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The role of histograms in developing statistical literacy

“Ignite the mind’s spark to rise the sun in you.” !
Attributed to Florence Nightingale

“Alone we can do so little; together we can do so much.” 2
Helen Keller

150 Florence Nightingale Quotes, NURSING.com, https://blog.nursing.com/florence-nightingale-
quotes

2 Garson O’Toole (2014). Quote Investigator, Alone we can do so little; together we can do so
much. https://quoteinvestigator.com/2014/04/21/together/
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The role of histograms in developing statistical literacy

1.1 The histogram as a spider in a web of knowledge

1.1.1 The relevance of graphs in statistics

A correct use of statistics can literally save people’s lives. A famous example is
from the first female statistician Florence Nightingale who saved many lives
with her polar graph (Martineau, 1859), which shows that more soldiers died
from preventable diseases—caused by bad hygienic circumstances in hospitals
as well as a lack of beds and blankets—than from the wounds caused by the
Crimean War (1853-1856). The graph on the right (Figure 1.1) shows the data
when Nightingale started her data collection with each circle section indicating
one month. As can be seen from the graph on the left, providing beds,
blankets, and clean pottery dramatically reduced the number of preventable
deaths indicated by the blue areas.

Figure 1.1 Nightingale’s famous polar graph (1858) with causes of deaths in the British
Army

Note. Light red areas indicate the number of people who died from bullets, blue areas
indicate the number of people who died from preventable diseases such as cholera,
dysentery, frostbite, and typhoid. Black areas indicate other causes. Source: Wikimedia
Commons (https://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg ). CC-
PD and PD-US-expired.

In descriptive statistics, data are often summarized in numbers, such as the
arithmetic mean and the standard deviation or a confidence interval, rather
than in graphs. Many studies, including studies on educational improvement,
report on descriptive statistics. Several examples, however, show that such
summary statistics provide limited information, as different data distributions
—depicted in graphs—can lead to the same descriptive statistics and vice versa
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(e.g., Anscombe, 1973; Pastore et al., 2017). One example is the Datasaurus
(Matejka & Fitzmaurice, 2017; based on the Datasaurus dataset created by
Alberto Cairo), see Figure 1.2. Mean, standard deviation, and correlation are
the same in both graphs, but as the reader can see, the pattern in the data is
completely different. Yet it was not just one other graph they created. In total,
besides the Datasaurus itself, they constructed twelve completely different
graphs with the same mean, standard deviation, and correlation. This example
highlights that graphs show “quantitative and qualitative information, so that a
viewer can see patterns, trends or anomalies, constancy or variation, in ways
that other forms—text and tables—do not allow” (Friendly, 2008, p. 502).
According to Friendly, Galton made several important scientific discoveries
through graphing data (e.g., the idea that barometric pressure and wind
direction are related).

Figure 1.2 Datasaurus and another scatter plot with the same mean, standard
deviation, and correlation to two decimal places

el X Mean: 54 26 -
L Y Mean: 47.83 _HINSEEENNATE
. X SD : 16.76 -, SSSENENEE
. Y SD : 26.93 .SEEEEEEE

Gote. = -0 06 SRR

Note. Permission for reprinting granted by Justin Matejka, December 27, 2022.
(Source: https://www.autodesk.com/research/publications/same-stats-different-
graphs)

The Datasaurus example is humorous. Unfortunately, the misuse of statistics—
in the following example combined with probability—can also destroy lives. In
2003, the Dutch nurse Lucia de Berk was sentenced to life in prison for several
alleged murders of patients. In 2010, De Berk was acquitted because the
conviction was a judicial error, based on "flawed data collection" and "using an
over-simplified discrete [hypergeometric] probability model" that did not
include “the variation among nurses in incidents they experience during their
shifts” (Gill et al., 2018, p. 9). Instead, Gill et al. used another model—the
Poisson process. “Since we believe the incidents to be rare, a Poisson process
is an obvious choice for modeling the incidents that a nurse experiences.” (p.
11). Recently, in a similar case, Daniela Poggiali—an Italian nurse—was
accused of murder based on flawed statistics (Gill, 2022) and acquitted in
2021. Gill believes many nurses around the world that are accused of murder
are most likely innocent (e.g., Ben Geen and Lucy Letby, UK). For both Lucia
and Daniela, Gill and colleagues did a lot of demanding work to clean and
depict the data. They found interesting and explainable patterns by simply

10
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The role of histograms in developing statistical literacy

graphing the data, patterns such as patients tending to die mostly at half and
whole hours in Italy (Gill, 2022). This search for general patterns in hospital
data by graphing them had been omitted in the nurses’ first trial.

Every day, vast amounts of data are collected. A graphical
representation suitable for representing large amounts of data of one
statistical variable (also called univariate data) is a histogram. As an example,
consider the two histograms depicting the age of Dutch first-time mothers in
1950 and 2021 respectively (Figure 1.3). One advantage of histograms is that
they reveal a distribution of the data. They can show patterns in data better
than bar charts depicting the mean and standard deviation—the latter being
nothing more than a pretty ornament for these two numbers, to paraphrase
Lee (1999) or a substitute for a table (Tukey, 1972).

Figure 1.3 Two histograms depicting the age of mothers giving birth to their first child

Note. Source: CBS (2022).

Although boxplots and dotplots can similarly disclose a distribution, in some
cases histograms do a better job. Pastore et al. (2017) conclude “that
appropriate graphical representations can increase reliability in research
findings and promote transparency in the way scientific information is shared
and disseminated” (p. 2). A second advantage of histograms is that they seem
easier than, for example, boxplots (e.g., Bakker et al., 2004; Lem et al., 2013b,
2013c, 2015), although there are some examples of introducing boxplots via
hatplots (Konold, 2002) with some degree of success (e.g., Allmond & Makar,
2014; Makar & Confrey, 2003; Saldanha & Hatfield, 2021). In addition,
histograms can support both proportion-based and quantile-based reasoning,
whereas boxplots only support the latter (cf. Frischemeier et al., 2023). While
non-stacked (‘messy’) dotplots support quantile-based reasoning, proportion-
based reasoning with them is more difficult than with histograms.
Proportioned-based reasoning with stacked dotplots is similar to histograms.
However, the difficulties students encounter with stacked dotplots are similar

11
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to histograms (e.g., Lem et al., 2013a; Lyford, 2017). A disadvantage of
histograms (and stacked dotplots) is that the binning process can influence
how the shape of the graph appears (e.g., Sahann et al., 2021; Setlur et al.,
2022).

1.1.2 What is a histogram?

A histogram is an important graph in research, education, and in media—for
example when reporting about the COVID-19 pandemic. A histogram displays a
graph with bars that can depict large amounts of numerical data. Although
histograms do a better job than descriptive statistics in giving a first impression
of data and the patterns in them, they also lead to several misinterpretations.
For example, students confuse histograms with look-alikes (Box 1), including
case-value plots (Cooper, 2018; Cooper & Shore, 2008, 2010). Before we
elaborate on these difficulties in the educational section, we first consider the
following question:

Which of the following two statements about the graphs in Figure 1.4 is
true? Are the arithmetic mean and variability in weight higher in the graph on
the left, the right, or are they approximately the same for both graphs?

Figure 1.4 A histogram (left) with one statistical variable (weight) and a case-value plot
(right) with two statistical variables (given name and weight)

Before answering this question, let us discuss the data depicted in both graphs.
Each bar in the histogram (Figure 1.4, left) indicates how many packages there
are in that interval (e.g., there are 14 packages with a weight between 1 to 2
kg). Hence, the mean weight of all those packages in the left-hand graph can
be read on the horizontal axis and is approximately 4.5 kilograms. For the case-
value plot (Figure 1.4, right), nine students were supposed to collect garbage
on the beach. Two students handed in zero weight. The rest of the students
collected between 7 and 9 kilograms of beach waste. The arithmetic mean
weight of beach garbage picked up per student was 57 : 9, which is about 6.3

12
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kilograms. Hence, the arithmetic mean is higher in the case-value plot—the
right-hand graph. In the histogram on the left, one might first think that postal
worker Willem delivers 7 packages. But if all packages are depicted in a dotplot
(Figure 1.5, left), it becomes clear that he delivers 114 packages in total.

Figure 1.5 Dotplots depicting the same weights as in Figure 1.4 for all packages that
postal worker Willem delivers (left) and the collected garbage on Scheveningen beach
(right)

Note. Both dotplots (graph areas) were constructed with VUstat
(https://www.vustat.eu ).

Some readers may have thought that the mean weight in the left-hand graph
was about 16.3 (sum of frequencies divided by seven) or 12.7 kilograms
(divided by nine). Like many students, they were possibly confused by the
visual similarity to the type of graph on the right (e.g., Bakker, 2004a; Chance
et al., 2004; delMas & Liu, 2005) and estimated the mean frequency, instead of
the mean weight.

To assess the variability in both graphs, the standard deviation from
the mean can be used, which is approximately 1.9 for the histogram on the left
and 3.7 for the case-value plot on the right. Hence, the variation is higher in
the right-hand graph. This might seem counter-intuitive because the collected
weights seem to vary between 7 and 9. However, two students collected zero
kilograms of garbage. The weight, therefore, varies between 0 and 9 kilograms
in the right-hand graph, compared to 1 to 8 kilograms in the left-hand graph.
Outliers can have a huge influence on both the mean and the standard
deviation, especially when the dataset is very small (see also Figure 1.5, right).
Note that a case-value plot is a graph where each bar represents a
measurement of one case. Typically, the horizontal axis depicts a variable

13
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measured at a nominal or ordinal measurement level, and the vertical one at
an interval or ratio measurement level®.

Before it is defined what exactly a histogram is, les us first consider
another, more realistic example of data that can be presented in a histogram.
With the previous example of a histogram, an attempt was made to give the
reader a sense of how difficult it can be for students to interpret graphs.
However, we also know from research that graphs of data with which people
are familiar, such as American SAT scores from college entrance exams in the
USA (Kaplan et al., 2014) are easier to understand. Therefore, in Table 1.1, a
few of the 826,192 reported infections of COVID-19 in 2020 in the Netherlands
are presented (RIVM, 2022). From this table, we take one column: Age group
(see also Box 2). Each row is one person, so in these five rows, we see that
there is one person aged 40-49 who got COVID-19, one person aged 50-59,
and so on. A dotplot from the original data (using a fictive age instead of an
age group) could look like Figure 1.6. As an illustration, we present a small
subset of cases in the dotplot. From these data, a histogram can also be
created by binning age groups in bins of, for example, 10 years (Figure 1.7).

Table 1.1 Example of a part of a data table for COVID-19 infections in the Netherlands
in 2020

Date statistics Date statistics type Age group Fictive age
1/1/2020 DOO 40-49 45
1/1/2020 DOO 50-59 53
1/1/2020 DOO 20-29 21
1/1/2020 DOO 60-69 62
1/4/2020 DOO 10-19 16

Note. Source: RIVM, 2022. DOO = Date of (disease) onset. It is not always known
whether this first day of illness already involved COVID-19. Fictive age is a variable not
present in the original dataset. It was created using the =RANDBETWEEN(a;b) function
in Microsoft Excel where a and b are the borders of the bin. For example,
=RANDBETWEEN(40;49) returns a random whole number from 40 to 49. This number
was added to make a dotplot for these data.

3 Measurement level refers to the scale used for the measurements of the statistical variable. An
example is the variable temperature that can be measured at an ordinal level (e.g., cold, warm,
hot), interval level (e.g., Celsius or Fahrenheit with an arbitrary zero point), or ratio level (Kelvin;
absolute zero point. When temperature in Kelvin is doubled, thermal energy is also doubled).
Besides the four measurement levels mentioned here, other scales do exist (e.g., cyclic for
angles).

14
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Figure 1.6 Possible dotplot for a subset of COVID-19 infections in the Netherlands in
2020 (fictive age guessed from the age group through a random function in Excel)

Note. Made with Codap https://codap.concord.org/. For our aim, we can ignore the
high spikes in the graphs that are partly due to the random function in Excel, and
rounding to whole numbers for age.

Figure 1.7 Histogram for all 826,192 COVID-19 infections in NL in 2020

Note. We removed all approximately hundred cases of people aged 0—49 who died due
to COVID, as the RIVM removed their specific age group to prevent their identification
based on the data. In addition, we removed about fifty people with unknown ages.
Given the vertical scale in this histogram, this did not influence the graph's
appearance. Note that this graph is not corrected for the total number of people in
each age group (in which case it would no longer be a histogram).
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For large datasets like COVID-19 infections in the Netherlands with over
800,000 cases reported in 2020, the advantage of creating histograms comes
to the forefront. Instead of depicting 826,093 dots, now only 10 bars are
needed to represent this data set.

Now that the histogram is informally introduced, let us define a
histogram as this is rarely done (Humphrey et al., 2014). In many textbooks
and online sources, incomplete definitions are given such as “A histogram
represents numbers by area, not height.” (Freedman et al., 1978, p. 26), “A
histogram is a bar graph [bar chart] of a frequency distribution with
measurable data on the horizontal axis.” (Getal en Ruimte, 2014, p. 14) or only
by most noticeable but irrelevant features such as a bar chart “with bars [...]
that touch” (e.g., Nijdam, 2003, pp. 49-50), often followed by a description of
how to construct a histogram (e.g., on Wikipedia, December 11, 2022).
Definition?

A histogram is a graph with bars that meets the following criteria:

e |t consists of bars that represent groups of numerical data

e Itrepresents data of one statistical variable only (typically continuous)

e The statistical variable is presented conventionally on the horizontal
axis®

e The statistical variable is measured at an interval or ratio
measurement level

e The vertical axis displays the class density, or—when bin widths are
equal—relative or absolute frequency (counts) of the depicted
statistical variable

e The total density adds up to 1 or the total relative frequency adds up
to 100%

The histograms above were all with equal bin widths (e.g., Figure 1.7). In Figure
1.8, an example of a histogram with density along the vertical axis can be
found for COVID-19 infections per age group in the Netherlands in 2020.
Density here means the proportion of the population per “unit on the
horizontal axis” (Freedman et al., 1978, p. 33) with this unit being 10 years of
age in our example. For example, the age group 80-110 has a proportion of
about 0.02 per 10-year group. Calculating the actual number of people can be
done through a multiplication 0.02 x 826,192 x 3 (this 3 is because there are
three 10-year age groups in the age group 80-110) which returns 49,572

4 This definition is a refined version of the one given in the next chapter.
5 For example, a population pyramid (age-sex pyramid) is an exception.
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people®, which is almost the actual total of age groups 80-90, 90-100, and
100-110 together in Figure 1.7.

1. Other types of graphs with bars: bar charts, distribution bar charts, and case-
value plots
Histograms are often confused with other graphs with bars. One type is a
distribution bar chart or distribution bar graph (univariate, categorical data along
the horizontal axis, counts of data in these categories along the vertical axis).
Similarly to a histogram, this distribution bar chart contains aggregated data as the
height of the bar represents multiple data points (e.g., the blood type figure in the
next chapter). These data could also be represented in pie charts whereas data
depicted in a histogram cannot.

Another type of graph with bars is a graph in which each bar’s height
represents one measured value. We call this a case-value plot (cf. Garfield & Ben-
Zvi, 2008a). There is but different terminology for this type of graph: “value bar
chart (aka “case value graph” [delMas et al., 2005], [...] and “ordered value bar
graph” [Lappan et al., 2014])” (Cooper, 2018, p. 111). A time-plot can “be
considered a special case” of case-value plots (Cooper & Shore, 2010, p. 4).

Variants also exist, for example, stacked forms of case-value plots. The
words bar charts usually refer to all these graph types together but not to
histograms. In the section on education, some examples can be found. Instead of
‘bar charts’, ‘bar graphs’ is sometimes used (e.g., Humphrey et al., 2014).

In histograms, bars are often connected. Nevertheless, this is neither a defining
nor a distinctive feature to distinguish histograms from other graphs with bars

(e.g., loannidis, 2003; Rufilanchas, 2017). A density histogram is hard to make

using common software (e.g., neither Excel nor SPSS can make density
histograms and Excel often makes mistakes with regular histograms)’.

6 The actual number in our cleaned dataset of 2020 was 47,934. Differences are due to rounding.

7 There are workarounds, but then the graph is constructed by the user.

17



Chapter 1

Figure 1.8 Density histogram for COVID-19 infections per 10 years in the Netherlands
in 2020

Note. This density histogram was created by Alex Lyford with ggplot2 using a
workaround.

1.1.3 The role of histograms in statistics and statistical literacy

Most citizens read the results of investigations in a newspaper and magazine
or see these on television, news websites, and social media. Especially in these
times when fake news spreads at lightning speed, it is important that people
can critically evaluate results. Critical evaluation is part of statistical literacy:

...people’s ability to interpret and critically evaluate statistical
information, data-related arguments, or stochastic phenomena,
which they may encounter in diverse contexts, and when relevant
(b) their ability to discuss or communicate their reactions to such
statistical information, such as their understandings of the
meaning of the information, their opinions about the implications
of this information, or their concerns regarding the acceptability
of given conclusions. (Gal, 2002, pp. 2-3, emphasis in original)

Statistical literacy requires graph comprehension and being able to interpret
and produce graphs of data. This ability is also called graphicacy (Balchin &
Coleman, 1966) or graph(ical) literacy (e.g., Gillespie, 1993). Graphicacy is “the
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ability to read and write (or draw) graphs” (Fry, 1981, p. 383). Fry also includes
pictograms and sketches in this definition of graphs, but we prefer to stick to
what mathematicians usually refer to when talking about graphs. For this type
of graph, three aims can be distinguished: propaganda, analytical, and
substitute for tables (Tukey, 1972). In line with Tukey, we are specifically
interested in analytical graphs. Some studies focus on people’s difficulties with
misleading graphs (e.g., Wijnker et al., 2022). In this dissertation, we focus on
students’ difficulties with correctly constructed graphical representations of
data.

