 

did make considerations for sampling variability, although not in the form of a null model. 

It seemed that Tal ascribed uncertainty to the possible hypothetical parameters given the 

observed statistics, rather than ascribing uncertainty to the possible statistics given a 

hypothesized parameter (the norm in NHST). Therefore, it is worth considering how Tal 

thought about sampling variability and what Tal believed the randomization dot plot based 

on a null hypothesis represented.  

While completing the Airplane Delays problem, Tal appeared to confuse the 

randomization dot plot with a bootstrap dot plot – the key difference is that a bootstrap dot 

plot is centered on the observed sample statistic, while the randomization dot plot is 
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centered on the null hypothesis parameter. However, Tal’s thinking about the dot plot was 

otherwise consistent with thinking about sampling variability through the examination of 

the bootstrap dot plot. Tal focused on the entire distribution, explicitly acknowledging its 

shape, center, and spread, the three characteristics of a distribution as instructed in EPSY 

5261 – this is seen not only in the audio recording, but also in the gaze recording of Tal’s 

eyes, showing clearly that Tal was looking at the entire distribution (Appendix P02-B2, 

03:57 – 05:08). Tal also focused on the shape, center, and spread of dot plots presented in 

the statistical testing interview. For example, in answering the question “Is average 

commute time in Atlanta and St Louis the same?”, Tal commented that “… we have a 

normal distribution, uhh, and pretty much every data is like between -2 and 2” (Appendix 

P02-C, 01:01 – 01:14). Similarly, when answering the question “Is the average US BMI in 

2017 equal to the average level in 2010 of 28.6?”, Tal stated that, “… we have a normal 

distribution, 97% of the information is between 27 and 29 …” (Appendix P02-C, 03:27 – 

03:33).  

Additionally, the way Tal described their thinking while examining the 

randomization dot plot was further evidence that Tal was thinking about sampling 

variability. As Tal described, “… you can see that on the edges, there is a lot of differences, 

but there is very little quantity of samples that are outside the major mid part of the graph, 

where [the simulated samples] mostly is located. And since the middle is zero, which is 

‘no difference’, a lot of the data is concentrated around ‘there is no difference’ …” 

(appendix P02-B2, 03:57 – 05:08). Thus, it appeared that Tal, in thinking about the entire 

sampling distribution, was inherently thinking about the variability of that sampling 
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distribution, and thus explicitly acknowledging the role of sampling variability in statistical 

testing, despite misconstruing the randomization dot plot to be a bootstrap dot plot.   

 However, this thinking appeared to be local to the simulation-based output Tal 

interacted with. When examining output from R in the statistical testing task and the 

statistical testing interview, there was no hint that Tal was thinking about sampling 

variability. For example, after interpreting the summary statistics generated by the 

favstats() function in R, Tal stated, “Now, to make sure that what I implied is correct, I’ll 

have to run the test” (Appendix P02-B1, 05:58 – 06:09). Why did Tal feel that it was 

important to ‘make sure’, and what did Tal think running the test would achieve? Tal never 

actually commented upon this in either the statistical testing task or the video-cued 

interview.  

However, Tal’s interpretation of the results in the VSE problem may provide a clue 

as to Tal’s thinking. There, Tal stated that “We have the p-value which is very low, which 

corroborates the null hypothesis that there is no difference in the means. I think the 

difference was like 3 point something percent, which is probably not very significant” 

(Appendix P02-B1, 09:00 – 09:17). Tal commented upon and interpreted the p-value, but 

seemingly returned to considering the effect size and the context of the problem when 

drawing a conclusion about the “significance” of the results. First, it seemed that Tal was 

using the term “significant” to mean something like “important” or “meaningful”. 

Additionally, Tal’s preference for thinking about the meaningfulness of results, and doing 

so through thinking about effect sizes, suggests that perhaps Tal considered p-values a mere 

formality. This might also explain why Tal commented in the video-cued interview that “a 
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number by itself doesn’t mean [anything]” (Appendix P02-C, 15:15 – 16:35) when 

commenting upon interpreting p-values.  

Perhaps the most that can be said is that how Tal determined what is and is not 

sensible relied on an implicit acknowledgement of sampling variability in relation to the 

specific predictions of a research question, but not formally. Yet, it is striking that Tal 

consistently and thoroughly thought about the bootstrap dot plot when examining results 

generated by StatKey, but did not exhibit analogous thinking when examining results 

generated by R.  

4.5  Participant Five – Ade 

 
Ade took EPSY 5261 in the Fall of 2021, seven months before participating in the 

study. Ade did not take any other statistics course between completing EPSY 5261 and 

participating in this study. However, Ade did take a statistics course while an 

undergraduate student which was very similar in nature to EPSY 5261. Furthermore, Ade 

took a research methods course in the Spring of 2022, which did have a small unit on 

statistical methods, but this was limited to the examination of means, graphs, and p-values 

from t-tests. Aside from homework assignments in EPSY 5261 and one assignment in that 

research methods course, Ade had never done their own statistical analysis for any of their 

own projects.  

Ade commented that despite perceiving that statistics did have value, Ade 

personally did not feel a need to do statistics. Ade did not plan on ever doing their own 

statistical analysis, instead only finding it important to be able to interpret results from 

statistical analyses. Despite this, Ade admitted to usually skipping the methods and results 
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sections of papers, instead jumping straight to the conclusion, in which Ade expected to be 

told whether there was a ‘significant finding’.  

Ade also admitted to having different study habits for EPSY 5261 than for their 

other classes. In EPSY 5261, Ade studied just before the exams, whereas for other courses, 

Ade’s studying was more spread out and involved a deeper dive into the material, due to a 

greater interest in the content. Ade commented that for EPSY 5261, they typically put in 

only an hour or so of studying before the exam, and then promptly forget about the content. 

Important to remember is that Ade was instructed not to prepare or review any materials 

prior to participating in this study.  

4.5.1  Ade’s Thinking When Conducting Statistical Tests 

 
To Ade, the purpose of a statistical test was to produce a p-value and confidence 

interval, which could then be used to answer a research question (see Figure 17 and 

Appendix P05-A, 01:09 – 01:20). Also important in statistical tests were null and alternate 

hypotheses. Ade saw randomization tests and t-tests as two methods of producing p-values, 

randomization tests doing so through resampling, and t-tests doing so through equations. 

Finally, Ade noted that “the lower the p-value the better” (Appendix P05-A, 01:14 – 01:15). 

In thinking about p-values and confidence intervals, Ade drew conclusions about whether 

or not the null hypothesis was supported. However, at one point Ade also stated that “if 

we’re just doing difference in means, I feel like I just take these [the estimate of the mean 

for each group] then” (Appendix P05-B1, 05:15 – 05:26). Thus, it is unclear when Ade 

thought a statistical test would indeed be necessary.   

4.5.1.1  Ade’s Planning of Statistical Tests 
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Ade’s plan for statistical testing began with generating summary statistics. In the 

statistical testing task, after reading the prompt for the VSE problem and identifying that 

“we’re doing difference of means” (Appendix P05-B1, 00:46 – 00:49), Ade determined 

that, “well for each group, I’m assuming we’re going to have to get the relevant statistics 

where it shows means, standard deviations, all of that” (Appendix P05-B1, 01:56 – 02:03). 

Ade then created a histogram, although at first, Ade was unsure what type of graph to make, 

commenting that, “I’m assuming we’ll have to do a graph … I don’t know which one” 

(Appendix P05-B1, 00:53 – 00:56).  

Next, Ade identified that “this is when testing hypothesis comes into play. Does a 

difference exist between the two?” (Appendix P05-B1, 09:11 – 09:20). Ade first specified 

the null and alternative hypothesis, stating, “so I know the [null] hypothesis would be like, 

‘cs is equal to engineering’ and that would be like the hypothesis is false [based on the 

difference in means], but ‘cs does not equal engineering’, then the [alternative] hypothesis 

is supported.” (Appendix P05-B1, 09:41 – 10:00).  

After generating output, Ade focused on the 95% confidence interval estimate, and 

also inspected the p-value, before stating, “there’s evidence to support that the [alternative] 

hypothesis is true and there is a difference in mean salaries between the two groups” 

(Appendix P05-B1, 11:15 – 11:43), because “0 is not included within the confidence 

interval” (Appendix P05-B1, 12:55 – 12:59).  

Thus, Ade’s plan for conducting a statistical test seemed to be to (1) generate 

summary statistics, (2) generate histograms, (3) specify a null and alternate hypothesis, (4) 

generate a confidence interval and p-value, and (5) compare the null hypothesis parameter 

to the confidence interval.  
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4.5.1.2  Ade’s Monitoring of Statistical Tests 

 
Ade admitted to having difficulty remembering how to monitor the process of 

conducting statistical tests, commenting at one point that, “as far as testing that to figure 

out if there is a difference that exists, I do not remember this part” (Appendix P05-B1, 

10:04 – 10:10). However, Ade’s monitoring was somewhat evident as computing summary 

statistics and generating histograms led up to Ade running a t-test.  

Having generated summary statistics for each group, Ade stated that “engineering 

does have a higher average salary, but there is variability, like different variability” 

(Appendix P05-B1, 06:12 – 06:27). Initially, Ade seemed to have planned only to compute 

means for each group to answer the research question, but seeing the standard deviations 

prompted a re-evaluation of this plan (Appendix P05-B1, 05:46 – 06:02).  

Similarly, having generated histograms for each group, Ade stated that 

“engineering just from the graph does look more … they’re both like normal distributions, 

at least I think so” (Appendix P05-B1, 07:43 – 07:54). From the gaze recording and screen 

recording of this clip, we see that in saying “look[s] more”, Ade was comparing the location 

of the mode of each distribution. Ade subsequently visually inspected the tails of the 

distribution, which seemed to prompt a re-evaluation of Ade’s plan.  

Additionally, when conducting the statistical test, Ade monitored the p-value in the 

t-test and randomization test. Specifically, Ade utilized the p-value to monitor the level of 

confidence they had in the test results. For example, in the statistical testing interview, Ade 

at one point commented that, “well it has a low p-value so I feel like this is a good sample. 

And then, just the means alone, 81 and 67 are pretty different” (Appendix P05-C, 17:36 – 

17:46). It seemed that Ade, in saying the “sample” was “good”, was thinking about the 



 

 110 

credibility of the inference being drawn by comparing the sample means directly. However, 

this comment may also be a result of Ade thinking about the desirability of low p-values 

in relation to conventional declarations of statistical significance.   

More generally, Ade seemed to be unsure in monitoring their plan for statistical 

testing. For example, in the statistical testing task, Ade commented that, “I feel like I 

should be looking at standard error for some reason … because it would be the mean plus 

or minus the standard error, and we’re seeing if a difference exists” (Appendix P05-B2, 

05:02 – 05:40). Here, it seems that Ade perhaps initially had not planned on thinking about 

the standard error, but in the middle of the task remembered the connection between 

standard error and the process for constructing a confidence interval estimate, which thus 

led to Ade use the standard error to monitor their plan for conducting the statistical test. 

However, it is unclear whether any specific statistical output Ade was thinking about 

prompted this recollection, or whether it was simply Ade remembering additional statistical 

content as the tasks progressed.  

Thus, Ade’s monitoring of a statistical test for a difference in means seemed to 

hinge on the thinking about the sample distributions and any differences between them as 

described by summary statistics and data visualizations, as well as the p-value.  

4.5.1.3  Ade’s Evaluating of Statistical Tests 

 
Ade’s evaluation of their plan for conducting a statistical test stemmed from the 

same components to Ade’s monitoring – variability expressed by the sample standard 

deviation and the range in the histogram, as well as the p-value. Ade’s monitoring of the 

sample standard deviation prompted an evaluation of Ade’s plan, as Ade explained in their 

own words, “engineering does have a higher average salary, but there is variability, like 
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different variability, like the standard deviations, this one [the standard deviation for 

salaries for the computer science group] is higher. I think I should graph them” (Appendix 

P05-B1, 05:46 – 06:27). Thus, the differences in sample standard deviations prompted Ade 

to change their initial plan, and proceed with generating histograms.  

Similarly, having seen the variability in the histograms for each graph, Ade again 

re-evaluated their plan, stating “I think this is when testing hypothesis comes into play. 

Does a difference exist between the two?” (Appendix P05-B1, 09:11 – 09:20). Thus, the 

differences in the sample distributions prompted Ade to change their initial plan, and 

proceed with conducting a statistical test.  

4.5.2  Ade’s Thinking about Null Models 

 
Ade connected null models and the randomization dot plot to the null hypothesis 

(although not at first), but was not able to fully recollect the role null models played in 

testing. Initially, Ade focused on the normality of the randomization dot plot. For example, 

in the statistical testing task, Ade commented that “I feel like I need to generate enough 

samples so it is a normal distribution” (Appendix P05-B2, 03:04 – 03:11). Similarly, during 

the statistical testing interview, Ade described one randomization dot plot as “a very 

normal distribution” (Appendix P05-C, 08:11 – 08:14). However, it is unclear why Ade 

thought it was important for the randomization dot plot to be normal.  

Partially through the statistical testing interview, Ade recollected that the 

randomization dot plot was based on the null hypothesis. This occurred while Ade was 

answering the question “Is the average US BMI in 2017 equal to the average level in 2010 

of 28.6?”. After first interpreting the middle 95% of the randomization dot plot as if it were 

a confidence interval, Ade stated, “so I feel like, something about the null being 28.6 that, 
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when you do a randomization test, it is going to center around that always” (Appendix P05-

C, 05:22 – 05:34). Ade then reasoned that instead of determining whether the null 

hypothesis parameter lies within this middle 95% of the randomization dot plot, “I think 

we’re looking at like, maybe how far from the [hypothesized] mean [the confidence 

interval] strays” (Appendix P05-C, 05:51 – 05:59).  

Having connected the null hypothesis to the center of the randomization dot plot, 

there are two lingering questions in terms of how Ade thought about null models: (1) How 

did Ade think about the standard error? And, (2) What did Ade think the p-value 

represented?  

4.5.2.1  Ade’s Thinking about Standard Error 

 
Ade appeared to think about the standard error as a quantification of uncertainty 

related to inferences. Procedurally, Ade’s thinking about standard error was tied to its role 

in computing a confidence interval. For example, in the statistical testing task, Ade 

commented, “I feel like I should be looking at standard error for some reason … because 

it [the confidence interval] would be the mean plus or minus the standard error, and we’re 

seeing if a difference exists, so if it equals 0 then, like if that parameter [recta, the 

confidence interval] has 0 in it, then the null hypothesis is … mmm … I’m trying to think 

of like what the conclusion would be … that like there’s not sufficient evidence that a 

difference exists between the two means then” (Appendix P05-B2, 05:02 – 05:40).  

In the statistical testing interview, Ade further commented about the specific role 

the standard error had in quantifying precision, through its role as part of the confidence 

interval. Ade stated, “I feel like there’s more room for error [when the CI is far apart from 

the mean]” (Appendix P05-C, 06:38 – 06:43). However, Ade did not seem to exactly 
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remember how the standard error and confidence interval quantified variability, 

commenting that “I think it [the confidence interval] takes into account outliers, so we’re 

using more of the center of the data … and like standard deviation, that’s part of this” 

(Appendix P05-B1, 13:25 – 13:42). Thus, it did seem that Ade thought about the role the 

standard error played in quantifying uncertainty, through its specification of the width of 

the confidence interval.  

4.5.2.2  Ade’s Thinking about P-values 

 
Ade seemed to primarily think about p-values in terms of their link to confidence 

levels. In the video-cued interview, Ade explicitly noted this equivalence, writing “p < .05  

=  95% Confidence Interval” (Appendix P05-D3). To Ade, a p-value of .05 “would take 

off .25 and .25 [sic] percent of the data [from the tails of the sampling distribution]” 

(Appendix P05-A, 02:30 – 02:39), achieving “95% confidence that the datapoint [sic] will 

fall within the interval” (Appendix P05-A, 02:46 – 02:53). Ade further commented on this 

relationship in the statistical testing interview, stating that, “I think that [the p-value] has 

something to do with error, so a lower p-value is better, because at .05 then you’re at 95% 

confidence” (Appendix P05-C, 02:29 – 02:47). 

Thus, it seemed that Ade thought of the p-value as the complement of the 

confidence level. When answering the question “Is the average number of body piercings 

UMN undergrads have equal to 2?” during the statistical testing interview (see Appendix 

H2 for the statistical testing interview stimuli), Ade commented that, “when I did this for 

my class, I feel like we were given smaller p-values, and this is a pretty big p-value, so I 

guess because 2 is included within this interval you could say that the null is supported, but 
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with 70% confidence, so it’s not really that big of a deal.” (Appendix P05-C, 16:03 – 

16:34).  

Despite thinking about the p-value in terms of the complement of the confidence 

level, Ade appeared to think about p-values as contributing distinct information from the 

confidence level. Specifically, Ade appeared to prefer small p-values as an indication of 

the accuracy or validity of the test. For example, in the statistical testing interview, Ade 

commented that, “well there’s a low p-value so I feel like this is a good sample” (Appendix 

P05-C, 17:36 – 17:40). After inspecting the p-value to determine whether or not the test is 

a ‘good’ test, Ade then compared the null hypothesis mean to the confidence interval, to 

determine whether the parameter was contained within the interval.  

4.6  Participant Six – Aan 

 
Aan took EPSY 5261 in the Fall of 2021, seven months before participating in this 

study. Aan did not take any other statistics course after EPSY 5261. Aan also had not done 

any statistical analysis since completing the class, but had studied quantitative analysis in 

another class a year before completing EPSY 5261. Furthermore, quantitative work was 

not heavily featured in Aan’s field of study, as Aan’s field and Aan’s own research was 

mainly qualitative. When quantitative analysis was included, it was almost always in the 

form of either descriptive summary statistics or a t-test comparing two groups. Aan’s 

knowledge of statistical software was also limited to software learned in EPSY 5261. Aan 

admitted forgetting a lot about R since the end of EPSY 5261. As with other participants, 

Aan was asked not to prepare prior to participating in this study. 