2. Histograms have two axes but depict one statistical variable

A returning topic of debate when discussing histograms with scientist is whether
histograms depict one or two variables. An argument for stating it is one statistical
variable is that the same data can be presented in dotplots, stem-and-leaf plots,
boxplots, and density graphs; all being used for depicting one, statistical variable,
and all without a vertical axis. A (density) “histogram does not need a vertical scale”
and when income is along the horizontal axis “the area of each block [bar] is
proportional to the number of families with incomes in the corresponding class
interval” and the total area of a histogram is 100%, or one if proportions are used
(Freedman et al., 1978, pp. 25—-26). Another argument is that the algorithm for
computing the arithmetic mean from histograms is different (i.e., sum of the
measured values is divided by the sum of frequencies along the vertical axis, instead
of number of bars) compared to, for example, case-value plots (where sum of the
measured values is divided by the number of measured values along the horizontal
axis, often being the same as the number of bars). “Univariate graphs provide
information about the distribution of observations on a single variable. [...] The
histogram is by far the most commonly used procedure for displaying univariate
data.” (Jacoby, 1997, p. 13).

An argument for two variables is that there are two axes. To program
software to plot this graph, two variables need to be defined somewhere in the
software. Therefore, | often reply that there is only one statistical variable. If | had
to label the other variable, | would call it a ‘plotting’ variable.

A histogram can be regarded as a spider in a web of knowledge. Histograms
prepare for key concepts such as probability distribution and density in
probability theory (Batanero et al., 2004). Histograms may play a central role in
learning statistical key concepts such as data, distribution, variability or
variation, and central tendency (Garfield & Ben-Zvi, 2004). Each key concept—
such as distribution—relies on other concepts (e.g., center, density, skewness,
relative frequency) (Bakker & Gravemeijer, 2004). Shape is often also included
in this list, but one might wonder whether the focus should be so much on
shape. As an example, we invite readers to think about the normal distribution.
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What kind of shape do you have in mind? When people think about a normal
distribution, they may imagine a bell shape, think about a straight line on
normal probability paper, or an S-shape (the cumulative frequency polygon).
Others may think of

...the probability density function, the Galton board, or we think of
phenomena that can be modeled with the normal distribution (for
example, height). In line with Doérfler’s observation that he could
not find the concept of the number 5 or the triangle in his mind,
we cannot find the concept of the normal distribution in our mind,
only representations. (Bakker, 2004a, pp. 31-32)

The bell curve or other appearances of the normal distribution are signs
(Bakker & Hoffmann, 2005)—graphs if one likes—of the concepts. Moreover,
the shape of a histogram depends not only on the data but also on the binning
choices (e.g., Sahann et al., 2021; Setlur et al., 2022). Therefore, the
appearances—shapes—are not the concepts themselves. Unfortunately, we
cannot learn concepts without signs, without graphs. Therefore, we see a
histogram as a means to teach students about those concepts.

In the Netherlands, histograms are taught mostly in Grades 9-12. They
have been underrepresented in research literature while they are widely used
in practice (e.g., Lem et al., 2014b). When we began this research, it was
unclear how histograms could play a role in developing students' statistical
literacy as part of critical citizenship. Research on students’ difficulties with
histograms was hard to find and fragmented. A gap existed between research
and teaching practice, at least in my own country, the Netherlands (cf. Bakker
et al., 2021). Knowledge of how to effectively teach histograms was lacking.
These problems existed for many years, (e.g., Ismail & Chan, 2015; Meletiou,
2000; Pettibone & Diamond, 1972) despite some carefully designed
interventions (e.g., Kaplan et al., 2014).

Therefore, this doctoral dissertation concentrates on histograms to
develop students’ critical citizenship and statistical literacy. In our research
proposal for this dissertation, the research question was: How can pre-
university track students in Grades 10-12 learn to draw correct conclusions
from histograms? After the first study, it became clear that the focus of our
research should not be on histograms only, but on understanding key concepts
that become visible through histograms. To elicit this focus on students’
understanding, we changed the overall research question into:

RQ: How can pre-university track students in Grades 10-12 be
supported in understanding histograms?
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In the Netherlands, mathematics is mandatory for pre-university track (vwo)
students and they can choose from three types of mathematics: A, B, and C.
Mathematics C is preparation for cultural and art studies and includes
statistics, Mathematics B prepares for technical and other scientific studies and
does not contain statistics, and Mathematics A concerns applied analysis in
economics and health contexts and statistics (Daemen et al., 2020). In addition
to Mathematics B only, students can choose Mathematics D, which contains
statistics and probability, as well as some other topics that broaden and
deepen their mathematical knowledge from Mathematics B. In this
dissertation, we mostly concentrate on the group of students with
Mathematics A as these students have statistics in their curriculum.

1.2 Educational aims for using histograms

1.2.1 What is the educational problem with histograms?

Students misinterpreting histograms

As explained in the previous section, histograms are often confused with case-
value plots (e.g., Bakker, 2004a; Lem et al., 2013a, 2014b). Adding to students’
confusion, not every graph depicting frequencies is a histogram. Consider, for
example, the number of people who died in a hospital (Figure 1.9, inspired by
Gill, 2022). Although, at first glance, this graph might look like a histogram—as
it has frequency on the vertical axis—but it is not. First, consider the variable
along the horizontal axis. This is an ordinal variable (day of the week) and
calculating an arithmetic mean of it would make no sense. Compare this to the
COVID-19 histogram (Figures 1.7, 1.8), where the mean age (roughly 43 years)
is along the horizontal axis and can be depicted by a vertical line that crosses
the horizontal axis at 43 years. Second, in Figure 1.9, the mean (number of
people who died) can be depicted by a horizontal line at 58 people per day,
crossing the vertical axis at that number. Third, we can assess the variation.
Imagine a graph similar to Figure 1.9 in which almost all people died on
Saturday or Sunday. This would be a graph with only two high bars and five
very low bars. Would that indicate much variation or not? We would assume
that this would be considered a lot of variation. In that case, the graph is a
time-plot (which can be considered a special case of a case-value bar chart
regarding mean and variation; Cooper & Shore, 2010). But if this graph had
been similar to a ‘histogram’ (or, to be precise: a distribution bar chart, as the
horizontal scale is ordinal), the imaginary graph with only two high bars would
not be considered much variation at all, as all deaths are concentrated around
the same two days.
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Figure 1.9 Number of people who died in one hospital per weekday counted over one
year

In addition, “The distinction between distribution bar graphs and value bar
charts [case-value plots] can blur if frequency is found on the vertical axis and
the data itself is not well-defined” (Cooper & Shore, 2010, p. 14). The same
holds true for histograms and some time-plots. For example, consider the
number of people who died at certain times (Figure 1.10, inspired by Gill,
2022). Although at first glance, this graph might look like a histogram, it most
likely is not. However, it really depends on what you consider to be the data.
We would expect here that the data are the number of people who died. In
that case, the mean number of people who died in a hospital per hour is
approximately 17 and can be found along the vertical axis. Moreover, a dotplot
for number of deaths cannot be made from Figure 1.10, or at least not without
discarding the crucial time-of-the-day information, unless the mean time of the
day somebody died is the variable of interest, in which case, time would be on
the horizontal of this dotplot. Second, how is variation assessed? If the
variation in the frequency only is considered (e.g., high and low peaks), the
variation in heights of bars (vertical variation) is assessed as if this graph is a
kind of case-value plot (with a standard deviation for the frequencies of 7.9). If
this graph were a histogram, then the mean hour of deaths is roughly in the
morning (mean hour: 10.84 or 10:50). For the variation in the data, we would
then look at the horizontal spreadoutness of the data in combination with the
heights of bars.
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Figure 1.10 Number of people who died due to COVID-19 in one hospital in one year
(fictive numbers)

As explained in the previous section, in English, different words are used to
distinguish different graphs with bars from each other; see the box on other
types of graphs with bars. For example, the graph in Figure 1.10 is called a
time-plot (Cooper & Shore, 2010). This naming might seem to be merely extra
detail, but as we will see from the eye movements of students in Chapter 3, it
is not.

Teachers’ difficulties with histograms

When we give workshops to teachers—after presenting them with the graphs
from Figure 1.4—we regularly ask them to sort graphs with bars from
textbooks and newspapers (Figure 1.11, see also Boels, 2019). Which of these
graphs are histograms? Teachers often find this a challenging task. One way to
decide on this is to try to find the mean. Another way is to make a graph with
dots. Graphs a, b, and e would result in a line graph, and the mean can be
found on their vertical axis. Graph d would result in a dotplot, and the mean
can be found on the horizontal axis. For graph c, it is impossible to decide what
kind of graph it is. We advise avoiding these graphs (e.g., in textbooks), as
these emphasize most noticeable features instead of relevant ones?.

8 See also my videos: https://youtu.be/zpRHhixoYmg and https://youtu.be/50d2uB908PI
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Figure 1.11 Some graphs with bars found in textbooks and websites

Note. Source: a) Moderne Wiskunde, 5 vwo, Mathematics A, 11th edition, b) Wisfaq
explanation of histograms, 2017, November 1, c) Getal en Ruimte, 4 havo,
Mathematics A, part 2, 11th edition, d) Mathplus, 4 havo, Mathematics A, part 3, 1st
edition, e) Mathplus, 4 vwo, Mathematics A and C, part 2, 1st edition.

Research in which histograms of research outcomes caused difficulties

The previous section hinted at possible misinterpretations that can occur when
using histograms. However, it is not only students that have difficulties with
interpreting histograms, but also researchers. Here, we provide two examples.
In both examples, histograms were avoided when they should have been used.
The conclusions of the research could still be correct and the quality of the rest
of the research could still be high. This is up to others to judge. My focus is
strictly on the correct use—or avoidance—of histograms.

In the first example, the diameter of savanna trees in Australia—the
Banksia Marginata—was measured at breast height (Heyes et al., 2020). Bins
were created with diameter on the horizontal scale and number of trees
(frequency) on the vertical scale. The issue is with the graphs constructed in
the study and the calculations that were done. First, the researchers drew a
line graph, which is suitable for two statistical variables but not for one.
Second, they used logarithmic scales for both axes. This means that for larger
breast height widths, bin sizes are bigger, requiring a kind of density graph
(density histogram, violin plot). Third, they calculated the correlation between
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the middle of the bins and the frequency. The latter can be problematic as the
choice for binning in histograms can severely influence the shape (e.g., Sahann
et al., 2021; Setlur et al., 2022), which in turn influences what correlation will
be found.

The second example stems from a course for prospective mathematics
teachers (Norabiatul Adawiah et al., 2021). To compare the distribution of
scores in two groups—one statistical variable measured at ratio measurement
level—a kind of double distribution bar chart was used (suitable for one
variable measured at nominal or ordinal measurement level). For teachers, we
would expect that data would be presented in two histograms, two boxplots,
or two dotplots (e.g., Biehler, 2007; cf. Rodriguez-Mufiz et al., 2022) or that it
would be discussed which didactical reasons justify this deviation (see also
Chevallard & Bosch, 2014). In addition, for comparison, a group size of N =12
is quite small.

1.2.2 Histograms in Dutch mathematics education

In the Netherlands, there are different curricula for pre-vocational education
(vmbo) and general secondary education (havo and vwo: pre-college and pre-
university track education). However, in most textbooks, histograms are
introduced in Grade 9 (e.g., Getal en Ruimte, 2015) or sometimes in Grade 10,
although one textbook that is no longer available (Mathplus, 2014) very briefly
touched upon histograms in Grade 7. In addition, as explained earlier, in the
pre-university track students choose one type of mathematics, and it is that
choice that determines whether histograms are further elaborated on.

A typical introduction in the Grade 9 pre-university track is that
students are first asked to aggregate given data into a frequency table. Next,
they perform some calculations with frequency tables, such as calculating the
arithmetic mean or the median. Finally, students are asked to draw a
histogram for a given frequency table. There can be quite a few months or
even a whole school year in between those steps. In Moderne Wiskunde
(2019, p. 102), dotplots are used in a statistics chapter in Grade 10
Mathematics A and C. The word histogram is not used in this textbook and the
authors do not seem to have clarity about what kind of graphs are used for
what kind of data. In one task, for example, they ask students to make a
dotplot, a bar chart, and a pie chart for the same data (p. 103). As dotplots are
suitable for data measured at ratio or interval measurement level (sometimes
called numeric or quantitative data) and pie charts are used for nominal or
ordinal data (categorical data or qualitative data) this task does not seem to
make sense, although they asked students to reflect on the most suitable chart
for these data. A quick scan of the three most used Dutch mathematics
textbooks in 2021 indicates that they all suffer from inconsistencies,
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misinterpretations, and a focus on procedural knowledge instead of
developing statistical literacy.

Regarding the latter, for example, students rarely collect their own
data. Although histograms are important tools for data analysis, data
communication, and interpretation including inferential reasoning (see
investigative cycle, Wild & Pfannkuch, 1999), the focus in textbooks is often on
how to draw a histogram and how to calculate something with the data it
represents. Interpretation of histograms is rare. Histograms can be used for
data exploration, hypothesis generation, communication, interpretation,
developing new ideas, drawing conclusions about the collected data or the
population, and even sometimes to support data cleaning (e.g., to find typos
that may be depicted as outliers).

1.3 Personal motives for choosing statistics education as a
research area

Since my training as a mathematics teacher, like many other teachers, | have
been concerned with the question of how topics in mathematics can best be
taught. Through my experiences in teaching and in previous research, | have
noticed that the effectiveness of statistics education in Dutch secondary
schools (Grades 10-12) is far from optimal. Many teachers do not feel well-
equipped to teach statistics (e.g., Van Dijke-Droogers, 2021). As a result,
students are poorly prepared for further study and society. Girls in particular
become very frustrated by this as they often choose studies for which statistics
courses are an important part of the university curriculum (e.g., psychology).
As | was teaching Mathematics A most of the time, | felt personally responsible
for their failure and frustration and | wanted to do something about that. This
was my first motive.

My second motive stems from students’ difficulties. The examples in
the previous sections show that graphing data can be a crucial step in data
analysis and interpretation. As discussed earlier, some important discoveries
were made purely by graphing data. Interpreting graphs seems a simple first
step in the statistics curriculum, but in practice, students have little
understanding of statistical graphs such as histograms. For boxplots, students’
misinterpretations are well known (e.g., Bakker et al., 2004), but for
histograms, most teachers seemed unaware of students’ difficulties (e.g.,
Cooper, 2002). | wanted to find out exactly why students have difficulties
understanding histograms and what can be done about it.

Given my technical background—I was trained as an electrical
engineer—and my training to become a mathematics teacher approximately
ten years later, | felt well-equipped for supporting students with topics within
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calculus. Statistics, however, was never really part of my training, apart from
some procedural knowledge such as how to calculate the mean or standard
deviation from a frequency table. In past Dutch teacher training, statistics got
little attention. | do not remember that | ever read or talked during my training
to become a teacher—approximately twenty years ago—about the
investigative cycle (Wild & Pfannkuch, 1999), talking students through the data
collection (Ben-2vi et al., 2018; Cobb & McClain, 2004) or key concepts (e.g.,
data, distribution), and how these relate to each other and to teaching. Further
professionalization of teachers was, therefore, considered necessary when the
new curriculum for Mathematics A was introduced in 2015, especially for
statistics (cTWO, 2007). By conducting research on a topic | didactically knew
little about, | wanted not only to advance teaching and research in statistics
education but also to become a better-equipped teacher myself. This was my
third motive to engage in this research.

1.4 Overview of this dissertation

Chapters 2 to 6 form the core of this dissertation. Below, a brief description of
each chapter and its research question is given. In Figure 1.12, an overview of
the studies and chapters can be found. When we started the trajectory for this
dissertation, we expected that we would use the literature on students’
difficulties with histograms and a small-scale eye-tracking study both as inputs
for a larger design study (Bakker, 2018). In that case, design research would
have been at the heart of this dissertation. However, during the first study—a
review of the literature, see Chapter 2—it became clear that several attempts
had already been made to carefully develop interventions to tackle students’
misinterpretations. The success of these varied, often even within a single
intervention. In a study by Kaplan et al. (2014), for example, after taking an
introductory statistics course at a university, upon completion students were
better able to distinguish a histogram from a case-value plot. In addition,
confusing horizontal and vertical axis when determining the median decreased
slightly. “Unfortunately, this may be due to the item construction, rather than
actual students’ knowledge” (p. 16). Moreover, confusing the horizontal and
vertical axis when comparing the mode of two histograms increased. The
overall impression we got is that most interventions had not been very
successful. Therefore, instead of trying out another intervention, we decided
to dig deeper and do what McKenney called “a lot of “front-end work’, [which
includes ...] understanding the problem better”, identifying students’
difficulties, and “formulating design criteria” (Bakker, 2018, p. 142). Hence, in
the second study (Chapter 3), we decided to figure out on a more fundamental
level what students’ difficulties with histograms were through a larger eye-
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tracking study, as we thought that students’ gaze patterns could provide
insight into their approaches.

Chapter 2. As an overview of students’ difficulties with interpreting histograms
was lacking in the research literature, the first step was to create such an
overview through an extensive review of the literature. The research question
for this study was:

RQ1: What are the conceptual difficulties that become manifest in
the common misinterpretations people have when constructing or
interpreting histograms?

A narrative systematic review of the literature with a configurative synthesis
was conducted (Gough et al., 2017). Data were collected through a systematic
search in several databases. From each publication in this review, we collected
the misinterpretations that were reported or discovered.

Chapter 3. The review results made it possible to address students’ conceptual
difficulties that become manifest in most common misinterpretations more
broadly rather than focusing on a specific misinterpretation.
Misinterpretations related to the statistical key concepts data and distribution
can be observed when students confuse histograms with look-alikes, including
case-value plots. In addition, many of the studies in the literature review draw
conclusions from students’ final answers (e.g., Whitaker & Jacobbe, 2017).
Little was known about students’ strategies for reaching these answers.
Therefore, it was unclear how to intervene effectively. By observing students’
actions, it becomes clear how students use their conceptual knowledge of the
data in histograms, hence what strategies they employ. Eye movements can
reveal students’ strategies (Van Meeuwen et al., 2014). We answer the
following research question:

RQ2: How and how well do Grades 10-12 pre-university track
students estimate and compare arithmetic means of histograms
and case-value plots?