4.6.1  Aan’s Thinking When Conducting Statistical Tests 
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To Aan, the purpose of a statistical test was to compare a hypothesis to some 

observed evidence in the form of data that is collected. However, Aan’s thinking in this 

study almost entirely focused on point estimates of means. In the video-cued interview, 

Aan stated that, “I just remember a few key words, like the mu, or the standard deviation, 

standard error, so that’s it, but I don’t know what [they are]. I forgot about it! Even for p-

values, I know the parameter .05, equal, above, or less, but I forgot what that means. But 

the only one thing [I know is] the mean, I can determine that the mean is different, or the 

mean is not different” (Appendix P01-D, 05:10 – 05:40). During the statistical testing task, 

there were many moments where Aan went silent, and Aan’s eye gaze patterns suggested 

that Aan seemed to be systematically scanning the entire screen, perhaps attempting to 

recollect important pieces of information and how they might relate to the task at hand.  

4.6.1.1  Aan’s Planning of Statistical Tests 

 
Aan’s thinking in terms of a general plan for conducting statistical tests is evident 

in the concept map that Aan created (see Figure 18). As seen in Aan’s concept map, Aan’s 

plan for a statistical test began with a question and two competing theories. Next, Aan’s 

plan specified that data should be collected. The two competing theories then led Aan to 

specify a null and alternate hypothesis. However, Aan’s null hypothesis was a “not equal 

to” hypothesis and while Aan’s alternate hypothesis was an “equal to” hypothesis 

(Appendix P01-A, 00:27 – 00:38).  

After the specification of the null and alternate hypotheses, Aan proceeded to 

compute sample means for each group. In the statistical testing task, after reading the 

research question for the VSE problem, Aan succinctly laid out a purpose and associated 

plan for answering the question: “We need to compare if [the average salary in each group] 
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is the same or different. I think I should compute the mean for each group first, and then 

run a t-test” (Appendix P01-B1, 01:56 – 02:20).    

However, despite the clear articulation of competing hypotheses in Aan’s concept 

map, during the statistical testing task, Aan did not specify or articulate hypotheses, nor 

did Aan comment upon what those hypotheses may be in the video-cued interview. Instead, 

Aan’s emphasis on the descriptive statistics suggested that hypotheses did not play a critical 

role in Aan’s thinking while conducting statistical tests in the statistical testing task. 

Rather, it appeared that Aan’s focus on generating and interpreting sample estimates.  

Although Aan’s concept map and Aan’s stated plan both included generating a p-

value from a t-test, in the statistical testing task, Aan was ready to make a conclusion for 

the VSE problem after only examining the means (and standard deviations) of each group: 

“I think there is a difference in the average salary for the computer science and engineering 

[majors], but the difference is not too huge, just a tiny difference” (Appendix P01-B1, 

10:52 – 11:11). Only after being reminded by the researcher that Aan’s original plan was 

to compute the means and then run a t-test did Aan proceed to conducting the statistical 

test. Finally, Aan’s plan ended with the extraction of a p-value from the t-test, using the p-

value to make a decision about which hypothesis is correct (Appendix P01-A, 01:50 – 

02:05). 

4.6.1.2  Aan’s Monitoring of Statistical Tests 

 
Aan’s monitoring of statistical tests appeared to primarily consist of a comparison 

of the conclusion drawn from comparing two means to each other (either the null 

hypothesis and the single group sample mean, or the means from two groups) with the 

conclusion drawn from the interpretation of a p-value. This is most clearly evident in Aan’s 
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comments during the video-cued interview. There, Aan stated that “in the t-test, I think I’m 

looking for the p-value … this p-value is less than .05” (Appendix P01-D, 08:06 –08:20). 

At this point the researcher prompted that, “but it looks like you were looking at the means 

first”, to which Aan responded “Yes, because, I can compare the means very directly, but 

the p-value, I told you, I’m [confused] about the three … is it above or less or equal [to 

.05], what does it mean, behind this code? Of course, I’m just thinking about, the only thing 

I’m very confident that I know is the mean. The mean very directly shows the result. 

They’re equal, they’re different. And then I’m thinking about the p-value” (Appendix P01-

D, 08:25 – 08:58).  

While Aan perhaps wanted to rely on p-values to monitor the statistical test, due to 

uncertainty with regards to the proper interpretation of p-values, Aan appeared to fall back 

on interpreting the means instead. This is also reflected in the gaze recording of Aan’s eye 

movements during the statistical testing task, in which Aan spent more time looking at the 

means of each group than the p-value or the 95% confidence interval estimate when 

interpreting results from the t-test in R (see Figure 19 for a heat map summary of the 

locations on the screen Aan looked at the most, Figure 20 for a clearer image of the R 

output Aan was looking at, and Appendix P01-B1, 13:20 – 14:30, for the gaze-recording 

of this moment). Thus, despite Aan predominantly focusing on the means of each group, it 

might still be the case that Aan’s thinking, and internal logic of statistical testing, did indeed 

include interpreting p-values, especially as a tool for monitoring. 

4.6.1.3  Aan’s Evaluating of Statistical Tests 

 
Aan’s evaluating of their plan for the statistical test was almost entirely absent from 

the traces of Aan’s thinking captured by this study. Throughout the statistical testing task 
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and the statistical testing interview, there appeared to be little changes to Aan’s original 

plans. This may have been a result of the fact that Aan admitted that they had forgotten 

quite a lot of the information they were taught in EPSY 5261, leading to a somewhat simple 

plan. Indeed, Aan’s plan, as operationalized by Aan in the statistical testing task, almost 

entirely consisted of computing sample means for each group, and nothing more. In the 

statistical testing task, it was the researcher who prompted Aan to conduct the t-test, and 

not Aan’s own evaluation or adherence to Aan’s original plan. Thus, it is unclear if, and if 

so how, Aan evaluated their thinking while conducting statistical tests or interpreting 

results from statistical tests.  

4.6.2  Aan’s Thinking about Null Models 

 

The preponderance of evidence indicates that Aan did not consider nor likely had a 

concept of a null model that they were thinking about while conducting statistical tests nor 

while interpreting results from statistical tests. The most consistent thing that Aan appeared 

to do was to think about the sample mean or the difference between sample means. Even 

when Aan referenced the mean of the randomization dot plot, Aan’s statements seem to 

indicate that Aan believed the randomization dot plot was estimating what is true in the 

real world based on the sample data. In addition, Aan typically made absolute judgments 

without any consideration of sampling variability. 

4.6.2.1  Aan’s Thinking about Sampling Variability 

 
While conducting a statistical test in R in the statistical testing task, Aan did 

comment on the sample standard deviations while examining summary statistics, stating 

“oh [the standard deviations] is a lot” (Appendix P01-B1, 09:52 – 09:55). However, it did 

not appear that Aan factored the sample standard deviations into any further analysis. Aan 
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explicitly stated as much before drawing a conclusion – “Back to the research question … 

because the question is talking about the average salary, so back to the data, this should be 

reflected in the means” (Appendix P01-B1, 11:16 – 11:24).   

However, Aan’s interpretation of the results from the t-test in the while completing 

the VSE problem might suggest that Aan was thinking about sampling variability. In 

examining the output of the t_test() function in R, Aan stated, “Okay, sample estimates … 

here is the result. It only calculated the mean. So, …, they’re different!” (Appendix P01-

B1, 13:23 – 13:36). However, once Aan saw the p-value, Aan began to hedge: “… and the 

p-value is .04227, let me think, I think this p-value is too small, it’s small … There is not 

a big difference between the two groups” (Appendix P01-B1, 13:40 – 14:20). Was this due 

to a consideration of sampling variability?  

Aan’s comments in the video-cued interview provide some insight to this question.  

There, Aan stated that “The mean very directly shows the result. They’re equal, they’re 

different. And then I’m thinking about the p-value. And the last one I think [I’m still] 

looking for is the standard error. Because according to [ESPY 5261], there are only three 

things we can determine, one thing is the mean, p-value, and the sd [standard deviation]” 

(Appendix P01-D, 08:50 – 09:20). While Aan did mention the standard deviation, at no 

point in the actual test did Aan comment upon the standard deviation or the standard error. 

Furthermore, Aan’s description that the mean showed the result directly as either “equal” 

or “different”, and Aan’s subsequent examination of the p-value, suggests that Aan may 

have been using the p-value to determine the magnitude of the difference between groups. 

As seen above, Aan claimed that the means were different, but then stated that there was 

not a big difference after examining the p-value. If Aan was explicitly considering 
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sampling variability, there did not appear to be a clear trace of this thinking in the data 

collected.  

However, it should be noted that it is possible that in determining that “computer 

science and engineering is different”, Aan may have been thinking about the p-value, while 

when determining that “there’s not too much of a big difference”, Aan may have been 

thinking about the effect size. Either way, whether Aan’s statement about “not too much 

of a big difference” was based on the p-value or the effect size, Aan did not explicitly 

comment on a quantification of variability, and did not seem to be explicitly thinking about 

sampling variability.  

4.6.2.1  Aan’s Thinking about the Randomization Dot Plot 

 
Aan did not seem to remember how to think about simulation-based statistical 

testing, and did not seem to remember how to think about the randomization dot plot. In 

the second part of the statistical testing task in which Aan utilized a simulation-based 

approach to completing the Airplane Delays problem, after spending a few minutes 

seemingly in an attempt to recollect what to do, Aan whispered, “I’m thinking [about] 

which parameter can represent this null hypothesis, [which] is correct. I think this time it’s 

not the mean, maybe the standard error … Okay let’s do the standard error. [There is] no 

difference. So, then the null hypothesis is correct” (Appendix P01-B2, 05:49 – 06:24).  Aan 

appeared to see that in the top-right corner of the randomization dot plot, StatKey provided 

three numbers: “samples = 5000”, the number of simulated trials; “mean = -0.0031”, the 

mean of all of the simulated trials, which will always be very close to the null hypothesis 

mean value; and, “std. error = 0.357”, the standard error of the sampling distribution under 
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the null hypothesis, computed as the standard deviation of the simulated trials’ means (see 

Figure 21).  

Why did Aan state that “I think this time it’s not the mean”? It is unclear, especially 

since Aan had previously stated “we will need to compute the average delay time for each 

group, one group is for Minneapolis, another group is for Seattle. Hmm, okay, I think that’s 

the same thing [as the VSE problem]” (Appendix P01-B2, 01:24 – 01:45). However, later 

in the task, Aan stated that “because the two simulated groups’ average is very tiny, it’s 

almost equal to 0, so I think there is no difference between those two groups. They are 

almost the same” (Appendix P01-B2, 04:34 – 04:55).  

However, the fact the Aan noticed the standard error is not surprising, as Aan 

commented in the video-cued interview that “… according to [ESPY 5261], there are only 

three things we can determine, one thing is the mean, p-value, and the sd [standard 

deviation]” (Appendix P01-D, 09:10 – 09:20). Yet, Aan’s thinking about the standard error 

is unclear. Was Aan making an inference based on the magnitude of the standard error, 

concluding that “the null hypothesis is correct” because a standard error of .357 suggested 

so? It is unclear, and perhaps all that can be said is that Aan knew that the standard error 

was important, but did not remember how to think about it.  

In the statistical testing interview, specifically when interpreting output from 

StatKey, Aan similarly focused on thinking about the “mean” and “standard error”, again 

displaying the same thinking Aan demonstrated in the statistical testing task. For example, 

when examining results for the question “Is average commute time in Atlanta and St Louis 

the same?” (see Appendix H2 for the statistical testing interview stimuli), Aan stated, “This 

shape [the randomization dot plot] is a bell shape. Soo, I think also the mean is very tiny, 
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but the standard error … is big?! So I think … they are not the saaaaame?” (Appendix P01-

C, 01:50 – 02:15). Aan’s response indicated that Aan was perhaps uncertain about their 

thinking, but nevertheless, Aan still focused on the mean and standard error.  

Aan’s thinking about the mean and standard error in interpreting output from 

StatKey was similarly evident in the gaze recordings throughout the statistical testing 

interview. For example, when answering the question “Is the average US BMI in 2017 

equal to the average level in 2010 of 28.6?”, Aan predominantly looked at the mean and 

standard error (see Figure 22).  

What did Aan believe the randomization dot plot represents? Perhaps the answer 

best supported from the empirical trace of Aan’s thinking is simply that Aan did not 

remember what the randomization dot plot represents, nor where it came from, nor its role 

in statistical testing.  

Chapter 5: Discussion 

How do graduate students who have completed a master’s level introductory 

statistics course utilizing a simulation-based inference (SBI) curriculum think when they 

conduct statistical tests? That question was the genesis of this study. More specifically, the 

two research questions that motivated the task design, data collection methods, and data 

analyses for this study were: 

(1) What is the nature of graduate students’ thinking when conducting 

statistical tests?  

(2) Do graduate students think about null models when conducting statistical 

tests, and if so, how? 



 

 123 

Six graduate students were recruited seven months after they completed such a 

course to participate in a series of tasks designed to elicit multiple aspects of their thinking. 

First, these six students all created a concept map for the logic of a statistical test. The audio 

recordings as well as the concept maps each student drew were collected and analyzed. The 

six students then were presented with two problems and asked to solve one utilizing 

traditional parametric-based methods in R and the other utilizing simulation-based methods 

in StatKey. The audio recordings, screen recordings, and eye gaze recordings from this 

task were collected and analyzed. Next, the students were presented with output from a 

series of ten statistical tests – five generated by R and five by StatKey – and were asked to 

interpret the results. Once more, the audio recordings, screen recordings, and eye gaze 

recordings from this task were collected and analyzed. Finally, the students watched the 

screen and eye gaze recordings from when they used R and StatKey to conduct analyses to 

solve each of the two problems presented earlier, adding additional detail to retrospectively 

explain their thinking, as well as discussing and verifying the inferences made by the 

researcher. Here, audio recordings and screen recordings were collected and analyzed.  

These data artifacts were analyzed utilizing an interpretivist epistemological stance 

within a multiple descriptive case study approach. Thinking was a priori defined as 

metacognitive self-regulation, operationalized through the component actions of planning, 

monitoring, and evaluating. However, the focus of the analysis was on using this 

framework to credibly explain the phenomenon of statistical thinking as experienced by 

each student. To achieve this, data artifacts were examined through a constant comparative 

process with inductive coding, with one data artifact examined at a time, before moving 
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through all artifacts for a task, and then all tasks for a single student, before once more 

reviewing all data to faithfully describe each students’ thinking.  

5.1  Research Question 1: What is the nature of graduate students’ thinking when 

conducting statistical tests?  

 
Each of the six students who participated in this study seemed to think somewhat 

differently when conducting statistical tests. These differences were apparent even in their 

perceived purpose of conducting a test.  

Two participants, Ade and Chau, saw the purpose of a test as being the 

determination of whether or not a relationship or difference exists between two groups or 

two factors, which could answer specific research questions. Tal saw the purpose of a 

statistical test as being to confirm a theory, through an iterative process, until a theory is 

plausible given some observed data. Jaci similarly saw a test’s purpose as being about 

theories, but as opposed to Tal, Jaci saw the purpose of a statistical test as the determination 

of whether the null hypothesis or the alternative hypothesis is true. Jaci also provided 

another explanation, one based on whether the observed difference was “naturally 

occurring”, a term Jaci used to imply contextual consistency based on a small margin of 

error. Aan saw the purpose of a statistical test as the comparison of evidence to a 

hypothesis, but did not articulate or think about sampling variability as part of the process. 

Finally, Kei seemed not to fully or clearly understand a purpose of a statistical test, 

commenting that one could simply “look at” the data and just tell whether or not there was 

a difference.  

As each participant saw a different purpose for statistical tests, the rest of their 

thinking also starkly differed from each other, in terms of their planning (i.e., goal setting 

and the selection of appropriate strategies), monitoring (i.e., self-checking on the progress 



 

 125 

of actions towards achieving one’s goals), and evaluating (i.e., revising one’s goals and 

strategies when necessary). 

5.1.1  The Nature of Graduate Students’ Planning When Conducting Statistical Tests  

 
Despite all six participants’ planning when conducting statistical tests being 

different, their plans all shared some common features. For example, nearly all 

participants’ plans led to the computation of a confidence interval or p-value. However, 

there are few similarities beyond this.  

Aan’s plan was very similar to a purely Neyman-ian likelihood ratio-based decision 

theoretic model. Aan’s plan began by specifying two hypotheses. Then, Aan collected and 

examined data, computing means for each group. Aan then quickly proceeded to generating 

an estimated difference between each group. This estimate was then compared to the two 

candidate hypotheses, with one being retained as the best hypothesis. Interesting to note is 

that Aan’s plan did not explicitly account for any uncertainty through the specification of 

a probability distribution.  

Tal’s plan was very similar to the type of thinking consistent with the likelihood 

school of statistics, or perhaps even confirmation by instances – Tal planned to examine 

data and determine whether some given evidence supported a particular hypothesis. Tal’s 

plan began with the specification of a theory, or rather, a research question that is laden 

with a general theory but contained a specific and contextualized claim. Tal’s plan then led 

to the collection and analysis of data, computing means for each group and most 

importantly, a confidence interval estimate. Tal then considered the “sensibility” of the 

results. One interesting note is that Tal’s determination of sensibility of the results might 

be construed as consistent with the hypothetico-deductive approach of the classical school 
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– a theory specifies which observed data might be construed as sensible through a null 

model. However, Tal’s determination of sensibility seemed not to be in terms of any 

observed data, but rather the sensibility of a research question. Therefore, Tal’s thinking 

was more consistent with confirmation by instances, which considers whether evidence 

supports the development of a hypothesis. However, Tal’s planning seemed to clearly 

depend on an explicit specification of a probability distribution. As opposed to the form of 

a null model, Tal’s plan for a statistical test rested upon a bootstrap distribution, which Tal 

thought about in a manner akin to thinking about a likelihood function and from which the 

confidence interval is extracted.  

Kei’s plan for a statistical test was highly driven by the set of procedures Kei was 

taught in EPSY 5261. Kei’s plan began with the data and examining each group separately. 

Kei first computed sample statistics and generated a graph for one group, ideally a 

histogram, to contextualize the data and develop a real-world understanding. After doing 

the same for the second group, Kei then computed the estimated difference between groups. 

Kei’s plan did not seem to automatically progress beyond this point. However, in contexts 

in which Kei might be expected to produce inferential statistics, Kei’s plan then led to the 

computation of either a confidence interval or a p-value. However, Kei utilized these 

statistics as supplementary to the estimated difference between groups in determining 

whether there was a real-world difference between groups. Thus, Kei’s plan, like Aan’s, 

did not explicitly account for any uncertainty through the specification of a probability 

distribution.  

Jaci’s plan for a statistical test was somewhat similar to the type of thinking utilized 

in the likelihood approach to statistics and in confirmation by instances, although as 
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opposed to Tal, Jaci’s plan did still contain elements from the classical approach to 

statistical testing, particularly decision-theoretic elements in selecting between null and 

alternate hypotheses. Jaci’s plan for a statistical test began with data. Next, on the basis of 

the data and context, Jaci determined which statistical test to conduct. Jaci then wrote the 

null hypothesis, before generating a simulated sampling distribution. However, as opposed 

to a null model, Jaci’s plan called for a simulated sampling distribution based on the data, 

i.e., a bootstrap dot plot, which Jaci interpreted and interacted with in a manner similar to 

the way in which one might interact with a likelihood function. From this, Jaci extracted a 

confidence interval (or alternately obtained a p-value automatically through statistical 

software) and determined whether the observed difference was a significant one. Here, 

Jaci’s plan was not to determine statistical significance, but rather a form of practical 

significance, based on the width of the confidence interval as a measure of the data’s 

precision in supporting a particular hypothesis (something akin to the degree to which 

evidence contributes to the development of a hypothesis in confirmation by instances).  

Ade’s plan for a statistical test, like Aan’s and Kei’s, did not explicitly specify a 

probability distribution, although Ade did connect the null hypothesis to the center of the 

randomization dot plot in StatKey and thus explicitly acknowledged the null model. Ade’s 

plan began with computing summary statistics for each group, before also creating graphs 

for each group. Ade then specified a null hypothesis, before obtaining a p-value and/or 

confidence interval. Based on the p-value, Ade determined whether the null hypothesis 

should be rejected. Thus, while consistent with the classical approach to statistical testing, 

Ade’s plan was very product-oriented. That is, Ade’s plan seemed to focus on the 
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extraction of a p-value, without any explicit steps specifically related to null models, nor 

any explicit thinking about the process by which a p-value is computed.  

Like Ade, Chau took a very product-oriented approach to statistical testing, albeit 

with a much more involved plan than Ade’s plan. Chau’s plan began with a research 

question, which specified the null and alternate hypotheses as well as the significance level 

against which the p-value would be interpreted. Chau also saw these research questions as 

fully specifying the type of test that would be conducted. Chau then examined the sampling 

strategy employed in the data generating process to ensure that it was a random sampling 

strategy, as a check on the assumptions of the t-test. Next, Chau computed summary 

statistics, seemingly to get a sense of the data. However, Chau also generated histograms, 

but mainly to check the normality assumptions of the t-test (when needed, based on sample 

size). Chau’s plan then led to conducting a statistical test and the extraction of a p-value. 

This p-value was then compared to the pre-specified significance level to determine 

whether the null hypothesis should be rejected. Thus, while a faithful application of the 

NHST approach to statistical testing, Chau’s plan did not explicitly include specific 

provision for nor thinking about null models.  

Given these results, one might ask whether these six students truly saw the 

generation of summary statistics or histograms as necessary steps in a plan for a statistical 

test, which is primarily predicated upon the comparison of a sample estimate to a null 

model. The answer to this question is unknown, as students were given a prompt in the 

form of a research question, and not instructed specifically to omit any steps they might 

normally take on the path to conducting a statistical test – they were left free to enact 

whatever plan they thought appropriate. However, as far as thinking about the statistical 
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nature of tests, i.e., the specification of a null model (or a bootstrap dot plot, depending on 

the approach), some students did not include a plan for the statistical aspect of a test at all. 

Of the six students, only Tal and Jaci explicitly incorporated some notion of probability 

and uncertainty in their plan for a statistical test, both in the form of the bootstrap dot plot.   

5.1.2  The Nature of Graduate Students’ Monitoring When Conducting Statistical 

Tests  

 
A likely casualty to the natural progression of memory decay in the seven months 

since the six student participants completed EPSY 5261 and their participation in this 

study, the students’ ability to monitor their process for completing a statistical test was 

poor.  

For example, Aan’s monitoring seemed to entirely consist of a comparison between 

‘what the means say’ and ‘what the p-value says’ in terms of whether there was a difference 

between groups. Similarly, Kei’s monitoring seemed to be based on Kei’s visual memory, 

with Kei only being able to tell whether something ‘looked wrong’ but without any greater 

specificity.  

Ade’s monitoring was slightly more advanced and focused on the distribution 

within each group. In particular, Ade was sensitive to differences in shape, location as 

quantified by the mode, and spread as quantified by the range and sample standard 

deviation. Chau also focused on the distribution within each group, but the purpose of 

Chau’s monitoring was for the verification of the normality assumption of the t-test. The 

rest of Chau’s monitoring also focused on assumption verification, with Chau noting the 

study design, sampling strategy, and sample size, en route to conducting a t-test.  

Tal’s monitoring also focused on the sample distributions, but like Ade and unlike 

Chau, Tal’s monitoring was to compare the distributions. However, unlike Ade, Tal 
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specifically contextualized the differences, noting differences in the ranges, the IQR, and 

even computing the percentage difference between the means of each group. Tal also spent 

time examining the null model (although Tal incorrectly thought it was a bootstrap dot 

plot), examining its shape, center, and spread. Tal paid particular attention to the upper and 

lower bounds of the middle 95% of the distribution, comparing these limits to the 

information obtained from comparing the means in each group.  

Jaci, like Tal, also focused on the upper and lower bounds of the middle 95% of the 

null model (and similarly incorrectly thought it was a bootstrap dot plot). However, as 

opposed to Tal, Jaci focused on contextualizing each bound separately and noted whether 

they both had the same practical and contextual interpretation.  

5.1.3  The Nature of Graduate Students’ Evaluating When Conducting Statistical Tests  

 
Even more so than monitoring, students’ evaluating seemed to be a likely casualty 

of the natural progression of memory decay in the seven months since the six student 

participants completed EPSY 5261 and their participation in this study. For example, Kei 

admitted to almost entirely forgetting how to evaluate progress towards completing a 

statistical test. Similarly, Aan, due to confusion in remembering how to interpret p-values, 

changed their strategy to focus almost entirely on the estimate of the means of each group, 

which Aan felt comfortable contextualizing and interpreting. As opposed to Kei and Aan, 

Jaci was singly focused on generating a bootstrap dot plot to draw inference. Therefore, 

Jaci’s evaluating was essentially non-existent, as it did not seem as if any of the other 

analyses Jaci ran led to any change in this central plan for conducting a statistical test, nor 

would they have regardless of the results.  
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Tal’s evaluating, like Aan’s and Jaci’s, seemed to focus on the estimates of the 

means of each group, as well as the confidence interval and bootstrap dot plot. However, 

in comparing these estimates to the research question, Tal’s strategy would only change if 

results were not “sensible”. When this was the case, Tal would first check the data to ensure 

that there were no computational errors and then Tal would question the governing theory 

and the research question. Therefore, Tal’s evaluating seemed to lead to changes in 

strategies in terms of thinking about the real world, rather than changes in strategies for 

specific statistical operations.  

Compared to Kei and Aan, Ade’s evaluating seemed to be a little bit more advanced 

and focused on the sample distributions. Specifically, Ade appeared poised to simply 

compare the means in each group to draw a conclusion, until Ade saw the differences in 

the sample standard deviations. This then caused Ade to generate histograms. Additional 

differences in the distributions between each group then led Ade to suggest that a statistical 

test ought to be performed.  

Chau’s evaluating entirely stemmed around the verification of the assumptions of 

a t-test. For example, during the statistical testing task, Chau determined that the VSE 

problem was not experimental in nature. This led Chau to evaluate their strategy in terms 

of utilizing a t-test. Eventually, Chau settled on using SBI methods, deciding that a t-test 

could not be used if the study was not experimental, but that a bootstrap dot plot could still 

be generated and utilized for making statistical inferences.  

The fact that all six students evaluated their statistical tests differently begs the 

question as to whether there was consistent and specific instruction on how to monitor and 

evaluate statistical tests in EPSY 5261. Unfortunately, it may simply be that monitoring 



 

 132 

and evaluating skills are acquired through experience, perhaps only with a level of 

experience unattainable within a single semester. Alternately, it may be that monitoring 

and evaluating are distinct skills that should be explicitly taught and practiced in the 

classroom and may have been underdeveloped in EPSY 5261.  

Either way, these results seem to indicate a need for further research on the 

development of students’ monitoring and evaluating when conducting statistical inference 

tasks as well as the identification of sensitive and specific research methods to distinctly 

and reliably measure differences in students’ monitoring and evaluating proficiency, 

separate from their planning. 

5.2  Research Question 2: Do graduate students think about null models when 

conducting statistical tests, and if so, how?  

 
It appears that the six participants generally did not think about null models when 

conducting statistical tests. Even when presented with null models in simulation-based 

software tools, the participants erroneously conflated the null model with a bootstrap dot 

plot based on the observed sample. Furthermore, their thinking about these sampling 

distributions was inconsistent with the hypothetico-deductive approach to testing. Instead, 

the participants overwhelmingly thought about these sampling distributions in a manner 

consistent with the likelihood approach to statistics, with the bootstrap dot plot identifying 

which parameters were likely to be true given the observed sample statistic.  

Specifically, two of the six participants, Aan and Chau, almost entirely focused on 

p-values, not being able to articulate what null models were, nor the role null hypotheses 

played in testing. Neither Aan nor Chau seemed to explicitly think about sampling 

variability, let alone null models. Furthermore, both Aan and Chau misconstrued the 
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randomization dot plot in StatKey for a bootstrap dot plot, essentially mischaracterizing a 

null model as something akin to a likelihood function.  

Another two of the six participants, Tal and Jaci, did explicitly think about sampling 

variability, but not in terms of a null model. Both Tal and Jaci misconstrued the 

randomization dot plot in StatKey for a bootstrap dot plot, similar to Aan and Chau. 

However, both Tal and Jaci explicitly thought about the relative likelihood of parameters 

based on this distribution, even using the term “likelihood”. Thus, while technically 

incorrectly using the randomization dot plot and technically thinking incorrectly from the 

standpoint of the classical school of statistics and its hypothetico-deductive approach to 

theory testing, Tal and Jaci both explicitly acknowledged and thought about sampling 

variability, albeit unwittingly in a manner akin to the likelihood approach to statistics.  

The other two participants, Kei and Ade, were able to connect the null hypothesis 

to the center of the randomization dot plot in StatKey. However, the extent to which Kei 

and Ade understood the randomization dot plot as a null model, or the extent to which they 

thought about this null model across all testing tasks, is somewhat unclear. For example, 

Kei seemed to suggest that one need only to “think about it [the estimated difference]” to 

answer a research question, omitting the need for a null model in the logic of statistical 

testing. However, the fact remains that Kei and Ade were able to connect the null 

hypothesis to the null model, through its center.  

These results, that most participants did not think about null models and the two 

that did only barely did so and with some difficulty, are not surprising. Previous research 

has found that students and in-service teachers overwhelmingly think about statistical tests 

not in terms of the process of the test (of which null models are the key), but rather in terms 
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of the product of the test, i.e., a p-value (e.g., Justice et al., 2018; Noll et al., 2018b) – this 

is akin to Aan’s and Chau’s thinking.  

Especially when using software such as R, a product-based thinking about 

statistical tests does not require one to think about a null model at all. One needs only to 

identify the correct test and utilize the correct function to obtain the all-important p-value.  

However, this is not true of simulation-based software such as StatKey. There, one 

physically generates a null model. Yet, four of the six students in this study did not 

recognize that the null model is based on a null hypothesis. Conceptually, randomization 

resampling based on a null hypothesis and bootstrap resampling based on the observed 

sample statistic are largely the same, taxonomically speaking from the perspective of 

different types of simulations and simulators. Compounding the issue of their conceptual 

similarity is that in StatKey, the user interface is nearly identical between these two use 

cases. It is incumbent upon students to remember to think about the center of the sampling 

distribution to determine whether they are working with a bootstrap distribution or a null 

model. In this study, the participants were mostly unable to recall this important distinction. 

5.3  Limitations on Inferences and Conclusions 

 
The purpose of this study was to describe graduate students’ thinking about 

statistical tests and null models. Therefore, one must consider the study tasks’ ability to 

elicit students’ thinking, the ability of the combination of data sources and artifacts to 

capture a trace of students’ thinking, the ability of the analytical approach to detect relevant 

aspects of students’ thinking, and finally the limitations of inferences that can be made 

based on the individual students who participated in this study and the manner in which 

they were recruited. 
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5.3.1  Limitations Based on the Tasks Utilized  

 
This study utilized multiple tasks to elicit participants’ thinking. This was 

intentionally done as the current body of literature on students’ statistical thinking is mainly 

based on single modality studies, typically in the form of either task-based interviews (e.g., 

Justice et al., 2018), group observations in a classroom (e.g., Noll et al., 2018b), or the 

analysis of students’ written work (e.g., Frischemeier & Biehler, 2013). More importantly, 

there are only a few surveys designed to distinctly measure students’ statistical thinking, 

as opposed to their reasoning, conceptual understanding, literacy, or any other construct, 

and it is an open question as to whether these assessments are able to distinctly measure 

statistical thinking. Nevertheless, thinking and reasoning are well defined distinct cognitive 

processes.  

However, not all of the procedures and materials as designed in this study were 

equally useful in obtaining traces of students’ thinking. For example, the statistical testing 

task presented open-ended research questions that, while requiring the use of a statistical 

test, did not mandate it. Indeed, nearly all participants computed summary statistics, which, 

while certainly a useful part of conducting a statistical test in general, is not core to the 

logic of statistical testing per the philosophy of statistics. Were these computations core to 

students’ logic of statistical testing, or were they simply a part of the procedures students 

were taught that are now procedurally associated with the logic of statistical tests? The 

answer to this question is unclear from the data collected in this study. Thus, while the 

open-ended nature of these tasks was designed to allow for an interpretivist analysis of 

students’ thinking, the general nature of these tasks was perhaps insufficiently specific to 

deeply probe and elicit students’ thinking about the core aspects of statistical testing. 
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Nevertheless, relative to prior research studies, these tasks did place additional focus on 

testing, and specifically thinking about the null model. It may simply be that students do 

not remember how to think about null models without specific and recent training.  

Additionally, some of the statistical test results presented to participants in the 

statistical testing interview contained intentional errors. This was done to elicit aspects of 

students’ monitoring and evaluating. In identifying an error, participants would necessarily 

have had to articulate their monitoring and evaluating, as they identified what information 

they checked and how they determined something was amiss. Even a pause to consider 

something that may seem amiss would have been an insightful trace of students’ 

monitoring, akin to preferential looking studies in which extended gaze is typically the 

basis of an inference that participants were surprised to see a particular stimulus.  

However, none of the participants in this study identified any of the intentional 

errors in the stimuli in the statistical testing interview. Even when participants were queued 

by the researcher to examine the piece of erroneous information, they failed to identify that 

the output was impossible. One participant, Tal, even commented that the researcher might 

place intentional errors in the stimuli, but still failed to recognize the errors. Therefore, for 

these participants and the level of statistical thinking they were able to achieve in this study, 

identification of errors is perhaps too challenging a task. This is akin to writing test items 

that have too high a difficulty level for participants, leading to a floor effect in participants’ 

scores, which then occludes the analysis of the construct of interest. Furthermore, 

participants were not instructed to look for errors. Therefore, it may be inappropriate to 

expect participants to exhibit the conjectured cognitive processes that the intentional errors 

were meant to elicit. Further research efforts designed to utilize intentional errors in the 
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study of statistical thinking should thus include explicit instruction to participants to look 

for such errors in separate assessment items. 

It is worth noting that one of the pilot participants, an experienced statistics 

educator, was able to correctly identify the intentional errors without any specific 

prompting or priming by the researcher. Thus, while such tasks may be appropriate for 

experts, they are likely too difficult for novices. Yet, stimuli with intentional errors may 

still be useful in instruction or in the assessment of intermediate to advanced students.  

Because this study’s participants were unable to identify that they were looking at 

errors, they may have inadvertently abstracted incorrect information from the stimuli as 

they attempted to recall statistical knowledge. Therefore, results from the statistical testing 

interview should be interpreted with this fact in mind, and that any trace of a participant 

“incorrectly” thinking, especially with regards to p-values, in that task and in the concept 

mapping task should not serve as the basis of any inferences about students’ thinking.  

Finally, it must be noted that each participant took approximately 90 minutes to 

complete all tasks as part of this study. It is possible that the participants felt some level of 

cognitive fatigue by the end of the study. Therefore, this possible fatigue must be kept in 

mind, especially when interpreting results from the statistical testing interview and the 

video-cued interview, which both came after the concept mapping task and the statistical 

testing task. 