We used eye-tracking as a data collection method, as gaze patterns can
provide detailed insight into students’ thinking processes, including those
processes that students are not aware of or are not able to articulate (Green et
al., 2007). We tracked the gazes of students (50) and teachers (18), although
teachers are not included in this dissertation for reasons of time (Boels et al.,
2019b). Students were asked to estimate or compare arithmetic means.
Students’ gaze data were qualitatively coded and combined with interview
data from cued recall to connect specific gaze patterns—the perceptual forms
of gazes—to interpretation strategies.
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Chapter 4. The three patterns we found in students’ gaze data for single
histograms sparked us to explore whether automatic recognition of students’
strategies might be possible through a machine learning analysis. A potential
benefit of automatic recognition would be that targeted intelligent feedback
could be given, based on students’ strategies inferred from gaze data, during
online learning. This, in turn, could help reduce the pervasiveness of
misinterpretations among students as described in Chapter 2. Chapter 4
describes a first step in this automation process. The research question for this
study was:

RQ3: How can gaze data be used to automatically identify
students’ task-specific strategies on single histograms?

We made an Interpretable Mathematical Model (IMM) of the gaze data based
on heuristics stemming from the previous study. To provide a baseline for the
IMM, we used a supervised machine learning algorithm (MLA). The chosen
software tool (Mathematica Classify Function) automatically prepared the gaze
data and fed these into an automatically chosen MLA. As we also used some
single histograms that were not yet analyzed in the previous study, this
required another round of qualitative coding. In the chapter on this study, it is
explained why that was necessary. The quantitative approach through an IMM
and machine learning analysis contributed to the reliability of the results. A
similar study for the double histogram tasks is planned for the future.

Chapter 5. The previous studies revealed students’ solution strategies when
solving histogram tasks in more detail. A local instruction theory in statistics
education suggests that having students solving dotplot tasks can support
students’ learning to interpret histograms (e.g., Bakker & Gravemeijer, 2004;
Garfield, 2002; Garfield & Ben-Zvi, 2008a), as dotplots can draw students’
attention to the variable being presented along the horizontal axis in both
graphs. In this study, previously collected gaze data were re-used to explore
whether students’ histogram interpretations change after solving dotplot
items. We used students’ gaze data on four histogram items as inputs for an
MLA (random forest) to answer the research question:

RQ4: In what way do Grades 10-12 pre-university track students’
histogram interpretations change after solving dotplot items?

In addition, we used students’ verbal reports and answers to investigate
whether changes in gaze patterns reflect changes in students’ approaches.

Chapter 6. The literature research (Chapter 2) also made clear that existing
interventions were not sufficiently successful in teaching students to correctly
interpret histograms. The students’ solution strategies (Chapter 3) showed that
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many of these Dutch students lacked understanding of how and where data
are represented in histograms. Interpreting dotplots may assist students’
understanding of histogram (Chapter 5) but it was still unclear how an
intervention could be designed that would support students’ learning of
statistical key concepts through interpreting dotplots and histograms.
Therefore, in this last study, we made a start with a design study. From
the previous studies, we got the impression that students lacked experience
with dotplots and sufficient attention to how these artifacts—histograms,
dotplots—become tools in statistical reasoning. We suspected that students’
education might have lacked an embodied grounding of how histograms are
constructed. Therefore, using embodied instrumentation approach as a
theoretical lens, we designed a learning trajectory that drew upon findings and
insights from previous studies. The research question for this study was:

RQ5: What sequence of tasks designed from an embodied
instrumentation perspective can support students’ understanding
of histograms and the underlying key concepts?

Chapter 7. This chapter presents general conclusions and discussion. We
answer the main research question. The theoretical and methodological
insights, implications, and recommendations for research and educational
practice are elaborated.
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Conceptual difficulties when interpreting histograms:
A review

“Amazing the things you find when you bother to search for them.” °
Sacagawea

“A mistake is just another way of doing things.” ¥
Katharina Graham

This chapter is based on

Boels, L., Bakker, A., Van Dooren, W., & Drijvers, P. (2019). Conceptual
difficulties when interpreting histograms: A review. Educational Research
Review, 28, Article 100291, 26 p.
https://doi.org/10.1016/j.edurev.2019.100291

9 Divya Raghav (2021), 10+ Best Sacagawea quotes from the influential explorer. Kidadl.
https://kidadl.com/quotes/best-sacagawea-quotes-from-the-influential-explorer

10 Garson O’Toole (2023, April 24). Quote origin: A mistake is just another way of doing things.

https://quoteinvestigator.medium.com/quote-origin-a-mistake-is-just-another-way-of-doing-
things-754f6ae01548
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Chapter 2

Abstract Histograms are widely used and appear easy to understand.
Nevertheless, research indicates that students, teachers, and researchers often
misinterpret these graphical representations. Hence, the research question
addressed in this chapter is: What are the conceptual difficulties that become
manifest in the common misinterpretations people have when constructing or
interpreting histograms? To identify these conceptual difficulties, we
conducted a narrative systematic literature review and identified 86
publications reporting or containing misinterpretations. The misinterpretations
were clustered and—through abduction—connected to difficulties with
statistical concepts. The analysis revealed that most of these conceptual
difficulties relate to two key concepts in statistics: data (e.g., number of
variables and measurement level) and distribution (shape, center, and
variability or spread). These key concepts are depicted differently in
histograms compared to, for example, case-value plots. Our overview can help
teachers and researchers to address common misinterpretations more
generally instead of remediating them individually.

Keywords Statistical key concepts; Misconception; Big ideas; Statistics
education; Statistical knowledge for teaching (SKT); Histogram.
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2.1 Introduction

Statistical literacy is a core competence for citizenship, and, therefore, an
important goal of statistics education for students of all ages (Ben-Zvi et al.,
2017). It includes the ability to interpret graphical representations of statistical
data (Ben-Zvi & Garfield, 2004b; Garfield & Ben-Zvi, 2007). Graphical
representations of statistical data can be found in newspapers, schoolbooks,
research articles, government policy reports, television, news bulletins, and
other common sources of information. “Graphical representations serve as
useful tools to communicate aspects of a distribution as they facilitate a focus
on aspects of the data that may be missed with the use of descriptive statistics
alone.” (Leavy, 2006, p. 90); see also Pastore et al. (2017). Different
representations reveal different aspects of the data. Many real-life examples
show that lives can literally be saved if people master the ability to switch
between different representations of data to reveal different aspects. One
example is from Nightingale, who saved many lives with her famous polar
graph (Martineau, 1859) which showed that more soldiers died from
preventable diseases—caused by bad hygienic circumstances in the hospitals—
than from the war wounds caused by the Crimean War.

A graphical representation widely used to represent the distribution of
univariate scale data is the histogram. What researchers consider a histogram
is rarely defined. In addition, some researchers (e.g., Stevens & Palocsay, 2012;
Wong, 2009), teachers, and citizens use—often implicitly—a definition of a
histogram that deviates from what statisticians refer to as a histogram (e.g.,
Cooper & Shore, 2010; Friel et al., 2001). In the statistics literature (e.g., Bruno
& Espinel, 2009; Cooper & Shore, 2010; Pearson, 1895; Shaughnessy, 2007), a
regular histogram is defined as a graph with bars that meets the following
criteria (see Figure 2.1 for an example and a non-example):

e The data of only one statistical variable are presented on the
horizontal axis;

e The data are measured at interval or ratio measurement level;

e The variable is preferably continuous;

e The vertical axis typically displays the class density, or—when bin!!
widths or class intervals are equal—relative frequency or frequency?2.

11 Joannidis (2003) uses the word ‘bucket’ instead of ‘bin.’

12 |n some languages the word frequency refers to relative frequency only and the word count is
used to address absolute numbers. An example is found in French textbooks where the word
effectifs is used for absolute frequency and the word fréquence is used for relative frequency
(e.g., Derouet & Parzysz, 2016). In English and in our manuscript, the word frequency means
absolute frequency.
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Connected bars are neither a defining nor a distinctive feature to distinguish
histograms from other graphs with bars (e.g., loannidis, 2003; Rufilanchas,
2017).

At first sight, histograms may appear easy to understand, but research
indicates otherwise (e.g., Lem et al., 2014b). In fact, many errors,
misconceptions, and mistakes in interpreting histograms have been
documented in the literature (e.g., Bruno & Espinel, 2009; Derouet & Parzysz,
2016; Friel et al., 2001; Kaplan et al., 2014; Lem et al., 2013c). However, a
systematic overview of these misinterpretations—a term we use as an
umbrella for the ways in which people interpret histograms incorrectly—has
not yet been compiled. Research repeatedly showed the persistence of the
misinterpretations despite various attempts to improve statistics education
(e.g., Ben-2vi & Garfield, 2004b; Ben-Zvi et al., 2017; Chance et al., 2004;
Cohen, 1996; Garfield & Ben-Zvi, 2007; Kaplan et al., 2014; Shaughnessy,
2007). Hence, there is a need to reflect on what conceptual difficulties may lie
at the basis of these persistent misinterpretations. The aim of this review is,
therefore, to make an inventory of the misinterpretations that occur when
people use histograms, as well as to categorize these misinterpretations along
the conceptual difficulties that become manifest in these misinterpretations. In
this review, the word ‘people’ refers to students of all levels, as well as to
teachers, researchers, teacher educators, and others. The question guiding this
review is:

What are the conceptual difficulties that become manifest in the
common misinterpretations people have when constructing or
interpreting histograms?

Organizing misinterpretations by conceptual difficulties that may lead to them
seems to have several advantages. First, it provides a better understanding of
the misinterpretations (in terms of types or common difficulties). Second, once
the conceptual difficulties that become manifest in the most common
misinterpretations are made plausible, researchers and educators can address
these more generally instead of treating or remediating misinterpretations one
by one. Such a pedagogical route would be in line with the current view in
statistics education, which aims to ensure that students develop an
understanding of the key concepts of statistics in relation to each other. In the
statistics education literature, the term ‘big ideas’ was once used more often
than the now more common term ‘key concept’. We use ‘key concept’ and ‘big
ideas’ as interchangeable terms. Up to now, research usually focuses on a
specific misinterpretation (e.g., of the standard deviation) instead of multiple
misinterpretations that together are a manifestation of a conceptual difficulty
with a key concept (e.g., of the distribution). Third, this overview is useful for
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all researchers in education and not only for mathematics education research
because many education researchers either use statistics to analyze the results
of their research or teach statistics in—for example—psychology or education.
For researchers using statistics, graphing is a logical first step in analyzing
guantitative data—for instance, when looking at the distribution of univariate
data—and is often advised to do before calculating a measure (Ben-Zvi &
Garfield, 2004b; Pastore et al., 2017). Fourth, research indicates that we need
subject-topic-specific information for certain aspects of teaching and learning
this topic (Leinhardt et al., 1990; Pareja Roblin et al., 2018).

Figure 2.1 Example of a histogram (left; ratio measurement level) and a distribution
bar graph (right; nominal measurement level)

2.2 Theoretical background

2.2.1 Graphical representations

Statistical graphs often serve as the analysis of data or inquiry—as Gal (2002)
phrases it—and communication of results. This requires graph comprehension
(Curcio, 1981, 1987; Friel et al., 2001). Difficulties with graphical
representations have been extensively studied (e.g., Arcavi, 2003; Carpenter &
Shah, 1998; Larkin & Simon, 1987; Leinhardt et al., 1990; Tufte, 1983/2001;
Tversky, 1997). Statistical graphs represent not only data but also statistical
concepts—especially graphs that represent data in an aggregated form (e.g.,
boxplots and histograms). In turn, statistical concepts are inextricably
represented in some form—sometimes numerically, sometimes graphically, or
both. For example, for most people, the concept of the normal distribution is
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inextricably connected to the bell shape as a graphical representation (Bakker
& Hoffmann, 2005).

Therefore, in this review, we focus on the relation between the
graphical representation and key concepts in statistics. Although some
misinterpretations might be unique to the graphical representation itself, we
anticipated that most misinterpretations would be a manifestation of a
conceptual difficulty. Some conceptual difficulties may appear with other
graphical representations too, for example, with a boxplot, which is also a
graphical representation of univariate data measured at interval or ratio
measurement level (e.g., Bakker et al., 2004; Lem et al., 2013c).

The literature on statistical graphs revealed that experts and novices
analyze graphs in different ways. Experts tend to view a graph globally, while
novices seem to focus on the local features of the graph (Khalil, 2005). Konold
et al. (2015) showed that some elementary school students regard the data as
a pointer to the context or situation, which is in line with the findings from
other researchers that students see the graph as a picture (e.g., Friel et al.,
2001; Leinhardt et al., 1990). According to Konold et al., other students focus
on individual cases in the graph, for example, the shortest person, or where a
specific person can be found in the graph. Yet other students see the datain a
graph as classifiers—for example, for the mode or “the winning outcome” (p.
314). Elementary school students rarely see the data as aggregates, meaning
that their focus is mostly not on the entire distribution. Which perspective is
useful depends on the question posed to the data.

2.2.2 Misinterpretations and conceptual difficulties

In this review, we distinguish between conceptual difficulties and
misinterpretations. In line with other research (Lem et al., 2013c), we use the
term ‘misinterpretation’ to denote a repeatable and explicit mistake or error
that occurs in different people (Leinhardt et al., 1990) and that relates to the
conclusion being drawn from a given graph. The term ‘conceptual difficulty’ is
widely used in the literature on physics and chemistry education when people
have an incorrect, naive or incomplete idea of a concept (e.g., Battaglia et al.,
2017; Garnett & Treagust, 1992; Hammer, 1996). As a clear definition was not
found in this literature, we define a conceptual difficulty as having not fully
grasped or understood the key concept at hand. People who have fully grasped
the key concept are not expected to show misinterpretations when drawing
conclusions from graphs. When we identify a misinterpretation, we can,
therefore, conclude that it is a manifestation of a conceptual difficulty.

An example may further clarify the distinction between a
misinterpretation and a conceptual difficulty. When statistics teachers state
that a graph has more variability because the graph is bumpier (meaning: more
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difference in heights of the bars; e.g., Dabos, 2014) they assess the variability
of the frequency bars in the histogram instead of the variability of the variable
at hand. We infer from this behavior (i.e., showing a misinterpretation) that
these teachers have difficulties with the statistical concept of variability, which
is part of the key concept of distribution. This is further clarified through the
examples in the next section.

2.2.3 The key concepts of data and distribution

The research on the teaching and learning of statistics identified several key
concepts that underlie statistical investigations (Garfield & Gal, 1999)—as the
core goals of statistics education. These statistical key concepts encompass
several other concepts such as trend, model, sample, and graphical
representation (e.g., Bakker, 2004a; Ben-2vi et al., 2017; Gal & Garfield, 1997;
Pfannkuch & Ben-Zvi, 2011). The statistical concepts are intricately connected
(Bakker & Derry, 2011). Which statistical concepts are at stake depends on the
particular context and research question posed to the data. Figure 2.2
summarizes how the various statistical concepts fit together when it comes to
solving a statistical problem involving univariate data that can be represented
in a histogram.

During the analysis of the groups of misinterpretations (the axial codes,
see section 2.3.2), it became clear that the usual theoretical framework of key
concepts in statistics—a collection of the statistical concepts they are related
to—lacked a specification of the relationships between these statistical
concepts. We, therefore, propose a network of statistical concepts based on
the theoretical framework of key concepts found in the literature (see Figure
2.2). As it is unlikely that there is a generic relationship between these
statistical concepts, we focused on those relevant to solving statistical
problems that may involve the representation of univariate data in a
histogram. Our contribution consists of three parts. First, we added
connections between the statistical concepts, which led to a coherent network
that, from our analysis??, turned out to be relevant. In this network, we
outlined how these connections can be understood. Second, we linked this
network to the statistical investigation by assigning a specific statistical
concept to a specific part of the statistical investigation—such as posing a
question or collecting data (Wild & Pfannkuch, 1999). Assigning the concepts
to the statistical investigation clarifies the consequence of misinterpretations
for statistical investigations and inferential reasoning in education and
research. Third, we added measurement level and number of variables as

13 For example, concepts related to hypothesis testing are not included in this network as these
did not emerge from our analysis.
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separate statistical concepts, as from the grouping of our data it became clear
that these concepts were lacking in the existing theoretical framework of key
concepts. In addition, we added some statistical concepts that, beforehand, we
did not expect to find in this review (e.g., correlation and covariance). These
statistical concepts do not make sense for histograms. For example, correlation
is only possible with at least two variables, whereas a histogram depicts only
one variable. From the coding (axial codes), it nevertheless became clear that
misinterpretations related to this statistical concept sometimes played a role,
so we added this to the network.

We now discuss the two key concepts that turned out to be most
relevant during the analysis phase. The descriptions of these key concepts are
taken from Garfield and Ben-Zvi (2004, p. 400).

e Data: [...] data represent characteristics or values in the real world [...]
e Distribution: a representation of quantitative data that can be
examined and described in terms of shape, center, and spread

[variability], as well as unique features such as gaps, clusters, outliers,

and so on.

Because we know from the literature in this review that the key concepts data
and distribution are hard to grasp for most people, we synthesize the main
characteristics in two examples.