5.3.2  Limitations Based on the Data Collected  

 
The multiple modalities of data collected from each of the tasks in this study were 

designed to aggregately serve as a robust method of capturing traces of participants’ 

thinking, particularly in terms of their monitoring and evaluating. This was intentionally 
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done as the debate on the extent to which think-aloud procedures interfere with thinking is 

one without consensus. Indeed, some participants seemed able to flawlessly elucidate their 

thinking, such as Tal, while others required the researcher to prompt them to fully elicit 

their thinking, such as Aan. With this in mind, it is important to note that there were many 

moments in which the researcher could have, and perhaps should have, asked the 

participants to explain their thinking out loud, rather than sit in silence. This, perhaps, 

would have been a more faithful application of the think-aloud procedure. However, 

because there was the gaze recording, which would serve as a trace of thinking even in 

moments of silence, as well as the video-cued interview, in which the researcher could 

retrospectively ask the participant to explain their thinking, the researcher chose to make 

the decision to prompt the participant to think aloud conservatively. Therefore, it is possible 

that some key moments of participants’ in-the-moment monitoring were not captured by 

the audio and video recordings. With a trace of these moments of monitoring only captured 

by the gaze recording, these moments were not able to be reliably triangulated. Thus, there 

may be gaps in the description of each participant’s thinking, especially in terms of their 

monitoring. Thus, absence of evidence of specific types of thinking should not be construed 

as evidence of an absence in participants’ thinking during this study’s tasks. 

Additionally, and contributing to the potential misalignment of the difficulty of 

these tasks with participants’ abilities is the fact that, participants were explicitly instructed 

not to prepare or review any materials prior to participating in this study. The purpose of 

this instruction was to provide a way to identify the most memorable aspects of statistical 

thinking, which might then serve as an anchor in the future design of activities and lessons. 

However, it was clear that the participants took some time to settle and slowly recollect 



 

 139 

how to do statistical analyses. Combined with the social pressure of wanting to ‘do well’ 

while sitting next to the researcher, this instruction to not prepare may have negatively 

affected the measurement and inferences of participants’ thinking. Furthermore, it was not 

ecologically valid, as these participants would have utilized materials and notes had they 

been assigned a statistical testing task outside of the confines of a research study. 

Therefore, results from all tasks should be interpreted with this fact in mind, that 

participants had completed EPSY 5261 seven months prior to participating in this study 

and that they did not review any study materials before beginning the study tasks.  

Finally, the largest limitation is one of data collection errors. For both Jaci and 

Chau, the audio recording of the statistical testing interview was corrupted and thus 

unusable. However, in both cases, the screen recordings and the researcher’s observer notes 

were used to support analyses of Jaci’s and Chau’s thinking. Similarly, for Ade, the video 

and audio recording of the video-cued interview failed. However, the researcher recognized 

this immediately after the conclusion of the video-cued interview, and thus the researcher, 

the research associate, and Ade all immediately wrote down a summary of the discussion 

that had occurred during the video-cued interview. These notes, in addition to the 

researcher’s observer notes, were used to support analyses of Ade’s thinking.   

5.3.3  Limitations Based on Researcher Reflexivity 

 
Beyond limitations of study design and data collection, it is imperative in 

qualitative research to consider the inherent biases of the researcher when conducting 

analysis and the analytical approach taken.  

First and foremost, the researcher was one of the instructors of EPSY 5261 in the 

Fall 2021 semester from which three of the six participating students were recruited. Not 
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only does this create the potential for bias in the analysis, but it also creates a bias on the 

part of the participants, who were asked to sit next to their instructor in a research setting 

while completing the study tasks. This social desirability bias was also likely present for 

the other three participants as well, as their instructor, while not the person sitting next to 

them during the data collection, was also involved in this study.  

With the potential for bias in the analysis, as participants’ performance could 

potentially be construed as a reflection of the quality of the researchers’ teaching, what 

steps were taken to mitigate this bias? First and foremost, it is important to state the 

potential desirability of results on the part of the researcher. Prior to data collection, the 

researcher assumed that students would not remember much in terms of what they had 

learned in EPSY 5261, but rather than take a deficit model approach to the analysis, the 

researcher’s goal was to describe what the students did remember. As there have been no 

previous studies examining graduate students’ thinking about statistical tests with a distal 

measure similar to the seven-month delay between the completion of EPSY 5261 and 

students’ participation in this study, there was no specific desirability in terms of what 

students should remember, beyond the learning goals of the course. The primary objective 

of the research was thus first and foremost to simply describe what the participants did, to 

formally enter into the empirical record evidence of students’ thinking several months after 

completing an introductory level course utilizing an SBI curriculum.  

However, what the teaching team of EPSY 5261 would have hoped students 

remember was that they would remember what a null model was, where it comes from, and 

what it represents, as discussed in a meeting in 2019 (well before conceptualization of this 

study) and shown in Figure 23. While the researcher of this study was a part of that 
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discussion, the assumption prior to conducting this study was that participants likely would 

not remember a null model, as it was not an explicit focus of instruction in EPSY 5261. 

Thus, the concept of a null model could have easily been lost among the other topics 

covered in the course, and in the time that passed since the completion of the course and 

this study’s data collection.  

To ensure the credibility of the results of the analysis, the study design employed 

several strategies, as detailed in Chapter 3. However, one potential weakness of the design 

is that there was not a second researcher who examined the data, and thus no comparison 

of the reliability of the codes that the researcher extracted from the data. Nevertheless, 

some of the codes and relevant moments were discussed directly with participants as part 

of the video-cued interview, adding a measure of credibility to the findings of this study. 

5.3.4  Limitations on the Generalizability of Results  

 
With an intentionally recruited sample of six students, few if any results can be 

generalized from this study. Indeed, generalization of results was not a primary objective 

of this study. However, it is also important to think about the characteristics of these 

students, the courses they took, and the institution at which they took the courses.  

All students completed EPSY 5261 in the fall of 2021, an introductory level 

statistics course at the master’s level, at the University of Minnesota Twin-Cities. There 

were two instructors of in-person sections that semester. Both were experienced statistics 

educators, having taught the course many times previously, and being familiar with 

historical and current trends in statistics education research. The course utilized the 

Statistics: UnLOCKing the Power of Data curriculum (Lock5; Lock et al., 2021), 
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accompanied by activities designed by the teaching team at the University of Minnesota 

over the previous decade.  

However, there were some variations in how each instructor taught the course. For 

example, one instructor presented study design diagrams as a framework for thinking about 

study design and the design of simulators. The purpose of these study design diagrams was 

to focus on data generating processes as well as to address potential misconceptions related 

to simulation as identified by Brown (2021). Of the three students who participated in this 

study who were taught these study design diagrams, only one mentioned these diagrams in 

the study. Kei utilized study design diagrams when drawing a concept map for the logic of 

a statistical test. To what extent did instruction with these diagrams and the fact that Kei 

remembered these diagrams affect Kei’s thinking when conducting statistical tests? The 

answer is likely not all that much. Kei’s thinking while conducting statistical tests did not 

seem to follow the specific plan or framework of the study design diagrams. Instead, Kei’s 

thinking seemed to focus on the software Kei was utilizing and procedural memory. Kei’s 

thinking thus was different even from Kei’s two classmates who also participated in this 

study, and was perhaps most similar to Ade’s, who was not in the same EPSY 5261 section 

as Kei. What makes Kei’s and Ade’s thinking similar? It seems to be the relative 

recollective ability demonstrated in the tasks that make Kei’s and Ade’s thinking most 

similar. Both expressed doubt in completing the tasks. Both employed specific plans for 

conducting a statistical test but struggled in monitoring and evaluating their plan. Both 

were able to eventually remember that the center of the randomization dot plot is related to 

the null hypothesis. Perhaps most importantly, both had very little prior statistics 



 

 143 

experience before completing EPSY 5261 and very little experience with statistics since 

having completed EPSY 5261.  

This last point is important. For all the individual differences that may manifest in 

the classroom, and all of the environmental differences, such as different instructors or 

different curricula, what seems the simplest explanation for the similarity in Kei’s and 

Ade’s thinking, along with all the other participants, is the simple fact that we humans 

ubiquitously forget information and this forgetting is only abetted with reinforcement. The 

fact that Kei’s and Ade’s thinking is similar is a possible testament to the efficacy of the 

Lock5 curriculum and the consistency between the instructors of EPSY 5261 that both Kei 

and Ade had. Perhaps, more generally, it is a testament to the SBI approach to teaching 

statistical inference, which after all aimed to place the logic of statistical testing at its core. 

Therefore, while there are certainly many factors that affect students’ learning and 

students’ performance, it may simply be that time vanquishes all, and in longitudinal 

studies of students’ statistical thinking, individual and environmental effects are somewhat 

muted relative to the effect of individual differences and environmental effects on proximal 

studies and measures most common in the statistics education literature.  

5.4  Implications for Teaching 

 
Given the findings of this study, there are two main questions with regards to the 

implications for teaching that arise: (1) Should one-and-done students take an SBI course? 

and (2) Should one-and-done students take a course based on the classical school of 

statistics? 

5.4.1  Should One-and-Done Students Take an SBI course?  
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SBI courses aim to put the logic of statistical inference at their core. With regards 

to statistical testing, it is the null model that occupies the key role in the logic of a statistical 

test. SBI software applications all display null models and it is with these null models that 

students directly interact. However, in this study, most participants conflated this null 

model with a bootstrap dot plot at one point or another. Does this mean that SBI curricula 

have failed in their task?  

Each SBI curriculum is different and they also differ in the degree to which students 

interact with null models. For example, in the ISI and Lock5 curricula, students generate 

null models only by clicking a ‘simulate’ button, but the rest of the characteristics of the 

model is specified by simply knowing which link to click (e.g., test for a difference in 

means, test for a single proportion, etc.). In the CATALST and CourseKata (Son et al., 

2021) curricula, students build software models that generate null models. In CATALST, 

students build TinkerPlots models, and it is the design of these models, meant to replicate 

the data generating process of the real world, that leads to the specification of the shape, 

center, and spread of the null model. Similarly, in the CourseKata curriculum, students 

build models in R, before resampling data to produce sampling distributions. It is currently 

unclear to what extent these different curricula and the different nature of students’ 

interaction with models (and the null model in particular) affect students’ thinking, both 

within the course and well after the course ends.  

Furthermore, the six participants in this study all seemed to remember how to think 

about bootstrap resampling quite well – it was null models that proved difficult. Therefore, 

it stands to reason that, at least with regard to the logic of estimation, this curriculum was 

effective in developing these participants’ statistical thinking. It is more likely that the 
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participants’ difficulties in thinking about null models in this study are not due to any 

failure of the SBI curriculum, but rather due to the inherent complexity and difficulty in 

thinking about null models, null hypothesis significance testing, and more generally the 

hypothetico-deductive approach to confirmation theory. 

However, whether this course was effective in its goals is only one consideration 

that should be made given that these students were mainly one-and-done statistics students. 

With only one semester of statistical training to work with, what should instructors and 

program directors focus on teaching for such graduate students? Are the benefits of 

teaching an SBI course, focused on developing a conceptual understanding of statistical 

inference and its logic, worth the opportunity cost? The answer to this question may indeed 

be ‘no’.   

This point is perhaps most clearly elucidated by Kei, who commented that, “For 

the class, I think having actual papers, and having more time to apply it to things we’re 

actually reading and doing would have been beneficial. Like, I get the point of simulation, 

but I’m like … especially for intro to stats people, we’re not going to be doing any of that 

stuff for a minute, and so I think it’s more important that we know how to read an article 

and know what to take from an article than to do weeks on simulation. Cuz we’re not going 

to be working with our own data for a minute. So, I think it’s more important especially 

for 1st and 2nd years, and even master’s students, to know how to read an article and know 

what to look for and how to critique it” (Appendix P03-E, 05:07 – 06:00).  

This point, that the opportunity cost for one-and-done graduate students is too high 

when spending their one semester on introductory SBI methods, is made even more 

poignant when combined with the fact that recent research has shown that prior experience 
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is a larger determinant than curricular differences in students’ conceptual understanding in 

introductory statistics courses (Chance et al., 2022). This implies that there is, at least in 

the short-term, little curricular effect on students’ conceptual understanding, and thus that 

the choice of curriculum might be made on other considerations, such as practical training 

in reading a literature, as suggested by Kei.   

Additionally, posterior experience, that is, whatever experiences occur after 

students complete an introductory level course, also appears to play a large role in students’ 

statistical thinking skills. Of the six participants in this study, Tal and Chau were the two 

participants with the most experience in conducting quantitative analyses both before and 

after having completed EPSY 5261. While Tal and Chau made similar errors in thinking 

about null models as the other four participants, both were particularly comfortable in 

thinking about data, in computing and interpreting summary statistics and data 

visualizations, and in thinking about confidence intervals. For one-and-done students, the 

hard-earned conceptual understandings obtained in SBI curricula, without reinforcement, 

seem likely to quickly fade. Even for Tal and Chau, perhaps because the way statistics is 

practiced is typically not simulation based, both reverted to thinking about ‘means’ and ‘p 

< .05’ in R. This might be due to the nature of statistical practice in their fields, what they 

are most exposed to, and the practices that are most reinforced. As the aphorism goes, ‘Out 

of sight, out of mind’. 

Therefore, despite the evidence that SBI curricula seem to do at least as well as 

consensus curricula in developing students’ conceptual understanding of statistics in end-

of-term assessments, for one-and-done graduate students, it may be that the opportunity 

cost of using an SBI curriculum, at least among the common SBI curricula that currently 
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exist, may be too high a cost. Instead, these students’ short time in a statistics classroom 

may be better spent focusing on more practical and translational considerations related to 

statistical thinking.   

5.4.2  Should One-and-Done Students Take a Course Based on the Classical School of 

Statistics?  

 
It is well known that the logic of statistical testing within the classical school of 

statistics is confusing to many students and often appears erroneous even in textbooks 

(Nickerson, 2000). The students participating in this study were no exception. Most 

struggled to think about null hypotheses and p-values, and nearly all struggled to think 

about the randomization dot plot (i.e., the simulation-based null model). However, nearly 

all students correctly interpreted and thought about confidence intervals. Furthermore, 

most students thought about the bootstrap distribution in a manner akin to a likelihood 

function quite correctly and intuitively, albeit unwittingly. Even though statistics educators 

have spent decades of work attempting to develop new methods to clarify thinking in the 

hypothetico-deductive approach required of the classical school, students still appear to 

struggle with the concepts. Given evidence of seemingly effortless and fluent thinking by 

students consistent with the likelihood-based approach, why not adopt a different school 

of statistics?  

Indeed, the Bayesian school of statistics has, since the start of the 21st century, been 

gaining widespread popularity. This is especially true in computationally complex fields 

such as genomics which have greatly benefited from Bayesian computational approaches. 

Philosophically speaking, the Bayesian approach to confirmation is also a more widely 

accepted approach when compared to the hypothetico-deductive approach to confirmation.  
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These two facts, when combined with the seemingly intuitive manner in which 

students in this study thought in terms of likelihood, provide a compelling argument to 

focus on the likelihood function as the basis for statistical inference in introductory courses 

for one-and-done students and not null models. As Bayesian posterior probabilities are 

proportional to the product of prior probabilities and the likelihood function based on the 

observed data, a likelihood-based framework might be easily scaled up to incorporate the 

notion of prior probability.  

However, computing posterior probabilities are computationally intense, relative to 

the introductory SBI curriculum. Therefore, it seems appropriate to instead only focus on 

the likelihood function, as generated via bootstrap resampling based on some observed 

sample, and to use this likelihood function to extract a credibility interval, and in general, 

to reason about the relative likelihood of various parameters, given the observed evidence. 

Tests could then simply take the form of the likelihood ratio test, with a focus on Bayes 

factor, rather than p-values.  

It is important to note that while such an approach might serve to develop students’ 

thinking about uncertainty and probability in statistical tests, such a course based on the 

likelihood function would be misaligned with historical and current practice, which 

predominantly favors the classical approach to statistical testing and NHST. In essence, 

fluency and expertise in thinking about statistical tests through a likelihood function may 

not serve the needs of one-and-done students. Therefore, it is important to consider 

whether, compared to current SBI curricula, a course grounding statistical testing with the 

likelihood function could serve as a foundation to subsequently develop students’ thinking 

about null models in a hypothetico-deductive approach to statistical testing. Nevertheless, 
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as the 21st century progresses, Bayesian methods appear to be promulgating across science, 

and thus, preparing students to think about likelihood functions in addition to hypothetico-

deductive approach may serve their future needs in addition to their current needs.  

Given the evidence observed from the six students who participated in this study, 

successfully developing students’ statistical thinking with such an introductory likelihood-

focused simulation-based curriculum appears attainable. For example, Tal specifically 

commented upon the varying degrees of likelihood with which a parameter may be true.  

Furthermore, and in a departure from the study tasks and stated research questions, 

after Jaci completed the Concept Mapping Task, the researcher very briefly explained prior 

and posterior distributions – prior distributions as ‘what you think walking in before you 

have collected any data’ and posterior distributions as ‘what you think after collecting 

data’. Then, the researcher presented a drawing of a prior and posterior distribution to Jaci, 

using the context of home prices in New York from the Statistical Testing Interview (see 

Figure 24). Jaci was then asked to interpret the distributions relative to the question “Is the 

average home price equal to $300,000 in New York?”. Jaci intuitively thought about the 

posterior distribution, commenting that “The posterior is obviously higher than the 

supposed hypothesis” (Appendix P04-A, 05:18 – 05:22).  

Jaci almost assuredly did not fully appreciate the intricacies of posterior 

distributions, given that Jaci had never received instruction on this topic. However, the fact 

that Jaci was able to think about the posterior distribution and draw a conclusion in an 

accurate manner without instruction is an indication of how Jaci thinks about bootstrap dot 

plots and sampling distributions in general. Indeed, many researchers have argued for the 

relative intuitiveness of Bayesian statistics. Importantly, Jaci’s thinking provides some 
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empirical evidence that students may indeed find thinking about posterior distributions 

easier than they find thinking about null models, corroborating researchers’ claims. Given 

the philosophical and practical advantages in addition to this potential pedagogical 

advantage, it seems a worthy endeavor to explore simulation-based Bayesian introductory 

statistics courses as a means for teaching statistical inference to one-and-done graduate 

students. 

5.5  Implications for Practice 

 
There are two specific recommendations for practice based on the performance of 

the six students participating in this study that are particularly noteworthy. First is that 

practicing statisticians should explicitly provide null models for all statistical tests they 

conduct. Second, practicing statisticians and software developers must carefully consider 

the user interface of their software, as students’ statistical thinking may be affected by the 

specific manner in which information is presented. 

5.5.1  The Explicit Specification of Null Models 

 
As the proverbial aphorism goes, ‘out of sight, out of mind’. For the six participants 

in this study, the fact that none has seen a null model since they completed EPSY 5261 is 

perhaps the simplest and most influential factor that can explain their difficulty in thinking 

about null models, and in general, their thinking about null hypotheses and p-values. 

Indeed, the few students who had done some quantitative analyses or read papers with 

quantitative results since completing EPSY 5261 seemed to be quite fluent in interpreting 

means and typing it to the real-world context, as well as in interpreting confidence 

intervals. These students even were fluent with the confidence interval approach to 

hypothesis testing, in which one only considers whether a particular value for a parameter 
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is contained within the confidence interval to judge whether it is a plausible value for the 

parameter of interest, ‘rejecting’ the value as implausible if it is not so contained. Despite 

this method being equivalent to ‘p < .05’ thinking, the participants in this study did not see 

these two methods as equivalent and struggled when thinking about p-values. Why the 

participants were generally more comfortable with confidence intervals than p-values is an 

open question. At the very least, regardless of the manner in which students are taught 

about each (whether it be through simulated distributions or by examining the t-

distribution), no sampling distribution is typically included in statistical software output. 

As probability distributions are the engine of statistics, it seems to be that one semester of 

introductory statistics is not enough to clearly entrench these distributions in students’ 

minds, such that they coherently think about them when faced with statistical inference 

tasks. This is not surprising, as sampling distributions are famously one of the most difficult 

concepts in statistics to understand. Yet, they are the core of statistical inference. Thus, 

within the span of one short semester for one-and-done students, instructors must ensure 

students abstract and generalize the concept of a sampling distribution with such fluency 

that they are able to routinely apply it. This is no easy task, especially given that much of 

a typical semester is spent on other topics and not solely on statistical inference and 

sampling distributions. It is likely that such students require additional scaffolds as they 

enter statistical practice.  

Thus, when considering statistical practice, it bears asking “Why only write ‘H0: 

μ1 – μ2 = 0’”? This does not meet the criteria of fully specifying a null model. Implicit for 

experts is that the parameter “μ1 – μ2” will be estimated by the sample statistic of the 

difference in sample means between two groups, that the sample statistic’s distribution will 
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be normally distributed per the Central Limit Theorem, and that the spread of the 

distribution will be estimated based on the underlying variation observed within each group 

in the sample and the known sample size, as per the Central Limit Theorem. Do students 

implicitly understand these two additional required criteria when they see “H0: μ1 – μ2 = 

0”? The answer, based on the researcher’s own experiences and beliefs, is likely no. 

Therefore, one potential practice that might develop the habit of graphically specifying null 

models for all statistical tests they conduct, which would additionally serve as a scaffold 

for students in thinking about statistical tests, reinforcing their thinking about null models 

beyond their time in statistics classrooms.  

However, it should also be noted that curricular design can also support the 

development of the habit of mind in thinking about null models, which could, in 

conjunction with practice, serve to develop and reinforce students’ thinking about null 

models. For example, one-and-done courses could be designed solely around developing 

students’ understanding of and thinking about statistical models used in real-world studies. 

In such a course, always asking students to identify the null hypothesis statement for each 

statistical model or test as well as the two additional required criteria to fully specify a null 

model might also serve to develop students’ thinking in a manner consistent with the core 

logic of statistical testing. Such a course, utilizing real-world studies, would also support 

the reinforcement of students’ thinking about statistical testing once they enter statistical 

practice, so long as statistical practice similarly emphasized the explicit and complete 

specification of the null model in statistical testing.  

5.5.2  The Careful Consideration of Statistical Software User Interfaces  
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The aphorism ‘out of sight, out of mind’ is a useful reminder for practicing 

statisticians to consider what pieces of information should be explicated in statistical 

communication, but its inverse, ‘what is in sight is in mind’ must also be considered. 

Specifically, the difference in layout of the various statistical software that is utilized 

seemed to play a role in this study’s participants’ thinking.  

For example, Tal, who has experience with SPSS, was seemingly annoyed by the 

way in which R presented information. Tal then commenced to utilize an SPSS-based 

schema to think about the output R was providing. Similarly, Kei was particularly sensitive 

to noticing pieces of information that were intentionally deprecated in StatKey output in 

the statistical testing interview.  

Students’ schemas for statistical thinking being dependent on the software layout 

is a prediction of a strong theory of instrumental genesis. In Kei’s example, it is unclear 

whether Kei saw R and StatKey as equivalent statistical tools. Certainly, Kei’s thinking 

was quite different when using each of the two software tools, even beyond the procedural 

differences that would be expected from differences in the design of each software tool.  

If students’ thinking is dependent on, or even moderately correlated to, which 

software they utilize, then this dependence may inhibit transfer of students’ statistical 

thinking to other problems and certainly other software applications. However, it provides 

an interesting piece of information for instructional designers and for practicing 

statisticians. If novices’ statistical thinking is intrinsically tied to the manner in which 

software tools present statistical output, then not all software tools are equivalent. 

Practicing statisticians should privilege those software applications that present 

information in a manner most consistent with the core logic of statistical inference. 
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5.6  Implications for Research 

 
As this study utilized a unique combination of methods and sources of data, it bears 

considering the relative value of each of these sources and tasks, as might inform future 

research on students’ statistical thinking. However, first and foremost, this study shows the 

need for additional longitudinal studies of students’ statistical thinking, or studies with 

distal measures of students’ statistical thinking. 

5.6.1  The Value of Longitudinal and Distal Studies of Students’ Statistical Thinking 

 
This study was one of the first to study students’ statistical thinking several months 

after they have completed an introductory level course. While some students, particularly 

statistics majors at the undergraduate level, are likely to take additional statistics classes 

that will build on material in their introductory level course, it still bears considering what 

these students remember well after the completion of an introductory level course. It is well 

known that individuals forget information over time. The learning objectives for a statistics 

course, or any course, are rarely designed with the intention that students need not 

remember the information after the course has been completed. Therefore, what students 

remember and how they remember it is an important piece of information that can inform 

statistics education research, especially at the post-secondary level. For example, the fact 

that the participants in this study were able to think about bootstrap dot plots and 

confidence intervals confidently and correctly is important information for instructors in 

determining how long to spend on various topics, as well as for researchers studying course 

sequences and the efficacy of various scaffolds to support student learning. Furthermore, 

this information, when combined with previous studies examining students’ thinking about 

estimation and their thinking about testing, can help to support inferences and theories 
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about students’ statistics education. Therefore, the first implication for research from this 

study is that statistics education researchers should conduct more longitudinal studies, or 

studies with distal measures of students’ statistical thinking. 

5.6.2  The Relative Value of the Tasks Used in this Study  

 
This study utilized four different tasks to elicit participants’ thinking. Thus, it bears 

considering which tasks helped to support inferences about each of the different aspects of 

thinking: planning, monitoring, evaluating.  

For making inferences about participants’ planning, the concept mapping task and 

the statistical testing task were particularly helpful. The concept mapping task provided 

participants an opportunity to say what they would do and then the researcher could 

observe what they actually did in the statistical testing task. Together these tasks helped 

triangulate participants’ planning. Having both tasks was particularly helpful, as there was 

some small misalignment between the planning across tasks for most of the participants. 

This may have been due to specific intricacies of each statistical software tool or may also 

be due to participants’ evaluating and revisions to their planning that occurred in the 

statistical testing task.  

For making inferences about participants’ monitoring, the gaze recordings from the 

statistical testing task, the statistical testing interview, and the video-cued interview were 

particularly helpful. Not all participants clearly articulated their stream of consciousness 

by thinking aloud in the statistical testing task and thus the gaze recordings proved an 

excellent resource in terms of capturing students’ in-the-moment thinking. Furthermore, 

the use of the gaze-recordings in the video-cued interview was particularly helpful in 

retrospectively prompting participants to reflect upon and elucidate their thinking during 
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the statistical testing task. Aside from simply seeing a screen recording of what they had 

done in the statistical testing task or hearing what they had said from an audio recording, 

seeing their gaze recording provided participants an opportunity to explain even their most 

confusing moments in the statistical testing task, which most often aligned with students’ 

monitoring. Especially given the seven-month delay between the completion of EPSY 

5261 and their participation in this study, most participants spent a substantial amount of 

time ‘scanning’ the screen, which was readily observed by examining the gaze recordings. 

Thus, using the gaze recordings in the video-cued interview provided an opportunity for 

participants to retrospectively comment on all aspects of their thinking, including these 

moments of ‘scanning’ and monitoring. Additionally, the statistical testing interview 

provided an interesting insight into how the participants processed the information 

provided by statistical software tools reporting the results of statistical tests. This 

information processing most closely aligns with the monitoring subcomponent of thinking. 

While the difficulty level of the stimuli used in this study was perhaps too difficult for these 

participants, this task, or similar tasks, again in conjunction with gaze recordings, may 

prove a useful tool in future studies of students’ statistical thinking.  

For making inferences about participants’ evaluating, the statistical testing task and 

especially the video-cued interview were particularly helpful. In the statistical testing task, 

moments in which participants were evaluating were primarily identified by participants’ 

articulation of changes to their original plan. With prompting by the researcher, participants 

were then able to articulate their thinking with regards to their evaluation of information. 

However, the video-cued interview provided an equally helpful measure of evaluating, if 

not more so. Perhaps because the six participants in this study were all graduate students 
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in the educational and psychological sciences, their ability to comment on and analyze their 

own thinking was uniquely enabled in the video-cued interview. In that task, the 

participants were able to take a step back from their in-the-moment thinking in the 

statistical testing task and provide insights that served not only as credibility checks, but 

also provided context and detailed explanations of their own thinking. Therefore, future 

research in students’ thinking might benefit from the use of video-cued interviews, even if 

those interviews are conducted without gaze recordings. 

5.6.3  The Relative Value of the Data Sources Used in This Study 

 
This study utilized three primary sources of data across all tasks: audio recording, 

screen recording, and eye gaze recording. The use of audio and screen recordings is quite 

common in statistics education research, not only for the study of individual students’ 

thinking but also for groups of students. However, the use of eye gaze recording is 

relatively novel in the study of students’ statistical thinking. Thus, it bears considering 

whether the costs of collecting this source of data are eclipsed by its benefits.  

The costs of capturing gaze recordings are considerable. The physical equipment 

alone can cost several thousands of dollars. Furthermore, utilizing the complicated 

equipment and its associated software also requires substantial training. This is particularly 

true for the calibration process, in which the headset that participants wear to capture their 

eye gaze must be physically adjusted. This study was only able to utilize these tools by the 

support and collaboration of a research associate who had access to eye-tracking 

equipment, was well-versed in the utilization of this equipment, and who was present to 

ensure that gaze recordings were successfully captured for all participants.  
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In addition to these costs to the researcher, we must also consider the costs to the 

study participants. While participants were financially compensated for their time, 

especially in part due to the invasive and perhaps uncomfortable nature of wearing the eye-

tracking headgear, this may have still been uncomfortable for students. Although the 

participants in this study did not explicitly comment on any discomfort with regards to 

wearing the eye-tracking headgear, wearing the equipment may have affected their 

thinking. Perhaps because all six participants in this study are graduate students in the 

educational and psychological sciences, they seemed more interested and curious in their 

gaze data, rather than uncomfortable. Yet, this might not be the case for other participants.  

Given these costs, what then were the benefits of the gaze recording data? The gaze 

recordings were particularly helpful in making inferences about students’ monitoring, 

especially in cases where the students were not comfortable articulating a stream of 

consciousness. For example, Tal was particularly comfortable with the think-aloud 

procedure, explaining in detail their thinking. Thus, for Tal, the gaze recordings only 

seemed to serve as an additional source of data in the triangulation of Tal’s thinking. 

However, this benefit should not be discounted. While Tal’s planning could be triangulated 

through multiple tasks and sources, Tal’s monitoring, and in general all the participants’ 

monitoring, was much harder to capture. Especially for studies focusing on students’ 

monitoring and evaluating, these gaze recordings might be an invaluable source of data to 

help triangulate their thinking, beyond what can be obtained via think-aloud procedures.  

For participants who did not explain their thinking aloud as seamlessly as Tal, such 

as Aan, the gaze recordings were of a greater benefit. Aan stayed silent many times as they 

were processing information and thinking, and despite being prompted to think out loud, 
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still often stayed silent. While researcher queueing was able to elicit aspects of Aan’s 

monitoring, these were not as faithfully in-the-moment as with Tal’s explanations. 

Therefore, the gaze recordings for Aan served as the primary data source in terms of what 

Aan was monitoring, in what order, and how Aan eventually arrived at the conclusions that 

Aan did explain out loud. Thus, gaze recordings can be a vital source of data that is 

cognitively non-invasive, compared to think-aloud procedures, especially for participants 

who are not adept at explicating their stream of consciousness.  

One limitation of the analysis of gaze recordings is that a researcher must be careful 

in thinking about the discriminability of the gaze recordings to identify particular aspects 

of thinking. That is, one must think not only about what aspects of participants’ thinking 

might be inferred from a particular gaze pattern, but also what all possible gaze patterns 

might be produced by that particular aspect of participants’ thinking. This analysis, in 

essence producing a two-by-two table of aspects of thinking and evidence in the gaze 

recordings, is consistent with modern approaches to video-based data and would be an 

essential step for a more thorough and in-depth analysis of the gaze-recordings as the 

primary data source (DeLiema et al., 2023). These analyses could be done for a single study 

participant, or ideally, across participants, to generate a more generalizable framework for 

the study of students’ monitoring. 

5.7  Conclusion 

 
Might SBI curricula be able to support graduate students' development of an 

understanding of the core logic of statistical testing? How do graduate students who have 

completed a master’s level introductory statistics course utilizing an SBI curriculum think 

when they conduct statistical tests?  
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To answer this question, Chapter Two of this dissertation first examined the history 

and philosophy of statistics, identifying that the key to the logic of a statistical test is the 

exact specification of the probabilities with which possible sample statistics may occur 

given some hypothesis to be tested (i.e., a null model). Next, the chapter examined current 

understanding of students' thinking within and after having completed an SBI introductory 

level statistics course, finding that SBI curricula appear to support the development of 

students’ conceptual understanding of statistics, but there is a critical gap in students’ 

understanding of null models.  

In Chapter Three, the study design for this study was presented, describing the 

multi-modal method of capturing traces of students’ thinking based on four tasks (i.e., the 

concept mapping task, the statistical testing task, the statistical testing interview, and the 

video-cued interview), as well as several data sources (i.e., audio recordings, screen 

recordings, eye gaze recordings, video recordings, and observer notes).  

Chapter Four presented the results of the study, highlighting relevant traces of 

participants’ thinking as they related to statistical testing and specifically thinking about 

null models. Results suggested that participants’ planning was generally quite good, as 

most participants remembered what needed to be done to conduct a statistical test, although 

their plans were more general than those aspects specific to the statistical test itself (i.e., 

computing means, generating histograms). However, participants’ monitoring and 

evaluating were generally quite poor, as they struggled to remember how to enact their plan 

and when they might need to revise or change their initial plan. Finally, results suggested 

that very few participants explicitly thought about sampling variability, let alone null 
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models, instead thinking about statistical tests only through their product, either in the form 

of the confidence interval or a p-value.  

Finally, Chapter Five situated the findings of this study against prior literature. It 

also presented conjectures for possible ways to build off of this study’s results, including 

directions for future research in terms of the utilization of various tasks and data sources to 

study students’ thinking, directions for teaching in terms of the appropriateness of SBI 

curricula for one-and-done graduate students as well as the potential to focus more 

explicitly on null models and/or likelihood functions and, finally, directions for the practice 

of statistics, especially in terms of how null models are communicated and the role that 

software plays in reinforcing students’ statistical thinking.  

The cycle of science begins with observations of intriguing and perplexing 

phenomena that spurs theory generation and testing to explain the process behind those 

observations. These scientific theories are not judged by their truth, but rather by their 

ability to empower. How then does this study empower us? Learning is a complex process 

and learning statistics is no different. Historical difficulties in learning statistics have led 

to simulation-based curricula, which aim to promote students’ learning of statistical 

inference. Current understanding of students’ learning with these curricula was previously 

limited to studies conducted while students were still completing, or had just finished 

completing, their statistics course. This study is the first to observe and describe students’ 

thinking several months after they completed their course.  

While prior theories would have predicted that students would forget some of the 

information they were taught, those theories could not predict what information would be 

forgotten and what would be retained. This study helps to close that gap by describing 
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students’ thinking in the context of statistical tests seven months after they completed an 

introductory level statistics course. Even more so, this study’s participants’ thinking 

showed that using the bootstrap dot plot as a basis for thinking about uncertainty and 

variability may be a more effective approach than using the null model. Furthermore, the 

participants’ thinking showed that they were uncomfortable thinking about statistical 

testing in anything but the ideal case, implying the need for more complex practice and 

instruction in the monitoring and evaluating needed to conduct statistical tests.  