The key concept of data

The key concept of data includes how many variables are depicted in the graph
(see the letter F in Figure 2.2) as well as the measurement level (nominal,
ordinal, interval, or ratio) of its attributes (see K in Figure 2.2). In Figure 2.3,
the key concept of data is explained through the example of babies bornin a
hospital in Queensland, Australia (Dunn, 1999). For our explanation, only two
variables of this data set are used: a number referring to each baby girl that
was born (instead of her name) and her weight in grams. To visualize these
data, a so-called case-value plot or value bar chart is used, which is a special
type of bar graph that shows a value (birth weight) for every case (baby girl;
see Figure 2.3a).
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Figure 2.2 Network of statistical concepts relevant for interpreting histograms and
their place in the investigative cycle

Note. Statistical concepts are located in the colored rectangles; the sizes of rectangles
have no meaning. The thick lines of both arrows and boxes indicate frequently
reported misinterpretations, see section 2.4 Results. The color or grayscale of the
rectangles refers to different aspects of statistical investigations:

[Iposing a question [Jcollecting data [ analyzing data [Jmaking inferences

The key concepts DATA and DISTRIBUTION encompass several statistical concepts as
indicated by the large, dotted rectangles. Arrows indicate relationships.

41



Chapter 2

From the case-value plot with two statistical variables (see Figure 2.3a)—thus,
a bivariate distribution—a histogram can be constructed through six
intermediate steps. These intermediate steps are needed to tackle one of the
most common misinterpretations related to the key concept of data. This
misinterpretation—existing not only among many students, but also among
some researchers, and some mathematics teachers—is that the number of
axes determines the number of statistical variables measured, thus defining
whether the distribution is univariate or bivariate (see Figure 2.3; e.g., Cohen,
1996). In the first step, one variable is removed from the graph. The resulting
series of graphs is, therefore, univariate, including the histogram (see Figure
2.3b—g).

During three of the six steps described here, and during a seventh step
outside figure 2.3, information reduction* occurs (Gal & Garfield, 1997). The
first information reduction is the removal of the names of the baby girls (here
anonymized; see Figure 2.3b), possibly inducing, for example, the
misinterpretation that bars in a histogram can be reordered (e.g., Bruno &
Espinel, 2009). The second information reduction occurs when the dots are
stacked (see Figure 2.3f), possibly inducing, for example, the misinterpretation
that only the middle value of the bar is observed (e.g., Biehler, 1997). The third
information reduction occurs when the dots are removed from the bars,
making it necessary to use a second axis for the height of the bars (density or
frequency), possibly inducing the misinterpretation that two statistical
variables are depicted instead of one (see Figure 2.3g, e.g., Baker et al., 2002;
Dabos, 2014). When bin widths are unequal, another step is needed. A fourth
step in information reduction is, therefore, using frequency density instead of
frequency (not shown in Figure 2.3; Boels & Shvarts, 2023) possibly inducing,
for example, wrong labeling of the vertical axis (e.g., Derouet & Parzysz, 2016).

The key concept of distribution

The key concept of distribution encompasses shape, center, and variability (see
L-V and part of W in Figure 2.2). The distribution depends on the type of data
(see H—K in Figure 2.2). In line with Cooper and Shore (2010), we argue in this
section that shape (part of W in Figure 2.2), center (see M and T in Figure 2.2),
and variability (see L and S in Figure 2.2) are assessed differently depending on
the type of graph at stake (see W in Figure 2.2). Identifying the mean and
variation in a histogram—a univariate distribution—can be done by drawing a
vertical line for the mean and examining the horizontal spread of the bars,
meanwhile taking the heights of the bars into account, see Figure 2.4, left.

14 We prefer information reduction over the term data reduction, as the original data
themselves are not reduced—only aggregated—making other aspects, such as patterns in the
data, more visible.
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Identifying the mean and variation or spread in a case-value plot—a bivariate
distribution—can be done by drawing a horizontal line for the mean and
examining the variation of the heights of the bars around this line, see Figure
2.4, right. Note that in a histogram, less variation in the heights of the bars
often indicates more variability of the variable represented on the horizontal
axis (here: weight), whereas more variation in the heights of the bars in a case-
value plot always indicates more variability of the variable represented on the
vertical axis (here: weight). Although the graphical representations in Figure
2.4 look quite different, the underlying distribution of the variable at hand
(weight) is the same. This key concept of distribution is often misunderstood as
people tend to think of a distribution as the shape of the graph and not as an
abstract statistical concept leading to, for example, not recognizing different
graphical representations of the same data (e.g., delMas et al., 2007).

Figure 2.4 Different orientation of the mean value—the dotted line—in a histogram
(left) and a case-value plot (right). Both graphs are based on the same weight data,
and, therefore, depict the same distribution of weight

Birth weight baby girls Queensland, Australia, December 18, 1997

2.3 Method

A narrative systematic review of the literature with a configurative synthesis
was conducted (Gough et al., 2017) with a query-based search strategy in the
following databases: PsycINFO, Web of Science, Scopus, ERIC, and Google
Scholar, see Figure 2.5 for the flowchart. These five databases are commonly
used for scientific literature in mathematics and statistics education.

2.3.1 Search strategy

This chapter includes publications that describe or contain misinterpretations
when constructing or interpreting histograms by people (students, teachers,
researchers, and others). A publication was excluded when histograms were
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Education Literacy -Automated -Bank -Bayesian -Compression -Disability -DNA -Driver -
Forensic -Genetic -MRI -Neural -Nuclear -Optics -Patient -Photon -Radiology -
Segmentation -Spelling -Texture -Violence}. Exact reproduction of results in Google
Scholar is not possible. While Google Scholar can lead to more included publications
than other databases, some research might not be found when using Google Scholar
alone (e.g., Haddaway et al., 2015). Therefore, Haddaway et al. advise to also use other
databases.

Figure 2.5. Flow chart of publication selection process. When exclusion could not be
decided on the basis of an abstract, the full text was studied

Google ERIC PsycINFO Web of Scopus : Checking
Scholar Science 1 procedure
1
n=>599 n=1135 n=91 n=109 n=133 1 n=105
|
|
|
|
1
———————————————— — - — _—_I-—_————
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Deduplicate I
|
he o o o e o e - - - - . - - - 1
Step 1: title check . Backward snowballing n = 70
> <
A4
n=359

Step 2: abstract check

v

Step 3: check of full text

2.3.2 Data analysis

For every publication included in this review, we collected the
misinterpretations that were either reported or detected in the publication. To
identify the conceptual difficulties that become manifest in the most common
misinterpretations, we grouped these misinterpretations into axial codes.
Using the key statistical concepts as a lens, we inferred through abduction
(Peirce, 1994) that misinterpretations stem from a lack or misunderstanding of
these concepts. Abduction is the process of generating explanatory
hypotheses. Hoffmann (2011) states that we can stop this process “when an
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abductive insight has been achieved” which he defines as “the experience that
what someone created in abductive reasoning” is plausible and gives an
acceptable argument for the phenomenon (p. 572). As explained in section
2.2., the following holds. People who have fully grasped a key concept are not
expected to show misinterpretations when drawing conclusions from graphs.
When we identify a misinterpretation, we can, therefore, conclude that it is a
manifestation of a conceptual difficulty.

Table 2.2 Example of some searching strategies, search terms, and number of
identified and relevant publications in database PsycINFO in 2016. Since then, some
changes in OVID databases have taken place including replacing or changing subject
headings in the APA Thesaurus

Search in Keywords for Number of New
inclusion (search publications relevant
terms) identified publications

Abstract Histogram and 0 0
mistake and
education and
literacy
Histogram* Almost 600, so

more keywords
were used

All fields Histogram and Over 200, so
education** more keywords

were used
Histogram and 8 1
education and
literacy
Abstracts of Histogram 40 0

predefined category
2240 statistics &
mathematics

Title Histogram 43 0

Total 91 1

Note. Using four keywords for inclusion and none for exclusion led to zero publications
identified, so the search strategy had to be slightly adapted by using fewer keywords.
*Including a second keyword led to almost zero publications identified and no new
relevant publications. **Other combinations were tried resulting in no new relevant
publications.

How the network of statistical concepts was used is now explained with two
examples. The first example is the misinterpretation of students who used two
statistical variables when asked to draw a histogram (Baker et al., 2002). This
misinterpretation is categorized as indicating a problem with understanding
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the key concept of data (see box F in Figure 2.2: 1, 2 or more variables and
attributes), as it indicates that these students do not differentiate between a
histogram—which represents a univariate distribution of one variable—and a
bivariate distribution of two statistical variables (the latter often being
depicted in a scatterplot). A second example is students who do not
understand that a distribution that looks unimodal in a histogram can turn out
to be bimodal if the bin width is made smaller (Karagiannakis, 2013). This
misinterpretation is categorized as indicating a problem with understanding
the key concept of distribution, as it indicates that these students do not
understand the influence of grouping on the graphical representation, which is
displayed by the arrow from grouping (see box R in Figure 2.2: group or
ungroup) to graphical representation (see box W in Figure 2.2: graphical
representation: graph with bars, histogram). As further explained in the
codebook (see Appendix A of this chapter for the full version), the selective
code grouping was assigned here.

We used open, axial, and selective coding (Corbin & Strauss, 1990) to
cluster the identified misinterpretations exhaustively and mutually exclusively
into three categories: (1) data-related conceptual difficulties, (2) distribution-
related conceptual difficulties, and (3) miscellaneous. Three examples of axial
codes (a group of misinterpretations) are: ‘larger frequency thus larger mean’,
‘bell-shaped = histogram’, and ‘bumpier = higher variability’. From these axial
codes, the selective codes were created through abduction from the network
of statistical concepts (see Figure 2.2). Provided with the codebook and the
open codes (description of what was reported or found in the publication) and
axial codes (the first grouping of the misinterpretations), an external coder was
asked to assign one of eleven selective codes to the description of the
misinterpretations. Of the more than 300 descriptions of misinterpretations
(open codings), 73 were coded by the first author and an external coder. The
interrater reliability—Cohen’s kappa—was .84, suggesting a reliable coding
procedure with “almost perfect” agreement (Landis & Koch, 1977, p. 165). A
summary of the codebook is given in Table 2.3; a full version can be found in
Table A.1 in the Appendix of this article.

The selective codes in the codebook categorize the misinterpretations
at the level of a specific concept that were then merged into three categories
of conceptual difficulties. At this final level, categories summarize whether the
conceptual difficulties that become manifest in the misinterpretations are
related to the data represented, or related to the distribution represented, or
neither of these two (miscellaneous). The level of selective codes identifies
subcategories of specific concepts that are misinterpreted. These
subcategories are characterized briefly in the last column of the codebook and
are illustrated with the types of misinterpretations listed. The characterization
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ends with a note detailing when not to assign this code so as to make the
second coder aware of the boundaries of a particular code (subcategory)
(Boyatzis, 1998).

Some misinterpretations are possibly caused by the translation into
English. In English, different words are created to distinguish histograms (one
variable; numerical measurement level, see Figure 2.1, left) and distribution
bar graphs (one variable; categorical measurement level, see Figure 2.1, right)
from case-value plots (see Figure 2.3a; two variables) on the one hand and
time-plots (also two variables) on the other. Other languages may lack such
different words. Several researchers refer to a graph with bars as a histogram
while it is not. If this misinterpretation was held by researchers from non-
English-speaking countries, it might be due to translation only. Therefore,
these specific misinterpretations were excluded from the results (Kramarski,
1999; Mevarech & Kramarsky, 1997).

Table 2.3 Summary of the codebook for classifying the misinterpretations; letters (e.g.,
K) refer to the network of statistical concepts

Phase Conceptual Selective codes

difficulty
Orientation on Data-related Number of variables (F) or measurement
histogram level (K) or both (K, F).
Interpreting Distribution- Variability (L, S), center (M, T), shape (W)
histogram related and grouping (C)

Miscellaneous Context (A), Population (B), ICT8 or

unknown

In review but not included in results Translation

18|CT is found along the arrows from population to a sample. ICT is indicated only where
relevant for this review.
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2.4 Results

Table 2.4 Overview of publications in which misinterpretations were identified

Misinterpretations related to
difficulties with the concept of data

Misinterpretations related to difficulties with
the concept of distribution

Abrahamson & Wilensky, 2007; Agro,
1977, Baker et al., 2001, 2002; Bakker,
2004a; Bruno & Espinel, 2009; Capraro
et al., 2005; Chance et al., 2004;
Clayden & Croft, 1990; Cohen, 1996;
Cooper & Shore, 2008; Corredor, 2008;
Dabos, 2014; delMas et al., 2005;
delMas et al., 2007; Derouet & Parzysz,
2016; Enders, 2013; Eshach &
Schwartz, 2002; Friel & Bright, 1996;
Gilmartin & Rex, 2000; Hawkins, 1997;
Humphrey et al., 2014; Ismail & Chan,
2015; Kaplan et al., 2014; Kramarski,
2004; Kulm et al., 2005; C. Lee &
Meletiou-Mavrotheris, 2003; Lem et
al., 2013c; McKinney, 2015; Meletiou &
Lee, 2002; Meletiou, 2000; Redfern,
2011; Ruiz-Primo et al., 1999; Sorto,
2004; Stevens & Palocsay, 2012; Stone,
2006; Strasser, 2007; Tiefenbruck,
2007; Watts et al., 2016; Whitaker &
Jacobbe, 2017; Wong, 2009; Yun, Ko, &
Yoo, 2016; Zaidan et al., 2012.

Baker et al., 2001; Batanero et al., 2004;
Biehler, 1997; Bruno & Espinel, 2009; Capraro
et al., 2005; Chan & Ismail, 2013; Chance et al.,
2004; Cohen, 1996; Cooper & Shore, 2008;
Cooper & Shore, 2010; Corredor, 2008; Dabos,
2014; delMas & Liu, 2005; delMas et al., 2005;
delMas et al., 2007; Derouet & Parzysz, 2016;
Friel & Bright, 1995, 1996; Gilmartin & Rex,
2000; Gonzalez, 2014; Huck, 2016; Ismail &
Chan, 2015; Kaplan et al., 2014; Kaplan et al.,
2009; Karagiannakis, 2013; Kelly et al., 1997;
Konold et al., 1997; Kukliansky, 2016; Kulm et
al., 2005; Lee & Meletiou-Mavrotheris, 2003; J.
T. Lee, 1999; Lem et al., 2011, 20133, 2013c,
2014b, Madden, 2008; Martin, 2003; McGatha
et al., 2002; McKinney, 2015; Meletiou & Lee,
2002; Meletiou, 2000; Meletiou-Mavrotheris &
Lee, 2005; Mevarech & Kramarski, 1997;
Olande, 2014; Roth, 2005; Rumsey, 2002; Sorto,
2004; Stevens & Palocsay, 2012; Stone, 2006;
Tiefenbruck, 2007; Turegun & Reeder, 2011;
Vermette & Gattuso, 2014; Whitaker &
Jacobbe, 2017; Whitaker et al., 2015; Wong,
2009.

Misinterpretations related to
miscellaneous concepts

Language or translation

Abrahamson, 2006, 2008, 2009;
Abrahamson & Cendak, 2006;
Abrahamson & Wilensky, 2007; Baker
et al., 2001; Behrens, 1997; Biehler,
1997; Carrién & Espinel, 2006; Chance
et al., 2004; Cohen, 1996; delMas et al.,
2005; 2007; Friel et al., 2001; Hawkins,
1997; Kaplan et al., 2014; Konold et al.,
1997; Madden, 2008; McKinney, 2015;
Nuhfer et al., 2016; Prodromou & Pratt,
2006; Shaughnessy, 2007; Slauson,
2008; Stone, 2006; Whitaker &
Jacobbe, 2017; Whitaker et al., 2015;
Yun & Yoo, 2011; Yun et al., 2016.

Kramarski, 1999; Mevarech & Kramarsky, 1997
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The results show that the conceptual difficulties that become manifest in the
most frequently reported misinterpretations fall into three different
categories: data-related, distribution-related and other. The misinterpretations
that are a manifestation of difficulties with the concept of data include: not
understanding how many statistical variables are depicted in a histogram (only
one) and not understanding that a histogram is suitable for numeric variables
only (see Figure 2.2 F and L). The misinterpretations that are a manifestation of
difficulties with the concept of distribution include: (a) not knowing how shape
(part of W, Figure 2.2), center (see Figure 2.2 M and T), and variability (see
Figure 2.2 L and S) are depicted in a histogram and (b) not understanding the
effect of grouping into bins in a histogram (see Figure 2.2 R). In line with
Bakker and Hoffmann (2005), our research shows that these two conceptual
difficulties cannot be isolated from their sign—the histogram. The third
category of miscellaneous conceptual difficulties is more loosely related to the
sigh—the histogram—and entails difficulties that occur due to the software
used, and/or confusion about whether the sample or the population is
depicted in the histogram, and the context. The most common
misinterpretations resulting from these conceptual difficulties are elaborated
further in the next sections. Table 2.4 gives an overview of the publications
included in this review. The full details of all misinterpretations can be found in
the data paper (Boels et al., 2023) and more summaries of the findings are
given in the online extra materials. The misinterpretations described or
detected in the publications—including almost 16,000 students, teachers, and
researchers—are incorporated in this review. This includes slightly over 400
elementary school students, almost 7,000 secondary school students, and
approximately 8,000 college and university students. The remainder includes
college statistics teachers, mathematics teachers, and researchers. Most
participants are from the USA (see Appendix A of this chapter).

2.4.1 Misinterpretations related to difficulties with the concept of
data

Identifying the measured variable only

As explained in the theoretical background, by definition a histogram displays
the distribution of one statistical variable®. Twenty-five publications reported
or showed misinterpretations regarding the measured variable. A widespread
misinterpretation is that a histogram could display the data of two variables,
which was reported or found in nine sources (e.g., Cohen, 1996; Gilmartin &

19 Some statistics educators prefer the more general term of ‘attribute’ (W. Finzer, personal
communication, July 12th, 2018). As other people may think that attribute only refers to a
nominal measurement level, we avoided this term.
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Rex, 2000; Meletiou & Lee, 2002; Meletiou, 2000; Stevens & Palocsay, 2012;
Zaidan et al., 2012) and which is related to the misinterpretation that the
number of bars is seen as the number of cases (Dabos, 2014; Ismail & Chan,
2015; Sorto, 2004). Another often-found misinterpretation is that the
frequency is seen as the measured value (Bakker, 2004a; Chance et al., 2004;
delMas & Liu, 2005; Friel & Bright, 1996; Kaplan et al., 2014; Lem et al., 2013c)
and that the horizontal axis is seen as a timescale when it is not (Dabos, 2014;
Kaplan et al., 2014; Meletiou & Lee, 2002; Meletiou, 2000; Zaidan et al., 2012).
This confusion is aggravated as frequency and number (count) are commonly
interchangeable terms?°. The definition of a histogram nevertheless implies
that the vertical axis depicts the frequencies or number counts of the
measured values that are depicted on the horizontal axis. Consequently, a
time-plot—with, for example, years on the horizontal axis—is not a histogram,
as it is nonsensical to count how often a year occurs in a year. Furthermore, it
is often stated that the bars of a time-plot must be connected when intervals
are consecutive, but this is only true for histograms?Z.

Figure 2.6 Case-value plot or time-plot with two statistical variables (year and number
of unemployed). Data source: Statistics Netherlands (CBS, 2018)

Note. Many people incorrectly think this graph is a histogram because the variable on
the horizontal axis is numerical. In such cases, connected bars are often—mistakenly—
used.

20 See also our footnote in the introduction on the influence of language on the interpretation of
the term frequency.
21 Some researchers also use separate bars in histograms, e.g., loannidis (2003).
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Identifying the measurement level only
Eighteen publications reported or contained misinterpretations regarding the
measurement level. Five of these publications reported people referring to a
normal distribution—which is only possible for numerical data—while the
measurement level of the data was nominal or ordinal (delMas et al., 2007;
Humphrey et al., 2014; Kaplan et al., 2014; Redfern, 2011; Whitaker &
Jacobbe, 2017). Nine publications reported or contained ‘histograms’ with
nominal or ordinal measurement level (e.g., Stone, 2006; Tiefenbruck, 2007;
Watts et al., 2016; Wong, 2009). People showing this misinterpretation may
consider the blood type graph (see Figure 2.1) as ‘right skewed’ or ‘not
normally distributed’. These people overlook that the measurement level is
nominal, and, therefore, the bars are not in scale order and the theoretical
model of a normal distribution is, therefore, not applicable.

Three publications identified the misinterpretation that the interval is a
‘label’ with, for example, students and authors of schoolbooks treating this
label as a nominal measurement level, neglecting the numerical scale (Bruno &
Espinel, 2009; Derouet & Parzysz, 2016; Humphrey et al., 2014).

Figure 2.7 Example of incorrect ‘histogram’ with labeled bars (data from Fisher, 1947)

Another misinterpretation is the use of histograms for Likert scales when
words combined with numbers are used. An example of how seriously this can
go wrong when used by non-statisticians can be found in McKinney (2015)
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where the following strange?? attribution for a 5-point Likert scale is used:
none at all (1), very little (2), strong degree (3), quite a bit (4) and a great deal
(5) for a Self-Efficacy Scale for Teaching Mathematics Instrument (SETMI). This
SETMI was developed by McGee (2012) and is used in several other studies
(e.g., McCampbell, 2014).

Identifying the measured variable and the measurement level

Seventeen publications reported or contained misinterpretations regarding
both the number of variables and the measurement level. The most often
reported or found misinterpretation (10 publications) is that people think that
there is no difference between a histogram and a bar graph, or that the only
difference is that bars are connected in a histogram, neglecting the required
measurement level (Capraro et al., 2005; Clayden & Croft, 1990; Eshach &
Schwartz, 2002; Gilmartin & Rex, 2000; Humphrey et al., 2014; Kramarski,
2004; Kulm et al., 2005; Sorto, 2004; Stevens & Palocsay, 2012; Tiefenbruck,
2007). Six publications contained or reported the misinterpretation that a
histogram could be used for nominal or ordinal data and two variables (Baker
et al., 2001, 2002; Dabos, 2014; delMas & Liu, 2005; Eshach & Schwartz, 2002;
Ruiz-Primo et al., 1999). Four publications reported the misinterpretation that
bars could be rearranged in a histogram, for example, from highest to lowest
bar (Dabos, 2014; Humphrey et al., 2014; Kaplan et al., 2014; Whitaker &
Jacobbe, 2017).

2.4.2 Misinterpretations related to difficulties with the concept of
distribution

As explained in the Theoretical background section, the number of measured
variables as well as the measurement level define the type of graphical
representation, which in turn influences the interpretation of the distribution:
shape, center, and variability. For example, variability can be seen as weighted
deviation from the arithmetical mean (Cooper & Shore, 2010). In a case-value
plot with nominal data on the horizontal and numerical data on the vertical
(two measured variables), the relevant measured value is on the vertical axis
and variability can be seen as variation in the heights of the bars. In a
histogram, the only measured value is on the horizontal axis, and, therefore,
the horizontal spread of these measurements must be considered—in
combination with the heights of the bars. Several studies report that students

22 For instance, strong degree (3) is in the middle of the scale so it should be a more neutral
word, such as undecided. Furthermore, strong degree (3) and a great deal (5) seem synonyms;
quite a bit (4) seems a bit less strong than strong degree. This scale does not even seem to be
ordinal, but rather nominal and therefore, a histogram is inappropriate (and calculating a mean
is nonsensical).
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and teachers confuse variation in the frequencies in a histogram—the heights
of the bars—with variation in the measured value—hence, the variability in a
histogram (e.g., Lem et al., 2013a). In this section, four groups of
misinterpretations are reported regarding variability, center, shape, and
information reduction through grouping.

Variability

Twenty-six publications reported on misinterpretations regarding the
statistical concept variability or regarding the variability combined with the
statistical concept’s center and/or shape. Eleven publications reported the
misinterpretation that a higher difference in the heights of the bars only
implies more variation in the data (Cooper & Shore, 2008; delMas et al., 2007,
Kaplan et al., 2014; Karagiannakis, 2013; Madden, 2008; Meletiou & Lee, 2002;
Meletiou, 2000; Meletiou-Mavrotheris & Lee, 2005; Olande, 2014; Stone,
2006; Vermette & Gattuso, 2014). Eight publications reported an
overgeneralization of the idea that a certain shape (normal, uniform, or
symmetrical distribution) has the highest or lowest variability (Cooper & Shore,
2010; Dabos, 2014; Gonzalez, 2014; Kaplan et al., 2014; Meletiou-Mavrotheris
& Lee, 2005; Turegun & Reeder, 2011; Vermette & Gattuso, 2014; Whitaker &
Jacobbe, 2017). Range can be regarded as a simple or preliminary measure of
variability, especially for secondary school students. Seven publications
reported misinterpretations of the variability in the data when range was used
(Cooper & Shore, 2008; Dabos, 2014; Kaplan et al., 2014; Lem et al., 2013c;
Madden, 2008; Meletiou-Mavrotheris & Lee, 2005; Olande, 2014) and two
reported misinterpretations about variability and center when range was used
(Kukliansky, 2016; Lem et al., 2013a). Various misinterpretations regarding the
standard deviation in a histogram are reported, including that a certain shape
or ordering of the bars (e.g., ascending or descending heights) leads to the
largest or smallest standard deviation, that a larger mean implies a larger
standard deviation and that gaps between bars (frequency zero) do not
influence the standard deviation (delMas & Liu, 2005). Others found the
misinterpretation that standard deviation and mean in a histogram are the
same (Chan & Ismail, 2013) or that once the means in both histograms are the
same, the standard deviation is the same as well (Kukliansky, 2016).
Misinterpretations regarding variability are also found among teachers (e.g.,
Gonzalez, 2014). Variability is the variation of the data, for example, around
the mean—see Figure 2.8. As the mean is depicted differently in a histogram
than in a case-value plot, the variability also has to be assessed differently. In a
case-value plot, the variability is the variation in the heights of the bars. In a
histogram, the variability is the weighted horizontal spread of the bars.
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Figure 2.8 Center and thus variability is assessed differently in a histogram (left)
compared to a case-value plot (right)

Center

Thirteen publications reported on misinterpretations regarding the statistical
concept of center. Four publications reported a misinterpretation where the
mean of the frequencies (vertical axis) was used instead of the mean of the
measured values of the variable (horizontal axis, see Figure 2.8) (Cooper &
Shore, 2008; Lem et al., 2013a, 2013c, 2014b). Five publications reported a
similar misinterpretation regarding the median (Cooper & Shore, 2008; Ismail
& Chan, 2015; Kaplan et al., 2014; Lem et al., 2013a), the mode (Huck, 2016;
Ismail & Chan, 2015; Kaplan et al., 2014) or both (Kaplan et al., 2014). All these
misinterpretations are related to the type of graphical representation, as
whether the frequency is a statistical variable or not depends on the type of
graph. For example, in a time-plot, the frequency is the measured value. Other
misinterpretations include that the median is seen as the middle class (Stevens
& Palocsay, 2012), that it is seen as the midpoint of the scale on the horizontal
axis, or as the midrange (Cooper & Shore, 2008).

In many Introductory Statistics courses, rules of thumb are taught for
the position of mean and median in relation to the skewness of the
distribution (thus the shape in the histogram). One such rule of thumb is that
the mean is typically lower than the median in left or negatively skewed
distributions. Although this holds true in many situations, Huck (2016) states
that this was helpful when people lacked strong computers, but nowadays
these kinds of rules are no longer needed as they can also mislead us when
analyzing results. Huck claims that “Unfortunately, the application of those
rules can make one think data are skewed left when they are skewed right (or
vice versa).” (p. 26). Therefore, we carefully need to reconsider questions that
test, for example, if students know the rule of thumb that the mean is bigger
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than the median in right-skewed distributions (Cooper & Shore, 2008; delMas
et al., 2007; Karagiannakis, 2013; Lee & Meletiou-Mavrotheris, 2003; Whitaker
& Jacobbe, 2017).

Information reduction through grouping

People have difficulties with the information reduction (Gal & Garfield, 1997)
present in histograms. As explained in the theoretical background, one step in
information reduction is that several values are grouped into one bin. Bakker
(2004a) already pointed out that this grouping is difficult for students in
Grades 7 and 8. Fifteen publications reported or contained misinterpretations
regarding the grouping in bins. Misinterpretations include not using or
mentioning density for unequal bin width (Derouet & Parzysz, 2016; Gilmartin
& Rex, 2000; Kelly et al., 1997; McGatha et al., 2002) and choosing a wrong bin
width or wrong boundaries for the bins (Bruno & Espinel, 2009; delMas et al.,
2005; Martin, 2003; McKinney, 2015; Whitaker & Jacobbe, 2017). Three
publications reported misinterpretations regarding the measured values,
either that all possible values in a bin are measured (Lem et al., 2013c;
Meletiou, 2000) or that only the middle value of a bar is measured (Biehler,
1997).

Shape

Twenty-eight publications reported or contained misinterpretations
concerning the graphical representation of a histogram itself. Six reported that
students cannot link a histogram to a corresponding boxplot (Corredor, 2008;
delMas et al., 2005; delMas et al., 2007; Karagiannakis, 2013; Lem et al., 2011,
2015). Ten reported or contained misinterpretations regarding graph
conventions (Baker et al., 2001; Batanero et al., 2004; Bruno & Espinel, 2009;
Lem et al., 2013c; Martin, 2003; McGatha et al., 2002; Mevarech & Kramarsky,
1997; Roth, 2005), for example, that connected bars are for easier comparison
(Capraro et al., 2005; Kulm et al., 2005). Some authors state that histograms
are not suitable for discrete variables (Batanero et al., 2004; Cohen, 1996; Friel
& Bright, 1995, 1996; Tiefenbruck, 2007). However, data are always discrete
due to the accuracy of the measurement instrument. Therefore, we decided
not to exclude discrete variables. Students using graphs with poles instead of
bars can be found in McGatha et al. (2002).

2.4.3 Misinterpretation related to miscellaneous concepts

In addition to the two aforementioned categories, there are less frequent
miscellaneous difficulties that can be summarized as: not understanding the
histogram in relation to the given context, not understanding the difference
between a histogram of a sample and a histogram of a population, and the
influence of ICT (ICT often does not differentiate between histograms and
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other types of graphs with bars?3; e.g., see Abrahamson, 2006 for an example).
Some descriptions in publications do not provide enough details for specifying
the type of misinterpretation and are classified as unknown (Baker et al., 2001;
Behrens, 1997; Biehler, 1997; Carrion & Espinel, 2006; Chance et al., 2004;
Konold et al., 1997; Shaughnessy, 2007; Yun & Yoo, 2011).

Context

Nine publications reported misinterpretations due to the context. One
example of a misleading context is height (Whitaker & Jacobbe, 2017), as
students in this specific context more easily interpret the height of the bars in
a histogram as the measured height, leading to the confusion of a case-value
plot with a histogram. The misinterpretation of a time scale on the horizontal
axis can sometimes also stem from the context and is described in section
Identifying the measured variable only. Furthermore, students and teachers
occasionally use context knowledge or personal experience instead of the data
(Friel et al., 2001; Madden, 2008; Shaughnessy, 2007). The opposite equally
occurs where students have trouble linking the histogram to the original data
collection or context (delMas et al., 2005; Yun & Yoo, 2011). This is in line with
research from Kaplan et al., (2018) who showed that students’ descriptions of
histograms systematically differ depending on the specific wording of the
question (including the word distribution or variable or both in the question) as
well as the context (income or hours of sleep).

Sample or population?

Seven publications reported misinterpretations regarding the population. Five
of these report the misinterpretation that the histogram of a sample and the
histogram of a population have the same properties—for example, the same
shape or distribution (Chance et al., 2004; Hawkins, 1997; Slauson, 2008;
Stone, 2006; Whitaker & Jacobbe, 2017). Not distinguishing between sample
and population might also lead to ignoring the effect of random noise (Biehler,
1997; Nuhfer et al., 2016).

Influence of ICT

Although ICT can be a helpful tool to understand statistics, it can also introduce
new misinterpretations. The most common misinterpretation is embedded in
the software where no distinction is made between a histogram and a bar
graph (Hawkins, 1997), often leading to histograms with strange or even wrong

23 Excel, for example, creates a kind of bar chart with intervals below, instead of a histogram (see
https://trumpexcel.com/histogram-in-excel/#Creating-a-Histogram-using-Data-Analysis-Toolpak
for an incorrect example of a ‘histogram’ with unequal bin widths). Although this was more
prominent in older versions, the way Excel handles unequal bin widths or values that are higher
or lower than the specified categories, is not correct, and more in line with how bar charts
would be created.
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boundaries of the bins (Abrahamson, 2006, 2008, 2009; Abrahamson &
Cendak, 2006; Abrahamson & Wilensky, 2007; McKinney, 2015; Prodromou &
Pratt, 2006). Two publications reported the misinterpretation that the number
of classes is fixed, possibly due to a fixed number of classes in the software
(Cohen, 1996; Yun et al., 2016).

2.5 Conclusions and discussion

In this review, the aim was to make a systematic inventory of the
misinterpretations that occur when people use histograms, as well as to
categorize these misinterpretations along the conceptual difficulties that
become manifest in them. It turned out that the most common conceptual
difficulties could be related to two key concepts in statistics: data and
distribution. The category misinterpretations that are related to the difficulties
with the key concept of data includes misinterpretations about the number of
variables depicted in a histogram and the measurement level of the data,
including the wrong application of theoretical models. The category of
misinterpretations that are related to difficulties with the key concept of
distribution includes misinterpretations about variability, center, shape, and
information reduction through grouping. The third and more diverse category
of misinterpretations is related to other conceptual difficulties and includes
having trouble linking the context to the histogram, not understanding the
difference between a histogram of a sample and of a population, and the
influence of ICT. The analysis of the publications in our review also led to the
identification of a network of statistical concepts specific to interpreting
histograms, see the theoretical background section. From our analysis, it
furthermore became clear that two statistical concepts needed to be added to
the key concept of data: number of variables and measurement level. These
two concepts were not yet explicitly part of the collection of key concepts in
statistics.

Furthermore, our review study reveals that most publications
investigate students’ or teachers’ notions of shape and variability, which is an
important topic for college and university students. Hence, these publications
focus on misinterpretations that are related to difficulties with the key concept
of distribution. Although misinterpretations regarding identifying the number
of variables and the measurement level of their attributes are more often
observed, research specifically addressing these misinterpretations is scarce.
The latter two sub-categories of misinterpretations are related to difficulties
with the key concept of data. The data-related conceptual difficulties may be
underlying the distribution-related conceptual difficulties, as the data (number
of statistical variables and measurement level) define the type of graph, and in
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turn how variability and center are depicted in the graphical representation
(e.g., Cooper & Shore, 2010). We speculate that the persistence of people’s
misinterpretations of histograms is partly due to overlooking the impact of
data-related conceptual difficulties. This might also result in the
underreporting of misinterpretations regarding data-related conceptual
difficulties, as well as misinterpretations regarding shape and center.

Our findings are in line with findings about mathematical graphs from
Leinhardt et al. (1990), such as the tendency to overgeneralize. An example of
overgeneralization is the idea that the number of axes is the number of
measured variables (true for a case-value plot, but false for a histogram; see
the section Identifying the measured variable only). Another example is the
overgeneralization of the effect of shape (e.g., uniform distribution) on
variability (see the section Variability) and of theoretical models (normal
distribution, see the section Identifying the measurement level only). Leinhardt
et al. also found interference with the context or daily life observations (see
the section Context).

According to Friel et al. (2001), the basic level of reading the data is
often not very difficult for students for most graphs. This may be true for
reading off a particular value, but our review shows that many
misinterpretations are related to the data depicted in a histogram, hence, to
reading the data (thus the key concept of data). In addition, during the
application of the theoretical framework of statistical key concepts, it became
clear that not only are the statistical concepts important, but also the
connections between them, such as, for example, that grouping in bins
influences the shape of the distribution, thus the graphical representation of
the data. We, therefore, proposed a coherent network of statistical concepts
relevant to research questions that may involve the interpretation of
histograms (see the section Data analysis).