The brain is a highly complex muscle and students’ statistical thinking is an 

advanced skill that is neither easy to develop nor easy to research. A desirable learning 

outcome for introductory statistics students is that they learn to think statistically – and 

continue to do so long after they have left our classrooms. This dissertation scratches the 

surface of the complexity of students’ thinking in statistical tests once they leave the 

classroom. It calls for new research methods to investigate students’ statistical thinking 

longitudinally and calls for this longitudinal evidence to inform content and pedagogy of 

introductory statistics courses. Most importantly, by describing what it is that students 

remember in terms of thought processes, it provides a glimmer of the possibilities for future 

research on the teaching of statistics.  
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Table 1 

Students’ scores on Tests of Significance items in studies comparing curricula by assessment 

Source Traditional curriculum  ISI curriculum 

 Students Pretest Posttest Difference  Students Pretest Posttest Difference 

 

 

CAOS Tests of Significance items 

 

Tintle et al. (2011) 195 48.8% 61.5% 12.7%  202 50.0% 69.8% 19.8% 

Tintle et al. (2012) 78 51.5% 67.3% 15.8%  76 51.5% 71.3% 19.8% 

Tintle et al. (2014) 94 50.0% 60.6% 10.6%  155 46.1% 70.0% 23.9% 

 

 

ISI Tests of Significance items 

 

Chance et al. (2016) ~60* 50.4% 55.8% 5.4%  ~1050* 57.7% 68.9% 11.2% 

Mendoza & Roy (2018) 284 58.0% 60.9% 2.9%  197 58.0% 69.5% 11.5% 

Roy & Mcdonnel (2018) 435 - - 6.3%  196 - - 14.6% 

VanderStoep et al. (2018) 601^ 40.3% 48.8% 8.5%  886^ 39.1% 58.3% 19.2% 

 

*Exact number of student respondents per group was not reported, and instead are estimated based on a total of 1116 students across 

34 simulation-based sections and 2 traditional sections. 

^Results by topic only reported for students scoring less than 40% overall. 
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Table 2 

Frischemeier and Biehler’s (2013) randomization test plan with examples 

 

No. Step 
Example solution to the ESP task 

(Rossman et al., 2001) 

Expected solution to the Muffins task 

(Biehler et al., 2003) 

1 

Observation 
 

Which difference do you 

observe between the means of 

the two groups in the dataset? 

Number of correct answers = 20 

Mean of Time_Reading of boys = 2.685 

Mean of Time_Reading of girls = 3.503 

Difference = 0.818 

 

2 

Hypothesis 
 

As said in the task, the 

difference of the means of the 

two groups could have 

occurred at random. Generate 

an adequate Null Hypothesis 

for your investigation. 

The person does not have 

extrasensory perception (ESP). 

He/She guesses with a success rate 

p = 0.25. 

The difference of the means of 

Time_Reading of boys and girls has 

occurred at random. 

3 

Simulation of H0 
 

How can you investigate the 

null hypothesis with a 

simulation? Explain your 

procedure. 

Drawing 40 times with 

replacement from an urn which is 

filled with 4 balls: 1 ball is labeled 

"right" and 3 balls are labeled 

"false". 

Place the 533 cases of Time_Reading in 

urn1. Construct urn2 with 232 balls 

labeled "male" and 301 balls labeled 

"female". Draw 533 times without 

replacement. 
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4 
Test Statistic 
 

Define the test statistic. 

X = number of correct predictions 
X = mean of group 1 minus mean of 

group 2 

5 
p-value 
 

Calculate the p-value 

P(X>20) = 0.0004 P(X>0.818) = 0.0006 

6 

Conclusions 
 

Which conclusions can you 

make regarding your null 

hypothesis? 

The p-value is very small, so we 

have strong evidence against our 

null hypothesis. We assume that 

the fortune teller has not guessed. 

Another possibility is: he could 

have guessed but that would have 

been very unlikely.  

The p-value is very small, so we have 

strong evidence against our null 

hypothesis. Another possibility is: the 

difference occurred at random, but that is 

very unlikely. 
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Table 3 

 

Examples of empirical traces of planning, monitoring, and evaluating 

Task   Planning   Monitoring   Evaluating 

Concept 

Mapping 

Task 

 

Chau planned to compute a p-

value to answer the research 

question.  

 

“To answer the question, we 

use only the p-value” 

(Appendix P06-A, 06:54 – 

06:58). 

 

  

 

Tal explained that finding non-

sensible results would prompt an 

evaluation of the steps Tal had 

conducted, and prompt quality 

checks on the analysis process.  

 

"If my conclusion doesn't make 

sense, it may be my own error. So 

I have to figure that out also" 

(Appendix P02-A, 03:28 – 03:34). 

Statistical 

Testing 

Task 

 

Jaci made a plan to compute 

and interpret a p-value to 

determine whether a difference 

between group means was 

significant.  

 

“I mean I guess looking at the 

p-value would be the number 

one tell. And I think that a low 

p-value means that it’s pretty, 

it is pretty likely that there is a 

significant difference” 

(Appendix P04-B1, 12:42 – 

13:03). 

 

Chau monitored which 

statistics they had generated 

while completing the VSE 

problem.  

 

“So I have all the data, median, 

mean, and then quartile, for 

both of the groups, standard 

deviation” (Appendix P06-B1, 

07:50 – 08:00). 

 

While completing the VSE 

problem in R, and after having 

drawn a conclusion based on the 

confidence interval and p-value, 

Jaci evaluated that they may need 

to create a bootstrap dot plot.  

 

“Should I be trying to make a 

graph of this?” (Appendix P04-B1, 

08:28 – 08:33).  
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Statistical 

Testing 

Interview 

 

Kei planned to inspect p-

values when using StatKey, 

primarily due to feeling 

overwhelmed by the manner in 

which StatKey presented 

information.  

 

“I feel like there’s so much 

stuff to look at in that 

[StatKey] graph that I just shut 

down … but here [in R] it’s 

very clear” (Appendix P03-C, 

06:25 – 06:40).  

 

Ade monitored the results of 

the comparison of sample 

means by examining the p-

value.  

 

“well it has a low p-value so I 

feel like this is a good sample. 

And then, just the means alone, 

81 and 67 are pretty different” 

(Appendix P05-C, 17:36 – 

17:46). 

 

Tal explained that if there is an 

estimated difference between 

groups, they would next plan to 

evaluate the sensibility of the 

results.  

 

"One of the first things that I do is, 

especially when you have a 

difference in averages, I’m going 

to see if that means if it’s really 

different” (Appendix P02-C, 15:15 

– 16:35). 

Video-

Cued 

Interview 

  

 

Kei planned to generate a 

graph displaying the sample 

data for each group.  

 

“I need to see each individual 

graph … and that’s how I was 

taught, I don’t know any other 

way” (Appendix P03-D, 12:30 

– 12:36). 

   

Jaci monitored the tails of the 

null model in StatKey to 

ensure that the their 

interpretation of the confidence 

interval was correct.  

 

“I think I was looking 

essentially to see like, if the, 

like what the different 

parameters were, to see 

whether or not they were truly 

fairly centered around zero, or 

if there was maybe a difference 

on either side” 

 (Appendix P04-D, 08:02 – 

08:25). 
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Table 4 

Kei’s step-by-step plan for statistical testing 

No. Step Explanation 

1 
Import necessary 
libraries and 
packages 

(R Only) 

2 Import the data  

3 Check the data  (using the names(), head(), and tail() functions in R) 

4 
Compute the 
mean for Group 1 

“Well, I’d want the average salary of both [groups]” (Appendix P03-B1, 04:15 
– 04:18) 
 
“I would choose one of the salaries, errr, one of the, choose one of the majors 
first.” (Appendix P03-B1, 08:10 – 09:00) 
 
“I wanted to look at each individual major and salary, and examine that.” 
(Appendix P03-D, 10:37 – 10:51) 

5 
Create a graph 
for Group 1 

“I would choose one of the salaries, errr, one of the, choose one of the majors 
first, and then I’d want to do like a little graph thing.” (Appendix P03-B1, 08:10 
– 09:00) 
 
“I need to see each individual graph” (Appendix P03-D, 12:30 – 12:36) 
 
“So then I would want to create … a graph … for each, I’m interested to see 
like what it looks like, for like the range” (Appendix P03-B1, 13:24 – 13:38) 

6 
Compute the 
mean for Group 2 
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7 
Create a graph 
for Group 2 

“When I’m plotting it out, I’m thoroughly examining and thinking about each 
individual group, I’m not just jumping into the final comparison. I’m like, okay, 
what’s going on with this group, [then] what’s going on with this [other] 
group, and then looking at the p-value.” (Appendix P03-D, 14:26 – 14:48) 

8 
Compute the 
difference in 
means 

“cuz like, [the research question is] ‘Is there a difference in the average salary’, 
so I’d want to find the average.” (Appendix P03-B1, 16:00 – 16:38) 

9 

Compute a p-
value 
 

OR 
 
Compute a 95% 
confidence 
interval estimate 

“When I’m plotting it out, I’m thoroughly examining and thinking about each 
individual group, I’m not just jumping into the final comparison. I’m like, okay, 
what’s going on with this group, [then] what’s going on with this [other] 
group, and then looking at the p-value.” (Appendix P03-D, 14:26 – 14:48) 
 
“I don’t even look at the p-value for these [outputs in R] but I look at the p-
values for the graphs [outputs in StatKey] … I feel like I can just think about it 
[based on the confidence interval].” (Appendix P03-C, 05:53 – 06:19) 
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Figure 1 

Excerpt of the VSE Task used by Biehler et al. (2015) 

In the dataset you can see the monthly salaries of 861 women and men of the year 2006. The 

display suggests that women are way behind men concerning their salary. Someone argues against 

the result of the group comparison between women and men that only 861 employees were asked. 

Therefore, the differences could have emerged due to the selection of our sample.  

YOUR TASK: Now check if there is evidence against the assumption that there is no difference 

between women and mean in the population with regard to their average salary. (This would mean 

that we can expect similar differences for all employees.) 
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Figure 2 

The Dolphin Therapy Task used by Noll and Kirin (2017) 

Swimming with dolphins can certainly be fun, but is it also therapeutic for patients 

suffering from clinical depression? To investigate this possibility, researchers recruited 

30 subjects aged 18-65 with a clinical diagnosis of mild to moderate depression. Subjects 

were required to discontinue use of any antidepressant drugs or psychotherapy four 

weeks prior to the experiment, and throughout the experiment. These 30 subjects went 

to an island off the coast of Honduras, where they were randomly assigned to one of two 

treatment groups. Both groups engaged in the same amount of swimming and snorkeling 

each day, but one group (the animal care program) did so in the presence of bottlenose 

dolphins and the other group (outdoor nature program) did not. At the end of two weeks, 

each subject’s level of depression was evaluated, as it had been at the beginning of the 

study, and it was determined whether they showed substantial improvement (reducing 

their level of depression) by the end of the study (Antonioli and Reveley, 2005). 

Research Question: Is swimming with dolphins therapeutic for patients suffering from 

clinical depression? The researchers found that 10 of 15 subjects in the dolphin therapy 

group showed substantial improvement, compared to 3 of 15 subjects in the control 

group. 

 

The above descriptive analysis tells us what we have learned about the 30 subjects in the 

study. But can we make any inferences beyond what happened in this study? Does the 

higher improvement rate in the dolphin group provide convincing evidence that the 

dolphin therapy is effective? Is it possible that there is no difference between the two 

treatments and that the difference observed could have arisen just from the random 

nature of putting the 30 subjects into groups (i.e., the luck of the draw)? We can’t expect 

the random assignment to always create perfectly equal groups, but is it reasonable to 

believe the random assignment alone could have led to this large of a difference? 

 

The key statistical question is: If there really is no difference between the therapeutic 

and control conditions in their effects of improvement, how unlikely is it to see a result 

as extreme or more extreme than the one you observed in the data just because of the 

random assignment process alone? 
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Figure 3 

The Facebook Task used by Noll and Kirin (2016) 

Facebook is a social networking Web site. One piece of data that members of Facebook 

often report is their relationship status: single, in a relationship, married, it's complicated, 

etc. With the help of Lee Byron of Facebook, David McCandless - a London-based 

author, writer, and designer - examined changes in peoples' relationship status, in 

particular, breakups. A plot of the results showed that there were repeated peaks on 

Mondays, a day that seems to be of higher risk for breakups.  

Consider a random sample of 50 breakups reported on Facebook within the last year. Of 

these 50, 20% occurred on Monday. Explain how you could determine whether this result 

would be surprising if there really is no difference in the chance for relationship break-

ups among the seven days. (Be sure to give enough detail that someone else could easily 

follow your explanation.) 
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Figure 4 

The Music Note Task from the Models of Statistical Thinking (MOST) assessment (Garfield 

et al., 2012) 

Some people who have a good ear for music can identify the notes they hear when 

music is played. One note identification test consists of a music teacher choosing one 

of the seven notes (A, B, C, D, E, F, or G) at random and playing it on a piano. The 

student is standing in the room facing away from the piano so that they cannot see 

which note the teacher plays on the piano. The note identification test has the music 

student identify 10 such notes.  

This note identification test was given to a young music student to determine whether 

or not the student has this ability. The student correctly identifies 7 notes out of the 

10 that were played. Explain how you would use what you learned in this class to 

determine how surprising this result is and whether it is strong evidence that the 

student has the musical ability to accurately identify notes? (Be sure to give enough 

detail that someone else could easily follow your explanation.) 
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Figure 5 

The NFL Task used by Noll et al. (2018b) 

 

The National (American) Football League (NFL) uses an overtime period to 

determine a winner for games that are tied at the end of regulation time. Between 

1974 and 2009, the overtime period started with a coin flip to determine which team 

gets the ball first in overtime, and then the team that scores first wins. Data from the 

1974 through 2009 seasons show that the coin flip winner won 240 out of the 428 

(56%) games where a winner was determined in overtime. Research Question: Is 

there an advantage to the team that wins the coin flip?  
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Figure 6 

Framework for randomization testing proposed by Biehler et al. (2015) 
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Figure 7 

Summary of the study design, tasks, and data artifacts 

 

  

Video-Cued Interview

Video- and gaze-cued interview to futher elicit students' thinking about statistical tests

Data artifacts: audio recording, researcher notes

Statistical Testing Interview

Structured interview to probe students' thinking about null models

Data artifacts:  screen recording, audio recording, gaze recording, researcher notes

Statistical Testing Task

Task-based interview to elicit students' thinking about statistical tests

Data artifacts: screen recording, audio recording, gaze recording, researcher notes

Concept Mapping Task

Semi-structured interview to elicit initial thinking about the logic of statistical testing

Data artifacts: audio recording, video recording, written concept map, researcher notes

Participants
Six graduate students who had recently completed EPSY 5261 at the University of Minnesota



 

 197 

Figure 8 

Jaci’s concept map for the logic of a statistical test 
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Figure 9 

Screen Shot from the Video-Cued Interview (Appendix P04-D, 16:27) in which Jaci is commenting on their process for comparing the 

observed sample distribution (top right of the screen) to the distribution for a single simulated trial (lower right of the screen) 
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Figure 10 

Screenshot of Jaci completing the Airplane Delays Task as part of the Statistical Testing Task (Appendix P04-B2, 03:02), while looking 

at the mode of the randomization dot plot (green dot), and interpreting this as the most likely outcome 

 



 

 200 

Figure 11 

Kei’s concept map for the logic of a statistical test 
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Figure 12 

Screenshot of Kei answering the question ‘Is average commute time in Atlanta and St Louis the same?’ as part of the Statistical Testing 

Interview and looking at the center of the randomization dot plot (green dot, Appendix P03-C, 01:08)  
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Figure 13 

Screenshot of Kei answering the question ‘Is the average US BMI in 2017 equal to the average level in 2010 of 28.6?’ as part of the 

Statistical Testing Interview and looking first at the center of the randomization dot plot (green dot, Appendix P03-C, 05:05) 
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Figure 14 

Screenshot of Kei answering the question ‘Is the average US BMI in 2017 equal to the average level in 2010 of 28.6?’ as part of the 

Statistical Testing Interview and looking at the p-value (green dot, Appendix P03-C, 05:07), after first looking at the center of the 

randomization dot plot 
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Figure 15 

Chau’s concept map for the logic of a statistical test 
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Figure 16 

Tal’s concept map for the logic of a statistical test 
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Figure 17 

Ade’s concept map for the logic of a statistical test 
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Figure 18 

Aan’s concept map for the logic of a statistical test 
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Figure 19 

Heat map of the locations on the screen Aan looked at the most while interpreting results from the t-test in R during the Statistical 

Testing Task (Appendix P01-B1, 13:20 – 14:30), with red indicating a higher amount of gaze for the selected time period , and green 

indicating lower amounts of gaze for the selected time period 
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Figure 20 

Raw output from R that Aan was looking at while interpreting results from the t-test in R during the Statistical Testing Task (Appendix 

P01-B1, 13:20 – 14:30).   
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Figure 21 

Screen shot of the StatKey output that Aan used to think about the Airplane Delays Task 

as part of the Statistical Testing Task  

 

 

 

 



 

 211 

Figure 22 

Heat map of the locations on the screen Aan looked at the most while thinking about the question “Is the average US BMI in 2017 equal 

to the average level in 2010 of 28.6?” during the Statistical Testing Interview, with red indicating a higher amount of gaze for the 

selected time period, and green indicating lower amounts of gaze for the selected time period 
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Figure 23 

A null model drawn by a member of the EPSY 5261 teaching team, as a response to the 

question ‘What is the one thing that you want students to remember 10 years from now?’ 
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Figure 24 

Drawing of a prior and posterior distribution provided to Jaci by the researcher to answer the question ‘Is the average home price in 

New York equal to $300,000?’ 

 



 

 214 

Appendix A   

Tests of significance items from the Comprehensive Assessment of Outcomes in Statistics (CAOS; delMas et al., 2007) 

 

Item 
No. 

Item Stem Response Options 

19 

A graduate student is designing a research study. She is 
hoping to show that the results of an experiment are 
statistically significant. What type of p-value would she 
want to obtain? 

a. A large p-value. 
b. A small p-value 
c. The magnitude of a p-value has 

no impact on statistical 
significance 

23 

A researcher in environmental science is conducting a study 
to investigate the impact of a particular herbicide on fish. 
He has 60 healthy fish and randomly assigns each fish to 
either a treatment or a control group. The first in the 
treatment group showed higher levels of the indicator 
enzyme. 
 
Suppose a test of significance was correctly conducted and 
showed no statistically significant difference in average 
enzyme level between the fish that were exposed to the 
herbicide and those that were not. What conclusion can the 
graduate student draw from these results? 

a. The researcher must not be 
interpreting the results 
correctly; there should be a 
significant difference. 

b. The sample size may be too 
small to detect a statistically 
significant difference. 

c. It must be true that the 
herbicide does not cause higher 
levels of the enzyme.  

 

A research article reports the results of a new drug test. The drug is to be used to decrease vision 
loss in people with Macular Degeneration. The article gives a p-value of 0.04 in the analysis section. 
Items 25, 26, and 27 present three different interpretations of this p-value. Indicate if each 
interpretation is valid or invalid.  
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25 
The probability of getting results as extreme as or more 
extreme than the ones in this study if the drug is actually 
not effective. 

a. Valid 
b. Invalid.  

26 The probability that the drug is not effective. 
a. Valid. 
b. Invalid. 

27 The probability that the drug is effective.  
a. Valid. 
b. Invalid. 

40 

The following situation models the logic of a hypothesis 
test. An electrician uses an instrument to test whether or 
not an electrical circuit is defective. The instrument 
sometimes fails to detect that a circuit is good and working. 
The null hypothesis is that the circuit is good (not 
defective). The alternate hypothesis is that the circuit is not 
good (defective). If the electrician rejects the null 
hypothesis, which of the following statements is true?  

a. The circuit is definitely not good 
and needs to be repaired.  

b. The electrician decides that the 
circuit is defective, but it could 
be good. 

c. The circuit is definitely good and 
does not need to be repaired.  

d. The circuit is most likely good, 
but it could be defective. 
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Appendix B   

Simulation-based inference topic items from the Goals Outcomes Associates with Learning Statistics (GOALS-4) assessment (Sabbag, 

2016; Sabbag et al., 2015)  

 

Item 
No. 

Item Stem and Response Options^ 
Percent 
correct* 

6 

A researcher investigated the impact of a particular herbicide on the enzyme level of carbonyl 
reductase in fish. In the study, 60 farm-raised fish were randomly assigned to the treatment group (in 
which they were exposed to the herbicide) or to the control group (in which they were not exposed 
to the herbicide). There were 30 fish assigned to each group. After the study, the data were analyzed, 
and the results of that analysis are reported in the output below.  (p = 0.3644; 95% CI: -11.15 – 4.16) 
 
Based on the results of the study, the researchers should not conclude that the herbicide has an 
effect on the enzyme levels of farm-raised fish. 
a. Valid 
b. Invalid 

68.3% 

14 

Two medical researchers each perform the same experiment using two different samples from the 
same population. One study results in a p-value of 0.06, and the other study results in a p-value of 
0.09. Which of the following statements is correct regarding the evidence against the null 
hypothesis?  
a. The p-value of 0.06 gives stronger evidence against the null hypothesis because it is smaller.  
b. The p-value of 0.09 gives stronger evidence against the null hypothesis because it is larger.  
c. It’s impossible to tell which p-value provides stronger evidence against the null hypothesis, 

because they are both greater than 0.05.  

45.2% 

 

Yolanda was interested in whether offering people financial incentives can improve their performance playing 
video games. Yolanda designed a study to examine whether video game players are more likely to win a game 
when they receive a $5 incentive or when they simply receive verbal encouragement. Forty subjects were 
randomly assigned to one of two groups. The first group was told they would receive $5 if they won the game 
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and the second group received verbal encouragement to “do your best” on the game. Yolanda collected the 
following data from her study:  

            $5 Incentive     Verbal Encouragement 
Win              16                                8 
Lose              4                                 12 

Based on these data, it appears that the $5 incentive was more successful in improving performance than the 
verbal encouragement, because the observed difference in the proportion of players who won was (16/20) – 
(8/20) = 0.40. In order to test whether this observed difference is only due to chance, Yolanda does the following:  

- She gets 40 index cards. On 24 she writes, “win” and on 16 she writes, “lose”.  
- She then shuffles the cards and randomly places the cards into two stacks of 20 cards each. One stack 

represents the participants assigned to the $5 incentive group and the other represents the participants 
assigned to the verbal encouragement group.  

- She computes the difference in performance for these two hypothetical groups by subtracting the 
proportion of winning players in the “verbal encouragement” stack from the proportion of winning 
players in the “$5 incentive stack”. She records the computed difference on a plot.  

- Yolanda repeats the previous three steps 100 times.  

15 

What is the explanation for the process Yolanda followed?  
a. This process allows her to determine the percentage of time the $5 incentive group would 

outperform the verbal encouragement group if the experiment were repeated many times.  
b. This process allows her to determine how many times she needs to replicate the experiment for 

valid results. 
c. This process allows her to see how different the two groups’ performance would be if both types 

of incentive were equally effective. 

34.0% 

16 

Yolanda simulated data under which of the following assumptions?  
a. Verbal encouragement is more effective than a $5 incentive for improving performance.  
b. The $5 incentive is more effective than verbal encouragement for improving performance. 
c. The $5 incentive and verbal encouragement are equally effective at improving performance 

31.1% 

17 
Below is a plot of the simulated differences in proportion of wins that Yolanda generated from her 
100 trials. Based on this plot, the one-sided p-value is 0.03.  

48.1% 
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Which of the following conclusions about the effectiveness of the $5 incentive is valid based on these 
simulation results? 
a. The $5 incentive is more effective than verbal encouragement because the p-value is less than 

0.05.  
b. The $5 incentive is more effective than verbal encouragement because distribution is centered at 

0.  
c. The $5 incentive is not more effective than verbal encouragement because distribution is 

centered at 0.  
d. The $5 incentive is not more effective than verbal encouragement because the p-value is less 

than 0.05.  

18 

The p-value is the probability that the $5 incentive group would win more often than the verbal 
encouragement group. 
a. Valid. 
b. Invalid.  

41.9% 

20 

In Yolanda’s experiment, there were 20 subjects randomly assigned to each group. Imagine a new 
study where 100 students were randomly assigned to each of the two groups. Assume that the 
observed difference in this new study was again 0.40 (i.e., that the proportion of wins for the $5 
incentive group was 0.40 higher than the observed proportion of wins for the verbal encouragement 
group).  
 
How would the p-value for this new study (100 per group) compare to the p-value for the original 
study (20 per group)?  
a. It would be the same as the original p-value.  
b. It would be smaller than the original p-value.  
c. It would be larger than the original p-value. 

44.9% 

^ Items reported by Sabbag (2016, p. 157-173) 

* Percent correct responses from 1,109 undergraduate students from 19 courses in 17 different institutions taken in Fall 2014 

(Sabbag et al., 2015) 
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Appendix C  

Recruitment letter sent via e-mail to eligible participants via their instructors 

 

Hello. We are contacting you because you are a graduate student who has completed 

or is currently enrolled in EPSY 5261. This email describes a study investigating how 

people think about statistics. The study is being conducted by V.N. Vimal Rao, a 

Ph.D. candidate in the Department of Educational Psychology at the University of 

Minnesota, and under the guidance of Dr. Robert delMas and Dr. Andrew Zieffler. 

Your instructor has given us permission to email you about this opportunity because it 

is relevant to your training in statistics.  

 

The study asks you to (a) make a concept map, (b) complete two statistical tasks, and 

(c) a short questionnaire. It takes approximately 90 minutes to complete and pays $50 

in the form of an Amazon gift card.  

 

The purpose of this study is to investigate how people complete statistical tests. If you 

agree to participate, you will meet with the researcher in-person at the Educational 

Sciences Building to complete the study. You will be asked for your permission to 

record your gaze with an eye tracking apparatus, and for the meeting to be recorded.  

 

Again, the study will require about 90 minutes to complete and pays $50 in the form 

of an Amazon gift card.  

 

To participate, you must meet the following requirements: 

1. Be a GRADUATE STUDENT at the University of Minnesota 

2. Have completed EPSY 5261 in the 2021-2022 academic year 

 

If you do not meet this requirement, then you cannot participate. 

 

If you meet this requirement, and if you are interested in participating, then please 

reply to this message to rao00013@umn.edu. We will first verify that you meet the 

requirement above. We will then send you (a) your participant number and (b) a link 

to schedule a time to complete the study. After completing the study, we will send you 

the code for an Amazon gift card worth $50. 

 

Thank you for your interest in the study. 
 

 
 
 
  

mailto:rao00013@umn.edu
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Appendix D  

Relevant excerpts from an EPSY 5261 course syllabus from the Fall of 2021  

 
 

Course Syllabus 

 

Introductory Statistical Methods 

EPSY 5261-001 – 3 credits 

Fall 2021 

 

Audience and prerequisites: This course is intended for upper-level undergraduate 

and graduate students who have completed a high school algebra course. Although there 

are no formal prerequisites for this course, students should have familiarity with 

computers and technology (e.g., internet browsing, Microsoft Word, 

opening/saving/attaching files, etc.). 

 

  

Course Description 

EPSY 5261 is designed to engage students in statistics by first building a conceptual 

understanding of statistics through the use of simulation methods and then learning about 

the more traditional methods, such as t-tests, chi-square tests, and regression. This course 

uses pedagogical principles that are founded in research, such as daily small group 

activities and discussion.  

 
Attention undergraduates: As this is a graduate level course, it does not fulfill the 

Mathematical Thinking Liberal Education requirement. If you would like to take a 

statistics course in our department that fulfills that requirement, please consider EPSY 

3264. 

Course Goals, Objectives and Expectations 

Upon completion of this course, students should (1) have an understanding of the 

foundational concepts of data, variation and inference; (2) be able to think critically about 

statistics used in popular magazines, newspapers, and journal articles; (3) be able to apply 

the knowledge gained in the course to analyze simple statistics used in research; and (4) 

be able to use a statistical software package to analyze data, and appropriately report 

conclusions from data analyses. 

 
This is not a traditional class where you only come each day, listen, watch, and take 

notes! This class was developed under the inverted classroom model which has a lot 

of research-based support. The inverted classroom “inverts” the traditional instructor-

centered classroom model and has you, the student, play a more active role in your 

learning. You will be required to first read about a topic yourself and complete a short 

weekly preparation quiz. Then, classroom time will be devoted to learning activities and 
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discussions to further develop and help you understand the topic. Finally, you will solve 

problems on homework related to the topic.  

 
This course makes extensive use of small group activities and large group discussions to 

solidify ideas and content, as well as to deepen your understanding of material 

encountered in the readings. Your learning experience is thus dependent–to some extent–

on your classmates and vice versa. Because of this, it is essential that you not only attend 

class each day and participate in the activities and discussions, but that you show up 

prepared having completed the reading and preparation quiz. 

 
Statistics is more than just an application of mathematics or a methodology used in some 

other discipline. Statistics is a principled way of thinking about the world. In particular, it 

is a principled approach to data collection, prediction, and scientific inference. 

 
Statistics is itself a unique discipline that has, like many others, undergone a tremendous 

amount of growth and change in the last two decades. In today’s dynamic and 

interdisciplinary world, success in confronting new analytical issues requires both 

substantial knowledge of a scientific or technological area and highly flexible problem-

solving strategies. 

 
Internalizing a discipline’s way of thinking about and solving problems is a time-

consuming process, with the key word being “process”. It is not something that can be 

taught to students in a semester, or even year–long, course. Learning statistics takes much 

more than memorizing formulae or software commands. It requires active participation 

and questioning both in and out of the classroom. The instructor of this course will 

provide you with many opportunities to learn the material through class activities, 

readings, and homework assignments, but in the end, you will have to do all of the hard 

work of actually learning that material. 

 
Professionalism: Evidence of professional practice on both our parts includes (a) starting 

and ending on time, (b) being prepared, (c) being physically and mentally engaged, (d) 

performing at a high level, (e) making sure cell phones are off, and (f) refraining from 

sending and receiving e-mail, playing solitaire, shopping, texting, tweeting, and 

facebooking during class. Thank you.  

Textbook and Materials 

• Statistics: Unlocking the Power of Data by Lock, Lock, Lock, Lock, and Lock, 2nd 

edition EBOOK: 
o U of M Bookstore https://bookstores.umn.edu/course-materials –  

search for “EPSY 5261” 

o Be careful when trying to obtain the book from other sources than above, as 

some will include WileyPlus access (which is not needed for this course). 

o The textbook is not available in print-only format (without the enhanced e-

text) from the publisher or the bookstore. If you search online, you may find a 

cheaper print-only copy, but this may not be much cheaper than the e-text. 

https://bookstores.umn.edu/course-materials
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While it is possible to get through this course only with a print copy, you may 

find it useful to spend a bit more to get the e-text.  

o The first edition is NOT a good option for you to use in this class. The second 

edition has some very substantial changes in terms of page/section numbers 

and content, so the first edition would just leave you very confused and lost! 

The third edition is very similar to the second edition and is okay to use. 

• Course Packet (REQUIRED): The Course Packet will be used on a daily basis in 

class. This course packet contains the learning activities for the course and can be 

purchased at the Student Bookstore when you purchase the textbook. You will not 

need the textbook in class every day, but you will need the course packet for every 

class session. 
• A variety of readings will be provided via the course website throughout the semester. 

These readings come from different sources–such as journal articles and online 

resources–and explain terms and concepts, or provide additional information not 

covered in the textbook. Some of the readings are journal and news articles that report 

about research studies or data analyses that are related to topics addressed in class 

activities. These have more detail than you need to know for the course, but they 

provide real-world examples of the statistical questions and methods you are learning 

about. 
 

COURSE OUTLINE, TOPICS, AND ASSIGNMENTS 

Assignments 

Preparation quizzes (25% of your final grade): In a flipped classroom, it is crucial that 

you come to class prepared, having done the readings for the day. Your preparation grade 

will consist of your performance on 11 weekly preparation quizzes of 5-6 questions each, 

worth a total of 25% of your final grade. These quizzes consist of preparation questions 

that you will answer based on the readings. The preparation quizzes will be taken on the 

course website and will be due before class begins on the day that they are due. You will 

be allowed two attempts per preparation quiz, and your grade will be calculated using the 

higher of the two attempts. Each attempt will last 20 minutes. After the quiz is closed at 

the beginning of class, you will be able to see your grade, results, and correct responses. 

Therefore, late quizzes are not accepted. Instead, the lowest quiz score will be dropped.  

 
Lab Assignments (30% of your final grade): There will be 4 lab (homework) 

assignments that together are worth 30% of your grade. The lab assignments will be 

completed outside of class (as homework) and submitted electronically via the course 

website.  

 
As a student of statistics, working through all of the lab assignments is an important piece 

in building a complete understanding of the concepts, as well as allowing you to practice 

doing statistics. As a way of connecting the work you are doing across all lab 

assignments, you will explore the same data set for each lab assignment. 
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Each lab assignment is set up in Canvas as an online quiz. You can download and view a 

PDF of the lab assignment. For each lab assignment, you may choose to work alone or in 

a group. Working in a group may allow you to explore answers to a question with other 

students before submitting your lab assignment. If you work in a group, each individual 

in the group must submit their own assignment. Your lab assignment should be submitted 

via the course website before the end of the day that they are due (i.e., by 11:59 PM that 

day).  

 
Exams (45% of your final grade): There are two midterm exams and one final exam, 

which together are worth a total of 45% of your grade. All of these exams are take-home 

and are worked through independently. In this course, you may use any materials you like 

to complete exams (e.g., your book, your notes, internet resources, etc.) but you may not 

consult with other people or talk with your peers as you are taking exams. If it is 

discovered that collaboration has occurred on the exam, you will receive a grade of 0 on 

that exam.  

 
You will have one week to work on each exam outside of class and then submit your 

work to the instructor via the course website. The exams will involve using statistical 

software. More details about the structure of each of these exams will be given in class.  

 
Summary of Assignments 

Assignment Individual or group? Percent of grade 
Preparation quizzes Individual  25% 
Lab (HW) assignments  May work in group, but submit individually  30% 
Midterm exam #1 Individual  10% 
Midterm exam #2 Individual  15% 
Final exam Individual  20% 
Total 

 
 100% 

  

CALENDAR 

The calendar below lists the tentative dates of the course topics and readings, as well as 
the tentative due dates for the assignments and exam dates. These dates are subject to 
change at the instructor’s discretion – stay tuned to course announcements. Please note 
that all Preparation Quizzes are due before class and all other assignments before 11:59 
PM on the assigned due date. 
 

Week Day Topic (Book Chapters) Activities Assignments 

Due 

1 

1 
(September 

7) 

• Syllabus 
• Introductions  
• Introduction to 

statistical software 

• Introduction to 

Using RStudio for 

Data Analysis 
 

2 
(September 

9) 
• Data collection 

• Textbook 

Scavenger Hunt  
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o Importance of 

research questions 

(1.1) 
o Purpose of statistics 

(1.2) 
o Types of studies 

(1.3) 
o Sampling bias (1.2) 

• Data Collection 

Articles  

2 

3 
(September 

14) 

• Data collection  
o Recall types of 

studies 
o Scope of 

conclusions based 

on type of study 

(1.2-1.3) 
o Random sampling  

• Sampling 

Countries  
Preparation 

Quiz # 1 (1.1-

1.3) 
due before 

class 

4 
(September 

16) 

• Data collection 
o Recall types of 

studies 
o Scope of 

conclusions based 

on type of study 

(1.2-1.3) 
o Random assignment 

• Association vs. 