Systematic reviews of the literature have limitations. A geographical
selection bias seems to exist. A large proportion of the studies in this literature
review was carried out in the United States, followed by European countries
(see the Appendix). The English-speaking countries generally pay more
attention to statistics in their curriculum than other countries (e.g., Franklin,
2019). This suggests that the problem may be bigger than what was found
here. We do not want to suggest representativeness, as we were mainly
interested in the types of conceptual difficulties that become manifest when
people (students, teachers, researchers, and others) interpret histograms.

Furthermore, we speculate that the misinterpretations identified in this
literature review also hold for Asian, African, and South American countries, as
well as for Australia. The reasons for this speculation are that in some
countries statistics is not yet or only recently part of the curriculum, for
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example in Thailand (e.g., Burrill & Ben-Zvi, 2019; Franklin, 2019; Gonzalez &
Chitmun, 2019), and there are some, although not yet many, studies of Asian
countries indicating misinterpretations when interpreting histograms (Ismail &
Chan, 2015; Yun & Yoo, 2011; Yun et al., 2016).

Several implications for future research and education arise from this
review. The first is that data-related conceptual difficulties seem to be
understudied, and, therefore, would require more explicit attention from
researchers. Ignoring the difficulties with the concept of data may possibly
explain the persistence of misinterpreting histograms. Researchers, teachers,
and teacher trainers are encouraged to be more aware of the differences
regarding distribution and data (number of variables, measurement level), the
differences between a case-value plot, a distribution bar graph, and a
histogram, and the consequences of these differences for shape as well as for
assessing variability and center. Furthermore, in languages that lack distinct
words for case-value plots, distribution bar graphs, and histograms, our
suggestion is to create and introduce those words and implement them in the
statistics education curriculum from elementary school level up to the
university level, as this will support the awareness of the differences. In
addition, this literature review adds to the framework of key concepts in
statistics education that there is a hierarchy in those key concepts. The key
concept data (number of variables and measurement level) is fundamental for
a deep understanding of the key concept distribution as shape, center, and
variability are depicted differently in different types of graphical
representations.

The second implication is that the role of information reduction seems
to be understudied (see the section Theoretical background). The literature on
information reduction is very scarce. Bakker (2004a) is one of the few
examples indicating the difficulty of the idea of grouping. Nevertheless,
indications for this difficulty are also found in other research (Ismail & Chan,
2015; Lem et al., 2013c; Meletiou, 2000; Sorto, 2004). Researchers, teachers,
and teacher trainers are advised to be aware that information reduction plays
an important role in the following four stages when turning a case-value plot
into a histogram. The first stage is when one of the measured variables is
removed (resulting in, for example, a dotplot). Students who see the data in a
graph as a pointer to the situation (Konold et al., 2015) and students who
consider a histogram as a case-value plot might not have understood the case
information removal phase. The second phase is when the dots in a dotplot are
stacked into classes with a certain bin width. People who think that only the
middle value of a bar is observed might not have understood this grouping
phase. The third phase is when the dots are omitted from the bar, making it
compulsory to use a second axis when absolute frequencies are used. People
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who regard a histogram as a bivariate distribution might have problems with
this third phase. The fourth phase, which is hardly studied, is when the
frequency is turned into frequency density. This phase is of key importance for
the transition to continuous probability distributions. The other two
understudied areas are the difference between the histogram of a sample and
of a population and the influence of the context. These two areas are only
loosely related to histograms.

The third implication is that future research is needed in those
countries that are not yet included in our review to substantiate our claim that
the identified conceptual difficulties can be found all over the world and are
not due to a specific way of teaching or an educational system, as a
geographical gap seems to exist in the research literature. Also, the active
promotion of publishing in English journals of work published earlier in other
languages is needed to make this literature available for many more
researchers, as well as the translation of English literature into other
languages.

As an implication for task design in research and education, this review
makes it clear that items containing graphs with bars without context or labels
cannot be identified with regard to the type of graph and must be avoided in
schoolbooks as well as assessments and research items. Furthermore, for
languages that lack different words for different types of graphs with bars, the
advice is to create such words—and use these in education as well as
research—to distinguish histograms, distribution bar graphs, case-value plots,
and time-plots.

An implication for education—now that the conceptual difficulties that
become manifest in the most common misinterpretations are made
plausible—is that researchers and educators can address these more broadly
rather than treating or remediating misinterpretations one at a time. Such a
didactical itinerary would be consistent with the current view in statistics
education which aims for students to develop an understanding of the key
concepts of statistics and their interrelationship. Our overview opens up the
possibility of systematically dealing with these misinterpretations first in
research and eventually in elementary and secondary schools and statistics
introductory courses, as well as developing and testing materials specially
designed to tackle these misinterpretations. Teachers and teacher trainers
now have access to an overview of all the common misinterpretations
identified in the publications. This adds to their Statistical Knowledge for
Teaching (SKT, see Groth, 2007). According to Pareja Roblin et al. (2018), an
overview is very important as “positive student outcomes were associated
with curriculum materials [...] that provide teachers with information about
students’ ideas” (p. 260).
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One might conclude that histograms are too difficult to use and teach.
Can we do without them in education and research? Our answer is no. First,
histograms reveal some aspects of the distribution that other graphs do not
(e.g., Pastore et al., 2017). Second, histograms are omnipresent in research
and education and should, therefore, be learned. Third, the alternatives entail
some of the same disadvantages such as the height misinterpretation in
dotplots (Lyford, 2017), as well as other disadvantages such as an irregular
shape (dotplots) or an even more advanced step in information reduction
(boxplots; Lem et al., 2014a). Fourth, it is the key concepts underlying a
histogram that are hard to grasp (the key concepts of data and distribution).
Unfortunately, we cannot learn those key concepts without signs (e.g.,
histogram), as the representation of the data as well as how the distribution
manifests itself (through its shape) strongly depends on the specific type of
graph with bars, as we explained in the theoretical background section. It is
when interpreting histograms that these underlying conceptual difficulties
become manifest, making histograms a good diagnostic instrument for
teachers and researchers as well.
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Appendix A Codebook, samples, and misinterpretations

In this Appendix, the provenance of participants included in the review, an
overview of the identified misinterpretations (axial codes), and the full
codebook can be found. This is supplementary to Chapter 2 of this dissertation
and is published on the website of Educational Research Review.

A.1  Provenance of participants of studies included in this review

The participants of studies included in the publications in this review come
from the United States of America (12,959) followed by Europe (1572). Asia
(1298) and South America (84) are relatively underrepresented (see Figure
A.1); no African studies were found during the search. When the
misinterpretation was in the publication itself or when the number of
participants was not given, the count was set to zero.

Figure A.1 Spread of the participants included in the studies in this review
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A.2 Samples included in the publications

Table A.1 Publications included in this review as well as number of participants

Publication (shorted reference) Number of participants?*
Abrahamson_2006_01 0

Abrahamson_2006_02 0
Abrahamson_2007 0
Abrahamson_2008 0
Abrahamson_2009 2
Agro_1977 0
Baker_2001 52
Baker_2002 12
Bakker_2004a 580
Batanero_2004 117
Behrens_1997 0
Biehler_1997 4
Bruno_2009 29
Capraro_2005 134
Carrion_Perez_2006 0
Chan_2013 412
Chance_2004 0
Clayden_1990 18
Cohen_1996 0
Cooper_2008 186
Cooper_2010 0
Corredor_2008 84
Dabos_2014 52
delMas_2005_01 12
delMas_2005_02 542
delMas_2007 763
Derouet_2016 0
Enders_2013 80
Eshach_2002 10
Friel 1995 76
Friel_1996 76
Friel_2001

Gilmartin_2000
Gonzalez_2014_01
Hawkins_1997
Huck_2016
Humphrey_2014

24 Zero students either indicates that no numbers were given (often) or that this was not relevant
(sometimes) as—for example—the misinterpretation was in the ICT used in this publication.
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Publication (shorted reference) Number of participants?*

Ismail_2015 412
Kaplan_2009 67
Kaplan_2014 341
Karagiannakis_2013 9
Kelly_1997 25
Konold_1997 4
Konold_2015 15
Kramarski_1999 0
Kramarski_2004 0
Kukliansky 2016 256
Kulm_2005 134
Lee_1999 0
Lee_2003 162
Lem_2011 167
Lem_2013a 167
Lem_2013c 125
Lem_2014 114
Lem_2015 188
Madden_2008 56
Martin_2003 0
McGatha_2002 24
McKinney_2015 0
Meletiou_2000 33
Meletiou_2002 33
Meletiou_2005 35
Mevarech_1997 92
Nuhfer_2016 0
Olande_2014 13
Prodromou_2006 6
Redfern_2011 0
Roth_2005 1
Ruiz_1999 0
Rumsey_ 2002 0
Shaughnessy_2007 0
Slauson_2008 53
Sorto_2004 42
Stevens_2012 4727
Stone_2006 0
Strasser_2007 0
Tiefenbruck_2007 0
Turegun_2011 41
Vermette_ 2014 12
Watts_2016 0
Whitaker_2015 3324

67



Chapter 2

Publication (shorted reference) Number of participants?*

Whitaker_2017 1881
Wong_2009 0
Yun_2011 0
Yun_2016 0
Zaidan_2012 122

Total number of participants 15926

Table A.2 Number of publications and participants per type of school

Type of school Number of Number of
publications participants
college 5 418
college and university 2 763
middle school 7 46
elementary school 8 420
elementary and secondary school 1 15
secondary school 12 6763
secondary school and college 1 542
university 25 6757
unknown or unclear 3 29
work (teachers or researchers) 5 169
n.a. 17 4
Total 86 15926

A.3  Overview of axial codes

The table below gives an overview of the axial codes that were informed by
the open codes (description of the misinterpretations). Some of the axial codes
might only make sense to readers if they are combined with the description of
the misinterpretations. Readers interested in specific axial codes are,
therefore, referred to the first author.

Table A.3 Axial codes used in the review

Axial codes Axial codes

all values = middle bar mean = st.dev.

area mean > median left skewed
ascending/descending order = smallest measure of variability

st.dev?®, median = frequency of mode

bar = observed value median = median of frequency or scale

% st.dev. is standard deviation
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Axial codes

Axial codes

bar --> all values observed

bars can be reordered

bars in middle = smallest st.dev.
bell-shaped = histogram

bell-shaped histogram = higher variability
bell-shaped histogram = lower variability
bumpier = higher variability

bumpier = lower/higher variability
choice of graph

choosing wrong variable

combining 2 histograms

comparing sample(s) and population(s)
connected bars

context

density

depicted variables

discrete = bar graph

effect bin width

evenly spread

fixed number of classes

frequency = measured value
frequency on vertical then always
histogram

graph convention

higher bars, not higher average and
st.dev.

histogram = bar graph

histogram = dot plot

histogram = scatterplot

histogram = stem & leaf

histogram --> boxplot

histogram 2 variables

hor. axis = data

horizontal = time

label bars

larger frequency thus larger mean
larger frequency thus larger median
larger frequency thus larger variability
larger mean thus larger st.dev.

larger n?® = more variation

larger n = more variation and higher mean

median = middle class

median = midpoint hor. axis
median = midrange
miscellaneous

modality cannot change

mode = highest frequency

more bars = higher variability

no influence gaps on st.dev.
nominal measurement level

not include effect random noise
not noting difference in range
number bars = number cases
ordinal Likert scale

ordinal scale

outliers

random = bell-shape

range

range = variability

relating graphs

same frequency thus same st.dev.
same mean thus same st.dev.
same range and shape thus same
median

sample = population

shape doesn't influence variability
skewness

smallest st.dev. Is not smallest spread

from center

standardization = normality
statistical language

swap of axis

symmetrical histogram = lower
variability

table preference

total nis not sum frequency
uniform shape = highest variability
uniform shape = lowest variability
use context

variation = variation frequency
wrong bin width

wrong boundaries bins

% n is the number of observations shown in the graph

69



Chapter 2

Axial codes

Axial codes

larger range or variation frequency thus
larger mean

largest max = more values above mean
largest range = more values above mean
largest st.dev. is not largest spread from

wrong chance

wrong data collection
wrong description
wrong labels

wrong mean

center

largest st.dev.: uniform shape
largest st.dev.: U-shape

mean < median right skewed
mean = mean of frequency
mean = mean of hor. axis

wrong median
wrong skewness
zero frequency problems

A.4  Full text of the codebook

The codebook categorizes the misinterpretations found in the literature, see
Table A.4 below. These misinterpretations are not only found in students’ work
or reasoning, but also sometimes in the work or reasoning of researchers,
teachers, software makers, journalists, etcetera. The misinterpretations in the
codebook are categorized at two different levels. At the first level, categories
summarize whether misinterpretations are related to the data represented, or
related to the distribution represented, or none of these two (miscellaneous).

The second level of codes identifies subcategories of possible origins of
misinterpretations. These subcategories are characterized briefly in the last
column of the codebook and are illustrated with types of misinterpretations
listed. The last column ends with a note when NOT to assign this code, alerting
the second coder to the boundaries of a particular code (subcategory).

Table A.4 Abstract of the codebook for data-related misinterpretations

Selective code
Identifying the

Assign this code if...

The misinterpretation is related to identifying what was
measured measured (which variable), but not to the measurement level of
variable only this variable. This includes the following misinterpretations:

(VO) - frequency is regarded as a measured value (focus on the wrong
— vertical — axis) with correct measurement level (interval/ratio —
horizontal axis)

- it is stated that frequency or number count on the vertical axis
implies a histogram

- a histogram is chosen to depict two variables, or a histogram is
confused with a scatterplot

- the graph is called a histogram, but has time-scale on the
horizontal axis and the frequency is not a count of a time interval
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Selective code

Assign this code if...

represented on the horizontal axis (e.g., the percentage of
unemployed in 2018, 2019, ..., or the number of mortalities
during certain time periods in a day). An example of a correct
histogram with time-scale would be if it was counted how many
times the postman worked 5 hours (per day), how many times 6
hours per day, and so on. When in doubt, calculate the
arithmetic mean. If that is the mean of the time, itis a
histogram. If it is the mean of something else (humber of
mortalities, number of unemployed), it is NOT a histogram and
this code should be assigned.

- two histograms are combined without extra information
available

- a wrong choice is made of variable(s) that are or will be
depicted in the histogram (e.g., a histogram of the distribution of
age is asked, and salary was chosen on the horizontal axis)

- the variable depicted in the histogram is not the one depicted
in the table

- people use the number of bars as the number of measured
values

- a statement is made such as: bars on the right-hand side of the
graph occur later in time

- the time-scale issue is also related to the context

- correlation, association or trend in time is mentioned

Do not assign this code if:

- there is also an issue with the measurement level (see the code
identifying the measured variable and measurement level)

Measurement
level only (MO)

The misinterpretation is related to only the measurement level
of this variable, including:

- what is called a ‘histogram’ is actually a distribution bar graph
(nominal or ordinal data on horizontal, (relative) frequency on
the vertical)

- a statement is made about continuous distributions (e.g.,
normal distribution) in a graph with nominal or ordinal data

- a bar graph (nominal or ordinal data) with a ‘bell-shape’ is
chosen instead of a histogram

- the intervals (e.g., the interval “[6, 7>”) are seen as labels, thus
nominal or ordinal measurement level (often inferred by the
researchers when instead of a number scale on the horizontal
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Selective code Assign this code if...

axis, the interval notation is used as a label underneath each
bar)?’

Do not assign this code if:

- the measurement level of the data represented is ratio or
interval (exception: intervals with labels; see above)

- a statement about the normal distribution is related to
variability in a histogram (e.g., a normal distribution has the
lowest standard deviation; see the code variability) or to
randomness (e.g., if the sample is random, the population has a
normal distribution; see the code population)

Identifying the Both previous misinterpretations are at stake, for example if:
measured - frequency is regarded as a measured value (focus on the
variable and wrong—uvertical—axis) in combination with a wrong
measurement measurement level (nominal or ordinal measured values;
level horizontal axis)

(VM) - a statement is made that bars can be rearranged

- bar graph and histogram are used as synonyms

- it is unclear whether two variables are involved or one

Do not assign this code if:

- the authors who made the mistake are not native English
speakers nor statistics teachers (see the language code)

- a statement is made that a histogram depicts a relationship
between two variables (without indication of measurement level
or with interval or ratio measurement level; see the code
identifying the measured variable only)

- the software does not distinguish between bar graphs and
histograms (see the code ICT)

The distribution-related codes category consists of four interrelated codes:
variability, center, shape and grouping. Variability, for example, can be
measured in terms of standard deviation and this is a measure relative to the
center of the distribution. Similarly, the shape of the distribution is often
assessed in relation to variability (e.g., an incorrect statement such as: a
uniform distribution has the highest possible variability). We, therefore, made
choices. If misinterpretations can be assigned to two subcategories (codes),
the following hierarchy applies: grouping takes priority over all other
subcategories, then variability, then measures of center, and finally shape. We

27 Some researchers report this as a mistake or misconception, and we, therefore, included this
in the review. One can discuss if labeling itself really is a problem, although there is indeed
evidence that labeling can lead to or does stem from misinterpretations.
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made this hierarchy keeping in mind that, for example, variability is often
regarded as a more difficult concept to grasp than center.

Table A.5 Abstract of the codebook for distribution-related misinterpretations

Selective code

Assign this code if...

Variability (VY)

Center
(CE)

(A measure of) variability is wrongly used in relation to the shape
of the distribution in a histogram, including the following
misinterpretations:

- variability is assessed as variation in the heights of the bars (thus
variation in the frequency), instead of variation around the mean
(e.g., range of measured value, IQR). This includes using words like
‘bumpy’.