Causation  

• Purpose of 

Random 

Assignment 
 

3 

5 
(September 

21) 

• Numerical summaries 
o Mean, median, 

percent, difference 

in statistics (2.1, 2.2, 

2.4) 
o Standard deviation 

(2.3) 
• Technology Reference 

Guides 
o Entering Data 
o Graphs 
o Descriptive 

Statistics 

 
 
• Introduction to 

Numerical 

Summaries Preparation 

Quiz #2 (2.1-

2.4) 

due before 

class 

6 
(September 

23) 

• Numerical summaries  
o Mean, median, 

percent, difference 

in statistics (2.1, 

2.2) 
o Standard deviation 

(2.3) 
o Resistant statistic 

(2.2) 
o Boxplots and 

outliers (2.4) 

• Which Graph has 

the Larger 

Standard 

Deviation  

• 50 Richest 

Americans 
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4 

7 
(September 

28) 

• Introduction to 

confidence intervals 
• Confidence intervals 

using bootstrap 

techniques (one-

sample: 3.1-3.4) 
o Sampling variability 

(3.1) 

• Introduction to 

Confidence 

Intervals 
• Bootstrap Interval 

M&Ms 
Lab #1 due 

  

8 
(September 

30) 

• Confidence intervals 

using bootstrap 

techniques (one-

sample) 
o Measuring sampling 

variability: standard 

error (3.1) 
o Constructing 

bootstrap confidence 

intervals (3.3) 
o Understanding and 

interpreting 

confidence intervals 

(3.2) 

Bootstrap Interval: 

Body Temp 

Preparation 

Quiz #3 (3.1-

3.3) 

due before 

class  

5 

9 
(October 5) 

• Confidence intervals 

using bootstrap 

techniques: percentile 

method (3.4) 
o Measuring sampling 

variability: standard 

error (3.1) 
o Constructing 

bootstrap confidence 

intervals (3.3) 
o Understanding and 

interpreting 

confidence intervals 

(3.2) 

• Bootstrap Interval: 

College Student 

Debt – Part I 

Exam #1 due  

by 11:59pm  

10 
(October 7) 

• Confidence intervals 

using bootstrap 

techniques (paired) 
o Constructing 

bootstrap confidence 

intervals (3.3, 3.4) 
o Understanding and 

interpreting 

confidence intervals 

(3.2) 
o Comparing 

confidence levels 

(3.4) 

• Bootstrap Interval: 

Paired Data 

(Fasting) 

Preparation 

Quiz #4 (3.1-

3.4) 

due before 

class 
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o When to use 

percentile vs. 

regular (3.4) 

6 
11 

(October 

12) 

• Confidence intervals 

using bootstrap 

techniques (two-

sample, independent) 
o Constructing 

bootstrap confidence 

intervals (3.3, 3.4) 
o Understanding and 

interpreting 

confidence intervals 

(3.2) 
o Comparing 

confidence levels 

(using percentile 

interval) (3.4) 
o When to use 

percentile vs. 

regular (3.4) 

• Bootstrap Interval: 

Comparing 

Countries (PISA) 

 

 
12 

(October 

14) 

• Introduction to 

hypothesis tests  
o Purpose of 

hypothesis test (4.1) 
o Null hypothesis and 

alternative 

hypothesis (4.1) 

• Introduction to 

Hypothesis Testing 
Preparation 

Quiz #5 (4.1) 

due before 

class 

7 

13 
(October 

19) 

• Hypothesis tests using 

randomization 

techniques (one-

sample) (4.1-4.4) 
o Intro to p-value 

• Randomization 

test: ESP Study 
Preparation 

Quiz #6 (4.2-

4.3) 
due before 

class 

14 
(October 

21) 

• Hypothesis tests using 

randomization 

techniques (one-

sample) 
o Conducting 

randomization tests 

via applet (4.4) 
▪ Finding p-values 

(4.2) 
▪ Interpreting p-

values (4.2) 
▪ Making 

conclusions 

(4.3)  

• Randomization 

test: Body 

Temperature 

Lab #2 due 

by 11:59pm 
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▪ Significance 

(4.3)  

8 

15 
(October 

26) 

• Hypothesis tests using 

randomization 

techniques (two-

sample) 
o Conducting 

randomization tests 

via applet (4.4) 
• Comparing confidence 

intervals and 

hypothesis tests (4.5)  

• Randomization 

test: Marijuana 

Users  
Preparation 

Quiz #7 (4.4-

4.5) 
due before 

class   

16 
(October 

28) 

• Hypothesis tests using 

randomization 

techniques (two-

sample) 
o Conducting 

randomization tests 

via applet (4.4) 
▪ Type I & Type II 

errors (4.3) 

• Randomization 

test: Phone Survey 

Incentives 

 

9 

17 
(November 

2) 

• Exam 2 Review Day 

 

Lab #3 due 

by 11:59pm 

18 
(November 

4) 

• Normal Distributions 

(5.1, 5.2) 
• Describing 

distributions: shape, 

center, variability 
• CLT (5.2) 

• Matching 

Histograms 
• Understanding the 

Central Limit 

Theorem  

 

10 

19 
(November 

9) 

• Confidence intervals – 

traditional (6.1, 6.2) 
• One-sample: 

proportions 

• Extra Activity: CI 

for single 

proportion (on 

Canvas website) 

Preparation 

Quiz #8 (6.1, 

6.2) 
due before 

class 

20 
(November 

11) 

• Confidence intervals – 

traditional (6.1, 6.2) 
• One-sample: means 

• Confidence 

Interval: College 

Student Debt – 

Part II 

Exam 2 due  

by 11:59pm 

11 

21 
(November 

16) 

• Confidence intervals – 

traditional (6.1-6.4, CI 

sections) 
• Two-sample 

independent: means 

• Confidence 

Interval: College 

Student Debt – 

Part III  

 

22 
(November 

18) 

• Hypothesis tests –

traditional (6.1-6.4, HT 

sections, 6.5) 
o Two-sample 

independent: means  

• Hypothesis Test: 

Memory Game 
Preparation 

Quiz #9 (6.1-

6.5) 
due before 

class 
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o Deciding one- vs. 

two-tailed situations 

12 

23 
(November 

23) 

• Chi-square between 

two variables 
o Test (7.2) 

 
 
• Chi-Square Test: 

Anemia and 

Disabilities 

Preparation 

Quiz #10 (7.2) 
due before 

class 

November 

25 
Thanksgiving Weekend – No Class 

13 

24 
(November 

30) 

• Chi-square between 

two variables 
o Test (7.2) 

• Chi-Square 

test:Gallup Poll: 

US Satisfaction 
•  

Lab #4 due 
by 11:59pm 

25 
(December 

2) 

• Regression: 

Descriptive 
o Simple linear 

regression equation 

(2.6, 9.1) 

• Regression: 

Baseball 
Preparation 

Quiz #11 (2.5-

2.7) 
due before 

class 

14 

26 
(December 

7) 

• Prediction and 

residuals (2.6) 

Regression: Inference 
• Data visualization (2.7) 
o Slope & Assumptions 

(9.1) 

• Regression: Happy 

Planet Index Parts 

I & II 
 

27 
(December 

9) 

• Multiple Regression 

(10.1) 

• Happy Planet III 
• Infant Mortality  

15 
28 

(December 

14) 

Final Exam Review Day: 

Last day of class 

• Which Method? 
Review Day  

16 

Final 

Exam 
(December 

20) 

The final is take-home, so 

you do not need to come 

to class on this day.  

 
Take-home  

Final Exam 

due  

by 11:59PM 
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Appendix E  

Study consent form and information sheet  

 

 

INFORMATION SHEET FOR RESEARCH 

STATISTICAL THINKING STUDY 

 

IRB Code #: 00016330 

Version Date: July 14, 2022 

 

You are invited to participate in a research study of how graduate students complete 

statistical tests. You were selected as a possible participant because you are a graduate 

student who has recently completed EPSY 5261. We ask that you read this form and ask 

any questions you may have before agreeing to be in the study. 

This study is being conducted by V.N. Vimal Rao (doctoral candidate, Department of 

Educational Psychology) under the guidance of Dr. Robert delMas and Dr. Andrew 

Zieffler.  

 

Compensation: 

 

You will receive payment in the form of an electronic Amazon gift card worth $50 for 

participating in this study. Your participation is entirely voluntary. You are free to 

withdraw at any time.  

 

Procedures: 

 

If you agree to be in this study, we would ask you to do the following things: 

 

You will meet with the researcher in person in the Educational Sciences Building. You 

will make a concept map about statistics, complete two statistical tasks, and a short 

questionnaire. We will also review the data from the tasks together. You will be asked for 

your permission to track your gaze with eye tracking apparatus and to record the audio of 

the meeting.  

 

The session will take approximately 90 minutes to complete.  

 

Confidentiality: 

 

An audio recording will be collected during this study. However, we will immediately 

use voice filters and modulations in order to mask your voice. We will not store the 

original voice recording, only this anonymized version. All data analysis will be 
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conducted on the anonymized audio recording. No other personally identifiable 

information will be collected during this study.  

 

The records of this study will be kept private. In any sort of report that might be 

published, no information that will make it possible to identify you as a participant will 

be included. Research records will be stored securely and only researchers will have 

access to the records. 

 

Voluntary Nature of the Study: 

 

Participation in this study is voluntary. Your decision whether or not to participate will 

not affect your current or future relations with the University of Minnesota or any other 

entity or organization. If you decide to participate, you are free to not answer any 

question or withdraw at any time without affecting those relationships.  

 

Contacts and Questions: 

 

The researcher conducting this study is V.N. Vimal Rao under the guidance of Dr. Robert 

delMas and Dr. Andrew Zieffler. You may ask any questions you have now. If you have 

questions later, you are encouraged to contact them at:  

 

Mr. V.N. Vimal Rao 

Graduate Student 

630-999-8118 

rao00013@umn.edu 

Dr. Robert delMas 

Professor 

612-625-2076 

delma001@umn.edu  

Dr. Andrew Zieffler 

Professor 

612-626-4081 

zief0002@umn.edu  

 

This research has been reviewed and approved by an Institutional Review Board (IRB) 

within the Human Research Protections Program (HRPP). To share feedback privately 

with the HRPP about your research experience, call the Research Participants’ Advocate 

Line at 612-625-1650 or go to z.umn.edu/participants. You are encouraged to contact the 

HRPP if:  

 

● Your questions, concerns, or complaints are not being answered by the research 

team. 

● You cannot reach the research team. 

● You want to talk to someone besides the research team. 

● You have questions about your rights as a research participant. 

● You want to get information or provide input about this research. 

 

 

You will be given a copy of this information to keep for your records.  

 

  

mailto:rao00013@umn.edu
mailto:delma001@umn.edu
mailto:zief0002@umn.edu
http://www.irb.umn.edu/report.html


 

 231 

Appendix F  

Concept Mapping Task instructions and prompts 

 

Instructions 

The first task in this study is about the logic of a statistical test. In this task, I would you 

to draw/make a concept map for what you think the logic of a statistical test is. There is 

no right or wrong answers.  

I will provide you with pen and paper to make the concept map. If you feel you need to 

start over, we can begin anew on a different sheet of paper.  

As you are drawing your concept map, please explain your thinking outloud. I will also 

ask you some questions to help get you started, as well as to add in some extra detail to 

the concept map.  

Before we begin, do you have any questions?  

Prompts 

What is the purpose of a statistical test?  

What is the logic of a statistical test?  

What role do hypotheses play in statistical tests? 

How do you obtain a p-value?  

How do you compare a hypothesis to evidence?  

 

What is simulation-based inference?  

What is the logic of statistical testing in simulation-based statistical tests?  

What role do hypotheses play in simulation-based statistical tests? 

How do you obtain a p-value in simulation-based statistical tests?  

How do you compare a hypothesis to evidence in simulation-based statistical tests?  

 

Approaches to statistical testing using T-tests or Chi-Squared tests, for example, are 

called equation-based inference. 

What is the logic of statistical testing in equation-based statistical tests?  

What role do hypotheses play in equation-based statistical tests? 
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How do you obtain a p-value in equation-based statistical tests?  

How do you compare a hypothesis to evidence in equation-based statistical tests?  

How does the logic of simulation-based statistical tests compare to the logic of equation-

based statistical tests?  
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Appendix G1  

Statistical Testing Task instructions 

 
In this task, you will be presented with two different problems and presented a research 

question to answer. You will be told which software application to use in each task – you 

will use randomizeIt for one task and R for the other. You will also be provided with the 

necessary data files (in csv format) to answer each research question.  

You can answer the question in whichever way you determine is most appropriate. The 

task is not about whether your answers are right or wrong. Instead, my goal is to get a 

better idea of how we think when doing statistics. 

To help me get an idea of how you are thinking, I’m asking you to think aloud as you 

answer the questions. That means telling me EVERYTHING you are thinking as you 

read and answer each question.  

Please read ALL text and please say ALL of your thoughts out loud. I really want to hear 

all of your opinions and reactions, negative and positive. Do not hesitate to speak up 

whenever something seems unclear or is hard to answer.  

I’m not here to correct your thinking or guide you; so, if you ask me any questions, I will 

turn them back to you. I will remind you to think aloud throughout the test. My goal is to 

keep you talking. I understand that this way of taking a test may feel new or different, so 

don’t worry about whether you’re doing well or poorly. That’s not what this is about.  

Okay, before starting, let’s first practice thinking out loud. I will read a question, and I’d 

like you to think out loud as you answer it. The question is: How do you commute to 

campus?  

[PROBE AS NECESSARY]: Please tell me more about that. Why did you say {answer}? 

 

Before you begin, let me turn on the recording.  

Ok, we are now recording. Please proceed when you’re ready and begin reading and 

thinking out loud. 
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Appendix G2  

Instructions for the VSE problem provided to participants as part of the Statistical 

Testing Task 

 

Difficulty in choosing a career is a common complaint from students. Two careers with 

approximately the same training requirements are Computer Science and Engineering.  

 

Suppose you have a friend who wants to know if the average salary for Americans who work in 

the computer sciences is any different from the average salary for Americans who work in 

engineering.  

 

Using a US Census Bureau database, your friend collected a random sample of 150 salaries for 

computer scientists in 2019, and 150 salaries for engineers in 2019. Salary is measured in 

dollars.  

 

Research Question: Is there a difference in the average salary for all Americans between those 

who are computer scientists and those who are engineers in 2019?  
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Appendix G3 

Instructions for the AD problem provided to participants as part of the Statistical Testing 

Task 

 

Airplane delays are a common complaint from travelers. Two cities with approximately the 

same population are Minneapolis-St. Paul and Seattle.  

 

Suppose you have a friend who wants to know if the average delay time for flights from 

Minneapolis-St. Paul airport (MSP) is any different from the average delay time for flights from 

Seattle-Tacoma airport (SEA).  

 

Using a US Department of Transportation database, your friend collected a random sample of 

150 delay times for MSP airport in 2019, and 150 delay times for SEA airport in 2019. Delay 

time is measured in minutes.   

 

Research Question: Is there a difference in the average delay time for all flights between those 

leaving the MSP airport and those leaving the SEA airport in 2019?  
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Appendix H1  

Statistical Testing Interview instructions 

 

In this task, you will be presented with the results of ten different statistical tests. Some 

results have been generated using simulation-based methods, and some using a t-test in 

R. We’ll review each of the tests one at a time.  

For each statistical test, you can review the output to get a sense of what is going on. 

After reviewing the output for a statistical test, please describe the logic or the story of 

that test. Include an explanation of the hypothesis being tested, the evidence that was 

collected, and the results of the test.  

You can answer the question in whichever way you determine is most appropriate. The 

task is not about whether your answers are right or wrong. Instead, my goal is to get a 

better idea of how you think when doing statistics. 

Just as in the previous task, and to help me get an idea of how you are thinking, I’m 

asking you to think aloud as you answer the questions. That means telling me 

EVERYTHING you are thinking as you read and answer each question.  

Please read ALL text and please say ALL of your thoughts out loud. I really want to hear 

all of your opinions and reactions, negative and positive.  

Do not hesitate to speak up whenever something seems unclear or is hard to answer. I’m 

not here to correct your thinking or guide you; so, if you ask me any questions, I will turn 

them back to you.  

I will remind you to think aloud throughout the test. My goal is to keep you talking. I 

understand that this way of taking a test may feel new or different, so don’t worry about 

whether you’re doing well or poorly. That’s not what this is about.  

Before you begin, let me turn on the recording.  

Ok, we are now recording. Please proceed when you’re ready and begin reading and 

thinking out loud. 

 



 

 237 

Appendix H2  

Statistical Testing Interview stimuli 
 

Is average commute time in Atlanta and St Louis the same? 
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Is the average home price in NYC approximately $300,000? 

 
  



 

 239 

Is the average US BMI in 2017 equal to the average level in 2010 of 28.6?  
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Is the average American family size equal to four people?  

 
  



 

 241 

Does drinking 2 cups of coffee make you tap your fingers more?  
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Do UMN students who never feel sleepy exercise more than students who feel 

sleepy? 
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Is the average number of hours that UMN undergrads watch TV per week equal 

to 7hrs?  
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Is Americans’ blood pressure related to whether they have trouble sleeping? 
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Is the average number of body piercings UMN undergrads have equal to 2? 
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Is the average PISA Test Score of Finnish students equal to that of Spanish 

students? 
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Appendix I  

Video-Cued Interview instructions and prompts 

 

 

Instructions 

In this task, we will watch the recording from the statistical testing task together. The 

purpose of this task is to add any additional details or comments about your thinking as 

you completed each task.  

You can pause the video at any time to comment on what you are noticing. I will also do 

this. As we watch the video together, please share as many thoughts as you have about 

why you did what you did in the video, as well as further details about what you were 

doing or thinking.  

Before we begin, do you have any questions?   

 

 

Prompts 

Can you explain what you were thinking in this clip? What steps did you take, and why?  

 

When were you thinking about hypotheses in this clip?  

When were you thinking about p-values in this clip?  

When were you thinking about the logic of statistical tests in this clip?  

 

When you were looking at [X] in this clip, what were you thinking about?  

When you did [A] in this clip, what were you thinking about?  

 