- measures of variability such as standard deviation and IQR are
wrongly used in a histogram, (e.g., if two symmetrical histograms
have the same mean; their standard deviation is the same)

-a statement about symmetry in relation to variability (e.g., a more
symmetrical histogram has a variability).

Do not assign this code if:

- a statement is made about continuous distributions (e.g., normal
distribution) in a graph with nominal or ordinal data (see the code
measurement level only)

- if the histogram is compared with another type of graph (see the
code shape)

- people use the number of bars as the number of measured
values (see the code identifying the measured variable only)

(A measure of) center is wrongly used in relation to the shape of
the distribution in a histogram, including the following
misinterpretations:

- mean, mode or median are assessed of the frequency

- heights of the bars are used for mean, mode, median

- shape (e.g., skewness) in the histogram is assessed with
measures of center

- people cannot estimate measure(s) of center from a histogram?®
Do not assign this code if:

- center and variability are both assessed (see the code
variability??)

28 Some people might argue that a histogram is normally not used or made for estimating the
mean. Nevertheless, as variability in a histogram is assessed, for example, relative to the mean
of the data, one has to have at least a rough estimation of what the mean is to correctly
interpret the variability.

29 The reason for this choice is that variability is regarded as variation around a measure of

center.
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Selective code

Assign this code if...

Shape
(SH)

- people use the number of bars as the number of measured
values (see the code identifying the measured variable only)

The misinterpretation is related to how the distribution of the data
is depicted in a histogram, including graph conventions. The
following are examples of misinterpretations:

- dotplots and stem-and-leaf plots are called histograms

- a histogram is wrongly matched to or compared with another
type of graph (e.g., boxplot of the same data)

- graph conventions for histograms are not met; including
statements about connected bars or discreteness of data or when
space is left between bars in a histogram3®

- any graph can depict the shape of a data distribution (e.g., the
authors state that people do not understand that a graph like a
histogram is needed to describe shape, center and variation3?)

- the intervals of bars with a frequency of zero are left out or a bar
is used when the frequency is zero

- statements are made that a table is more precise than a graph
(thus not taking variability3? and random noise into account)

- not knowing the purpose of different graphical representations,
including histograms

- area or density is not correctly used

- outliers are missed or not taken into account

Do not assign this code if:

- a statement is made about continuous distributions (e.g., normal
distribution) in a graph with nominal or ordinal data (see the code
measurement level only)

- shape or gaps are used in relation to center (see the code center)
- shape or gaps are used in relation to variability (see the code
variability)

- density or area are wrongly used in relation to the bin width (see
the code grouping)

- the variables in the graphs are not the same (see the code
identifying the measured variable only)

- people use the number of bars as the number of measured
values (see the code identifying the measured variable only)

30 We are aware that some researchers will not regard this as a misinterpretation.
31 We are aware that other graphs exist that describe shape, center and spread.
32 variability caused by sampling.
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Selective code

Assign this code if...

Grouping
(GR)

The misinterpretation is a misunderstanding of the process of
information reduction3 encompassed in a histogram leading to a
possibly different shape or modality (e.g., bimodal, depending on
the bin width), including the following misinterpretations:

- a statement is made that all values in a bar or only the midpoint
are/is measured or when the data in the histogram are used as
raw data (not taking into account the information reduction
caused by grouping into bins)

- a wrong bin width is chosen (e.g., different bin widths without
using density on the vertical axis), or not enough (e.g., two) or too
many bins (e.g., a ‘bin’ for every value in a continuous distribution,
often resulting in a graph with only frequencies of one) in relation
to the given context

- area or density is wrongly used in relation to the bin width

Do not assign this code if:

- the wrong bin width is generated by the software (see the code
ICT)

Table A.6 Abstract of the codebook for miscellaneous misinterpretations

Selective code

Assign this code if...

Context (CO)

Population (PO)

The misinterpretation is due to the context or the research question,
including the following:

- shape, center, and variation are incorrectly, or not at all, related to
the context

- a wrong description of the distribution in a histogram is given in
relation to context

- the context or personal knowledge is used instead of the given
data in the histogram

Do not assign this code if:

- correlation, association, or trend over time is mentioned (see the
code identifying the measured variable only).

The misinterpretation of the histogram is related to the distinction
between sample and population, including the following:

- a statement is made indicating that sample and population in a
histogram are the same (e.g., distribution, shape)

33 One could argue that grouping is related to data reduction and, therefore, should be
categorized in the data-related category. However, the data reduction (information reduction)
directly influences the shape as well as the modality. Therefore, it was classified as distribution-

related.
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Selective code

Assign this code if...

ICT
(IT)

Unknown
(V)

Translation
(T)

- the histogram (of a sample) is regarded as a precise representation
of the population (random noise in sample or population is not
taken into account)

- a statement is made that the sampling distribution with z- or T-
scores has a normal distribution thus the population has a normal
distribution

The misinterpretation is embedded in the software by the software
designers, including the following:

- the software does not distinguish between bar graphs and
histograms

- histograms produced by ICT have wrong or strange boundaries

- (use of ICT leads to) the idea that a fixed number of classes is
needed (e.g., 10) with or without ICT, regardless of situation

A misinterpretation is mentioned by the authors of the publication
but is not specific enough to be coded.

The misinterpretation may be caused by translation, including the
following:

- if authors use the word bar graph for a histogram—or as a
synonym—and are not from a native English-speaking country.
Do not assign the code if

- the authors are teachers/researchers of statistics (education)3*.

34 |n statistics, a distinction is made between histograms and other types of graphs with bars.
Researchers and teachers investigating statistics education are expected to be aware of this,
even in non-English speaking countries.
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Secondary school students’ strategies when interpreting
histograms and case-value plots: An eye-tracking study

“I never am really satisfied that | understand anything; because, understand it
well as | may, my comprehension can only be an infinitesimal fraction of all |
want to understand about the many connections and relations which occur to
me, how the matter in question was first thought of or arrived at...” 3°

Ada Lovelace

This chapter is based on
Boels, L., Bakker, A., Van Dooren, W., & Drijvers, P. (2022). Secondary school
students’ strategies when interpreting histograms and case-value plots: An

eye-tracking study [Manuscript submitted for publication]. Freudenthal
Institute, Utrecht University.

35 https://www.goodreads.com/author/show/3950749.Ada_Lovelace
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Abstract Many students persistently misinterpret histograms. A literature
review made plausible that students’ difficulties with statistical key concepts
become manifest in most common misinterpretations. In line with suggestions
from that review, in the present study, we address students’ conceptual
difficulties more broadly, rather than focusing on a specific misinterpretation.
Students’ difficulties related to the statistical key concepts data and
distribution can be observed when students confuse histograms with look-
alikes, including case-value plots. However, little was known about students’
strategies when solving histogram tasks. Using students’ gaze data, we address
the question: how and how well do Grades 10—-12 pre-university track students
estimate and compare arithmetic means of histograms and case-value plots?
We designed four item types: two requiring estimation of the mean and two
requiring comparison of means. Gaze data of 50 [15—19 years old] Grades 10—
12 students solving these items were combined with data from cued recall. We
found five strategies. Two hypothesized most common strategies for
estimating means were confirmed: a typical case-value plot strategy and a
histogram (interpretation) strategy. A third, new, count-and-compute strategy
was found. Two more strategies were found for comparing case-value plots
and histograms: a distribution-informed histogram strategy and a case-value
plot strategy, both taking specific features of the distribution into account. In
43% of the trials, students used a correct strategy for estimating the mean
from one histogram. In 50% of the trials, students used a correct strategy for
comparing two histograms. Surprisingly, some students used a distribution-
informed histogram strategy for comparing two case-value plots. As several of
the students’ strategies related to how and where the data and the
distribution of these data are depicted in histograms, future interventions
should aim at supporting students in understanding of these concepts in
histograms. A methodological advantage of eye-tracking data collection is that
it reveals more details about students’ thinking processes than thinking aloud
protocols. Teachers can use gaze patterns (scanpaths) to draw students’
attention to correct and incorrect interpretations of graphs. We speculate that
gaze data can be re-used to underpin ideas about the sensorimotor origin of
learning mathematics.

Keywords Eye-tracking (ET); Histograms; Problem-solving strategy; Graphs;
Statistics education; Misinterpretation.
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3.1 Interpreting histograms

The ability to understand and communicate through graphs—called graphicacy
(Balchin & Coleman, 1966)—is an important skill for citizens (Ben-Zvi &
Garfield, 2004a). “Looking at the data” is essential (Watson & Moritz, 1999), as
graphs can reveal data patterns that might stay hidden when computational
measures or hypothesis tests alone are used and even lead to opposite
conclusions (Pastore et al., 2017). In addition to this general importance of
statistical graphs, histograms are considered of key importance for introducing
continuous probability distributions. Nevertheless, difficulties with
understanding and interpreting histograms have been reported for several
decades now (e.g., Cooper, 2018; Pettibone & Diamond, 1972).

A review of the literature revealed many misinterpretations regarding
histograms (Chapter 2). Based on that review, we conjectured that overlooking
the importance of data-related conceptual difficulties in previous research—
and interventions addressing these difficulties—might partly have contributed
to the persistence of people’s misinterpretations. In addition, we proposed to
address these conceptual difficulties more broadly rather than focusing
separately on each specific misinterpretation. In the present study we,
therefore, examine several data- and distribution-related conceptual
difficulties concerning histograms.

Students’ difficulties related to the statistical key concepts data and
distribution can be observed when students confuse histograms with look-
alikes, including case-value plots (Cooper, 2018). Figure 3.1 illustrates one
common confusion when the questions are posed whether the arithmetic
mean and variation are higher in the graph on the left, or the right, or
approximately the same for both? To answer these questions, one first needs
to understand what data are depicted in these graphs. In the histogram (left),
weight of packages is on the horizontal scale and ranges between 0-9 kg. The
first bar contains twelve packages with a weight between 0-1 kg. In total,
there are 138 packages. The mean weight is around 4.5 kg and can be
estimated on the horizontal axis. In the case-value plot (right), nine students
collected garbage. Garbage weights range between 6-9 kg with a mean of
around 7.7 kilograms, which can be estimated on the vertical axis. At first
glance, the variation in both graphs might seem the same. However, in this
example, the variation is the highest in the histogram, regardless of whether
an informal measure of variation (range) is used or a more formal one
(standard deviation).
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Figure 3.1 A histogram (left) with one statistical variable (weight) and a case-value plot
(right) with two statistical variables (name and weight)

The example above shows that understanding data in histograms includes an
understanding of what, how many, and where the variables are depicted in a
histogram. For example, a histogram (Figure 3.1, left) has one statistical
variable located along the horizontal axis (here: weight). A case-value plot
(Figure 3.1, right) has two statistical variables—here: name and weight—
represented along two different axes.

Many secondary school students struggle with interpreting histograms.
Most of 412 Malaysian Grade 10 students most incorrectly calculated the
mean from a histogram (Ismail & Chan, 2015) by dividing the sum of the
frequencies by the number of bars—an approach only correct for finding the
mean from a case-value plot if frequencies were the measured values. In a
study by Whitaker and Jacobbe (2017), around 3,700 Grades 6—12 United
States students answered one or more questions about histograms. A common
misinterpretation when comparing histograms was that the least variability
from the mean was understood as the least variation in the heights of bars.
Thus, students compared frequencies instead of measured values. Similarly, in
an item about height, some students thought that taller bars in a histogram
indicate taller instead of more people. In summary, people find it difficult to
identify the statistical variable and its measurement level depicted in a
histogram (Chapter 2). This identification is part of the key concept of data
(Ben-Zvi & Garfield, 2004a).

Despite several decades of carefully designed interventions students’
difficulties persist (e.g., Delport, 2020). As many of them relate to confusing
histograms with case-value plots, we decided to examine how this confusion
arises. Various studies draw conclusions from students’ final answers (e.g.,
Whitaker & Jacobbe, 2017). Some studies used other approaches, including
classroom observations (Bakker, 2004a), concurrent think-aloud protocols and
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observations or interviews (Stone, 2006), or students’ written explanations to
open answer questions (Whitaker & Jacobbe, 2017). However, little was still
known about students’ detailed thinking processes for reaching their
answers—and thus their strategies—when interpreting histograms and case-
value plots.

In this study, we aim to better understand how students interpret data
in histograms and case-value plots. By observing students’ actions—estimating
and comparing means from these graphs—it becomes clear how students use
their conceptual knowledge of the data in these graphs, hence, what strategies
they employ. Therefore, the research question is: how and how well do Grades
10-12 pre-university track students estimate and compare arithmetic means of
histograms and case-value plots? We use eye-tracking as a tool to observe
some of students’ actions. In the following section we elaborate on some
advantages and disadvantages of using such tool.

3.2 Theoretical background
3.2.1 The mean as a representative value

Modeling and interpreting distributions as a center with variation around it is
important for statistical thinking and modeling. Historically, the mean evolved
from estimations of a representative value (Bakker & Gravemeijer, 2006).
Therefore, students need to learn to estimate the center of a data set (Bakker,
2003)—represented in a histogram—and judge the variation around this
center. Bar representations can be used for visually estimating the mean (Cai
et al., 1999). Moreover, Gal (1995) argues that: “Asking students to compute
or estimate averages from data presented in [...a] histogram [...] can often
reveal certain strengths and flaws in students’ knowledge” (p. 99).

Most secondary school students (Grades 7—12; 12—18 years old) know
how to calculate the arithmetic mean from raw data. Applied to a histogram,
this calculation could be multiplying the height of each bar with its middle
value, summing the results, and dividing this answer by the sum of the
frequencies. Besides this school-learned algorithm, several approaches exist
for finding an average from a histogram including mode, average as
reasonable—centered within the data—midpoint or median, and the point
where the data are in balance (Mokros & Russell, 1995).

Comparing groups is important for statistical literacy, can motivate
students (e.g., Konold & Pollatsek, 2002), and is recommended for introducing
hypothesis testing (Watson & Moritz, 1999). Group comparison is also
considered a way for teaching statistical reasoning (Makar & Confrey, 2004).
“All students [...] should be encouraged to draw comparisons between
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groups.” (GAISE Il, Bargagliotti et al., 2020, p. 10). The mean—as a
representative value of a group—can be used for such comparisons. We,
therefore, designed items for which students needed to compare and estimate
means. For comparing groups, Frischemeier and Biehler (2016) found six
approaches: comparing center (means, median), spread (IQR, range), shift,
skewness, percentages (in histograms: areas) below or above a certain value
called p-based and values belonging to (e.g., first) quartiles—called g-based.

3.2.2 The potential of eye-tracking for graph interpretation research

Eye movements are our most frequent motor movements and play an
important role in our cognitive processes (Spivey & Dale, 2011). Gaze data can
provide a special window into students’ thinking processes on a micro level.
Although it is generally accepted that such processes can be inferred from eye
movements (e.g., Kok & Jarodzka, 2017), there is no simple relation between
the two (e.g., Orquin & Holmqvist, 2017). For example, not every eye
movement is part of students’ solving strategy (e.g., Schindler & Lilienthal,
2019).

Gaze data can provide evidence of actions that are related to specific
concepts (e.g., Chumachemko et al., 2014; Schindler et al., 2021; Schindler &
Lilienthal, 2019), but a form of data triangulation is often useful. In this study,
we combined the gaze data with data from cued recall. According to Van Gog
et al. (2005), the advantage of recall is that it often contains more information
on the ‘why’ and ‘how’, hence on students’ strategies, compared to thinking
aloud. The disadvantage, however, is that students may have forgotten their
strategy after completing all items. This risk can be reduced by cueing
students: having them look back at their eye movements (e.g., Kragten et al.,
2015; Van Gog & Jarodzka, 2013).

The use of gaze data on graph items for finding students’ strategies has
several advantages over other data collection methods. First, most people
cannot manipulate their gazes as they are not aware of their eye movements.
Second, eye movements can reveal thinking processes that students are not
aware of or cannot articulate (Green et al., 2007). Third, thinking aloud can
slow down or alter the problem-solving process and influence eye movements
(e.g., Dickson et al., 2000). Fourth, students who think aloud might only report
what is readily available or what they think is expected (Wilson, 1994). Last,
gaze data can reveal students’ strategies toward the answer. This makes it
possible to detect whether students used a correct strategy despite an
incorrect answer—or vice versa.

Eye-tracking is quite often used for investigating how students solve
mathematical problems (e.g., Lai et al., 2013; Lilienthal & Schindler, 2019). A
review of eye-tracking studies in mathematics education showed that gaze
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data are particularly suitable for studying processes and subconscious
mathematical thinking (Strohmaier et al., 2020). Research in the last two
decades demonstrates that gaze data are suitable for studying students’
thinking processes for many other graph types (e.g., Andra et al., 2015). In a
study using stacked dotplots—similar to histograms but with all cases visible
and vertically stacked—novices and experts both mostly used global
comparison methods like displacements of means and modal clumps when
comparing two groups, experts more than novices (Khalil, 2005). In addition,
several novices used local comparison methods, mostly comparing similar
parts of both graphs. Recently, Schreiter & Vogel (2023) found similar patterns
when tracking the gazes of Grade 6 students. Taken together this suggested
that eye-tracking would fit our aim to study details of students’ strategies
while solving statistical graphs.

3.2.3 Considerations for choosing gaze metrics

Various gaze metrics can be used in eye-tracking research: temporal, count, or
spatial. A review study on the use of gaze data in education (Lai et al., 2013)
shows that cognitive researchers often use temporal metrics to analyze gaze
data (e.g., total gaze or fixation duration or total dwell time, time to first
fixation, total reading time) followed by count (e.g., fixation count). A fixation
is where people look at the screen 3¢, Saccades are relatively fast transitions
between two fixations.

Some of the metrics—for instance, total dwell time—are nowadays
considered a threat to the validity of the research (Orquin & Holmqvist, 2017).
To calculate such metrics, areas of interest (AOls) that seem relevant for the
given item need to be defined. The choice of number and size of AOls
influences results on those metrics. The least used measures are spatial (e.g.,
scanpath, fixation position). Spatial measures can both be used independently
or combined with AOls.

Temporal metrics have the advantage of being easy to compute. The
disadvantage, however, is that they often provide only global insight into
students’ thinking processes, as many gaze data details are ignored. Traditional
temporal metrics, for example, can hide visual scanning patterns (Goldberg &
Helfman, 2010). Such general measures do not seem to provide topic-specific
guidance needed for learning or instruction on that topic. Spatial measures,
such as scanpaths, seem better suited for providing detailed information about

36 A “period of time during which a specific part of [item on screen] is looked at and thereby
projected to a relatively constant location on the retina [...] operationalized as a relatively still
gaze position in the eye-tracker signal implemented using the [Tobii] algorithm.” (Hessels et al.,
2018, p. 22)
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students’ thinking processes (Hyona, 2010) and are advised for problem-
solving research (Tai et al., 2006). The use of students’ scanpaths for
identifying strategies is rare (Epelboim & Suppes, 2001). The disadvantage of
using scanpaths is that it often requires time-consuming qualitative analyses of
eye-movement data (Alemdag & Cagiltay, 2018), although machine learning
algorithms may be helpful in analyzing scanpaths from heatmaps, (Schindler et
al., 2021), order of AQOIs (Garcia Moreno-Esteva et al., 2018) and geometrical
vectors (Chapter 4; Jarodzka et al., 2010; Schreiter & Vogel, 2023).

From the pilot study—described in the next section—with six university
students (Boels et al., 2018), we learned that students’ scanpaths—thus their
strategies—typically differ within the graph area (Figure 3.2). In contrast to
most existing eye-tracking studies that define scanpaths as a sequence of AOI
transitions (e.g., Garcia Moreno-Esteva et al., 2018), here a scanpath is defined
as a sequence of fixations and saccades within an AOI (graph area). Therefore,
we characterized the perceptual form of a sequence of fixations and saccades
on the graph area.

3.2.4 Pilot study

In an exploratory pilot study with six university students, we found two main
strategies for estimating the mean from single histograms and case-value
plots: a histogram strategy and a case-value plot strategy (Boels et al., 2018).
First, in a ‘typical’ histogram strategy, students interpreted the graph at hand
as a histogram. Although this strategy can initially be applied to both graph
types (Figure 3.2, top), it is only appropriate for histograms. In this strategy,
students visually search for the mean on the horizontal axis, often using a
point on this axis where the distribution in the graph seems in balance.
Students’ gazes go up and down between a point on the horizontal axis and
the top of the bars, resulting in a specific perceptual form of their scanpaths on
the graph area: a vertical line. Although there are other correct strategies for
finding the mean from a histogram, students did not use these in the pilot
study, possibly because they were asked to estimate from the graph on the
screen.

Second, in a ‘typical’ case-value plot strategy, students visually search
for the mean on the vertical axis, meanwhile often ‘flattening’ the bars,
sometimes referring to an imaginary horizontal line (Figure 3.2, bottom). In
this strategy, students interpreted the graph as a case-value plot and their
gazes went back and forth between a point on the vertical axis and the middle
of the bars, resulting in a horizontal scanpath on the graph area.
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Figure 3.2. Examples of gaze patterns on histograms and case-value plots

Note. Top: histogram (interpretation) strategy on histogram (left; similar to Item06)
and initial application to a case-value plot (right, tem04). Bottom: case-value plot
(interpretation) strategy applied to a histogram (left,) and to a case-value plot (right).
Circles indicate fixations; thin lines between the circles indicate saccades. In this, and
following figures with scanpaths, axis, and graph titles are translated into English
whenever possible. Horizontal or vertical line segments—indicating scanpaths—are
superimposed for the reader’s convenience. The barely visible numbers on the circles
indicate the order of fixations.

Our pilot study made us hypothesize the existence of the above-described two
main student strategies for estimating the mean in histograms and case-value
plots. In the present article, we check the commonality of these strategies in a
larger sample than Boels et al. (2019a). Furthermore, we now (1) also explore
strategies for comparing two graphs, (2) report on how gaze data reveal the
imaginary object students talked about (e.g., horizontal line), (3) address the
uniqueness and potential of considering the perceptual form of scanpaths on
one AOI compared to other metrics and (4) discuss how gaze data could be re-
used to underpin ideas about the sensorimotor origin of learning mathematics.
Furthermore, we added a section on (5) the potential of eye-tracking for graph
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interpretation research, (6) considerations for choosing gaze data metrics, and
(7) lessons learned on doing eye-tracking research for novices in this field
(Appendix A of this chapter).

3.3 Method

3.3.1 Participants and school curriculum

Gaze data were collected from 50 Grades 10-12 pre-university track students
(Table 3.1) from a Dutch public secondary school [15-19 years old; mean =
16.31 years]; 23 males, 27 females. Each student was individually given the
items in a separate room in their own school. Participation was voluntary;
informed consent was signed and permission from the Utrecht University
ethical committee was obtained. Participants received a small gift for their
participation. Dutch students can choose four different mathematics levels
starting from Grade 10 (Table 3.2).

Table 3.1 Grade level and age of participants. One participant did not provide details
on grade, another one not on age (see also Chapter 3)

Grade Number of participants Age Number of participants
10 20 15 12
11 17 16 19
12 12 17 10
Unknown 1 18 7
Total 50 19 1
Unknown 1
Total 50

Note. Due to legislation, data on ethnicity cannot be collected. In the Netherlands,
there is hardly any difference between public and private schools, nor between city,
suburban, and rural schools. Private schools are rare.

Table 3.2 Choice of mathematics course per grade level

Mathematics Grade 10 Grade 11 Grade 12 Unknown Total

A 13 10 4 1 28
AandB 1 1
B 5 3 3 11
Band D 2 3 4

C 1 1
Total 20 17 12 1 50

Note. The content of the different types of mathematics is, according to Daemen et al.
(2020), as follows: A—applied analysis and statistics in economics/health; B—analytic
geometry, and analysis, formal or applied in engineering/science; C—liberal arts topics,
e.g., statistics, logic, symmetry, perspective and D—more analysis, Euclidean
geometry, statistics, other applications in engineering/science.
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The textbooks used in this secondary school had one histogram—referred to as
bar graphs—in Grades 7 and 9, and around five in Grade 8. Students with
Mathematics A, D, or C re-encounter histograms in Grades 10-12; students
with Mathematics B re-encounter histograms in Grade 11 as part of a school-
selected topic. Textbooks sometimes confuse histograms and case-value plots
and pay no attention to relevant differences.

3.3.2 Materials

Students solved 25 items. Only the first twelve are relevant for the present
study and included four different item types: two single graph types—a
histogram or a case-value plot—and two types with two histograms or two
case-value plots (Figure 3.3). For each item type, we constructed three
versions. The question for all single graph items was what the approximate
mean weight was, either per package (histogram) or per person (case-value
plot). The question posed in the double graph items was which graph had the
higher mean weight, with three answer options: left, right, or that both had
(approximately) the same mean weight. Most items were right-skewed and
double graphs all had pair-wise similar skewness, shapes, and symmetry
(Figure 3.3, middle and right). In two double graph items, for example, one
graph was shifted to the right, which is relevant for histograms but irrelevant
for case-value plots as bars can be reordered in the latter. As students often do
not understand the influence of bars with zero ‘height’ (e.g., delMas & Liu,
2005), we added some items with ‘zero’ bars. We also chose a non-ambiguous
context (weight), as some misinterpretations are related to the context or
appear when context is missing (e.g., Lem et al., 2013c; Meletiou, 2000).

Figure 3.3 Graphs used in Item02 (left) and Item03 (middle and right)

Note. The answer for the histogram (left) is approximately 2.7 [1.6—3.8]. The answer
for comparing the case-value plots (middle and right) is that the mean is higher in the
right-hand graph.
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3.3.3 Eye-tracking apparatus

A Tobii X1I-60 (sampling rate: 60 Hz) was placed on an HP ProBook 6360b
between the 13-inch screen (refresh rate: 59 Hz) and keyboard (Figure 3.4).
Participants used a chin rest. Gaze data were recorded and processed with
Tobii Studio software version 3.4.5 (Tobii, n.d.-a). The calibration procedure
consisted of a 9-point calibration; this software has no built-in validation
procedure. Therefore, we included a validation screen in the set-up at the
start, after each item, and at the end. Fixations and saccades are calculated by
the Tobii software.

Good data quality can be hard to achieve in an eye-tracking study.
Nevertheless, no students were excluded from the data set, as the data loss
per trial (averaged over all participants) and per participant (averaged over all
items) were below the exclusion point (34% or more). Accuracy and precision
are especially important when using temporal or count measures as—for
example—a low accuracy can result in fixations being classified to a different
AOI than where participants actually looked. In our qualitative study—where
scanpaths from videos of eye movements were used—accuracy and precision
have less influence on the final results. The mean accuracy is 56.6 pixels (1.16°)
with the highest accuracy on the graph area (mean 13.4 pixels or 0.27°). The
average precision (0.58°; RMS-S2S; Holmqvist et al., 2023) is considered good.

Figure 3.4 Set-up of the experiment (person in the picture did not participate). Red
oval: eye-tracker placed on the laptop
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3.3.4 Data collection

Data were collected on the following: characteristics of participants (e.g., age,
prior knowledge), students’ answers, answer correctness, and solution strategy
through cued recall. Students’ gaze data on graph tasks behind a laptop were
collected. The Tobii software collected x- and y-coordinates of the eyes on the
screen for each time stamp and produced videos of smoothed eye movements
overlaid on the screen image for each item. The video also displayed which
answer students clicked on in the double graph, multiple-choice items. For the
single graph items, students answered verbally. Furthermore, we asked half of
the students immediately after they finished the 25 items what strategies they
used. To this end, we used students’ own gaze data for a cued recall of what
they thought when solving the item.

We illuminated the location where students looked—through a kind of
spotlight—and made the rest of the graph darker. We preferred this method
over having students look back at their fixations (e.g., red dots) for two
reasons. First, it may prevent students from making different eye movements
when looking back—and describing the corresponding strategy—instead of the
strategy they initially used (M. Kragten, personal communication, March 8,
2017). Second, this made visible the exact information that the learner had
looked at, instead of the information being covered by—for example—a red
dot (Jarodzka et al., 2013).

3.3.5 Data analysis

We first discuss how we analyzed and coded single graph items based on the
hypothesis of the existence of two typical strategies as found in the pilot study.
Next, we discuss the analysis of double graph items.

Single graph items

As students were asked to estimate the mean, answer ranges for correct
answers were set to the mean +/- 1.1 based on spread in experts’ answers, see
Appendix A of this chapter. A pragmatic iterative approach was used for coding
gaze data (Tracy, 2013) that alternated between existing explanations and
emergent interpretations. Hence, although we started with two predefined
categories (deductive approach, Twining et al., 2017), we used open coding
that allowed other strategies to emerge (inductive approach). The unit of
analysis was one trial. Note that in mathematics education we usually talk
about an item, task, or problem. In eye-tracking research, the gazes of a
student solving one such item are called a trial.
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To analyze students’ scanpaths, the first author qualitatively coded
video data ¥ of eye movements on single graph items (Table 3.3). In the pilot
study (Boels et al., 2018), we found two strategies that led to two predefined
coding categories: a ‘typical’ histogram strategy associated with a vertical
scanpath on the graph area and a ‘typical’ case-value plot strategy associated
with a horizontal scanpath on the graph area (Figure 3.2). In the present study,
a third strategy emerged from the data during coding: count-and-compute,
associated with a zigzag scanpath from the vertical axis to the top of bars,
sometimes followed by gazes on almost all names or numbers on the bottom
of the bars along the horizontal axis (Figure 3.5). This strategy led to a correct
answer for case-value plots but not for histograms. Our interpretation—
supported by triangulation with verbal data—is that students added the
heights of all bars and divided by the number of bars:

StudentL13: Looking at the number of people [frequency] and at the weight
and again | added up [frequencies] here and divided [this sum] by
the number of people.

Table 3.3 Gaze data single graph items (* predefined categories)

Code Assign this code if most of the gazes on the graph area are

Case-value - horizontal (e.g., from vertical axis to a bar in the graph) and
plot strategy* approximately on the same height
- at specific numbers on the vertical axis
Do not assign this code if one of the count-and-compute strategy
options hold (see below).

Count-and- - horizontal and clearly go from the vertical axis to (almost) all (top

compute of the) bars (zigzag pattern or repeating Z-pattern)

strategy - jump underneath the horizontal axis or bottom of bars from one
to the next (for almost all bars)

Histogram - vertical (e.g., from horizontal axis to the top of a bar in the graph)

strategy* and approximately on the same position

- at specific numbers on the horizontal axis
Do not assign this code if one of the count-and-compute strategy
options hold (see above).

For coding the verbal reports, a predefined codebook was used with both
typical strategies (Table 3.4). In some cases, the verbal data allowed us to
distinguish variations of strategies that might be associated with the same
scanpath. In the median and mode strategy, students correctly understood
where to find the data in the histogram but took an incorrect measure of

37 We use static gaze plots to report results instead of video stills which would require much
more figures to show scanpaths.
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center. As we found no consistent way of detecting this strategy from the gaze
data, we reported this in the verbal data only and did not use it for the final
coding in the scanpath analysis. As anticipated, some students described a
strategy during the recall that differed from the strategy that was visible from
their gazes and answer.

Table 3.4 Verbal data single graph items (* predefined categories)

Code Assign this code if a student talks about

Case-value plot - using the height of one or more bars to determine the mean

strategy* - a horizontal line

Count-and- - adding the heights of the bars and divides the answer by the

compute strategy  number (9) of bars

Histogram - using a balance or balancing point to find the mean

strategy*

Median strategy - making areas left and right in the graph the same. Can only
be assigned for histograms.

Mode strategy - using the weight that belongs to the highest bar. Can only be

assigned for histograms.

Final coding was obtained by triangulating the coding of the gaze data for one
trial with the coding of the verbal data of the same trial when available.
Whenever there was a discrepancy, the video of the gazes was reconsidered.
The video code—most often similar to the final code—was only recoded if
obvious signs for a specific type of strategy were missed. When the
discrepancy between the coding of video and verbal data remained, the first
coder decided on the strategy code. An example of such a discrepancy is when
a student’s gazes (Figure 3.6) and answer (ten) indicated a case-value plot
strategy but verbal data in the transcript (below) indicated a histogram
strategy. Therefore, the video and final code remained identical: a case-value
plot strategy.

StudentLO1: Then | looked to see which one occurred more often. That was
eight. And then it went down a bit so it should be between four
and eight because those are the highest values that occur. And
then somewhere in the middle [six].
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Figure 3.5 Count-and-compute strategy

Note. Parts of scanpaths alternating between top of bars and vertical axis for both a
single histogram (left, Item01) and single case-value plot (middle, Item04) with
fixations on almost all names (right) indicating counting bars. Note the characteristic
zigzag pattern (black line segments superimposed for convenience of the reader in the
left graph. A similar pattern is noticeable in the middle graph).

Figure 3.6 Static gaze-plot with a case-value plot strategy of studentL0O1 on Item06:
reading off frequency values from the vertical axis

Note. Note that there are no fixations on the horizontal axis even though the title/label
weight is read.
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If the strategy was still not clear after reconsidering the video coding, or the
first coder could not reach a decision, the final code ‘unclear’ was used. The
resulting final code is presented in the Results section. Coding reliability was
checked by a second coder who coded ten percent of the trials, and the verbal
data associated with these. Interrater agreement for the final codes was .89
(Cohen’s Kappa), which is considered almost perfect agreement (Landis &
Koch, 1977).

Double graph items

For the double graph items, we explored strategies (inductive approach) per
trial. Pilot data, and, therefore, coding categories were not available. Most
scanpaths indicated a distribution-informed strategy that takes specific
characteristics of the distribution of the data in the graphs into account (Table
3.5). The differences in gazes between distribution-informed histogram and
case-value plot strategies are subtle (Figure 3.7), and, therefore, sometimes
hard to classify. In both strategies, students looked at the position of the zero
frequency bar and weight range (histogram) or position of zero weight bars
and number of bars (case-value plot) but the given—correct—answers differ.
Small differences in scanpaths—such as the pattern on the horizontal and
vertical axis and labels—combined with the given answer—determined the
correctness of this distribution-informed strategy. Note that the researchers
analyzed the videos, not the gazeplots. Videos of gazes showed how the
student’s gazes on the graph area progressed through time which made it
slightly easier for a trained viewer to interpret the scanpath pattern. Gaze data
were combined with verbal data when available. For the verbal data on double
graph items, we used open, axial, and selective coding (Table 3.6). For the
approach to obtaining a final code, see the single graph items.

Table 3.5 Example of codebook for gaze data on double graph items, histogram
strategy code

Assign this code if the gazes are Assign this code if the answer is
- on the top of bars in both graphs, Same or Texel (Item03)
indicating comparing double heights Willem (Item05)

- going back and forth along the Kees (ItemQ9, Figure 3.7)

horizontal axis
- see the codebook for single graph
items
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Figure 3.7 A correct distribution-informed strategy for comparing the means of two
histograms in ltemQ9 (top row) using similar shape, shifted to the right and for
comparing means of two case-value plots in Item07 (bottom row) using shape and
number of bars

Note. Students specifically compared the position of the ‘zero’ bars (black ovals) and
others on similar positions (e.g., purple squares). Correct answer top row: Kees’
packages had a higher mean weight; bottom row: mean weight is the same for both
graphs.

Table 3.6 Example of codebook for verbal data double graph items, case-value plot
strategy code

Assign this code if a student talks about

-the two zero bars or missing bars lower the mean
-comparing the heights of the bars

-higher/more/fewer bars in one graph thus higher mean
-bigger area thus higher mean

-same number of bars and same heights

-similar bars but reordered
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3.4 Results

More details can be found in Appendix A of this chapter.
3.4.1 Strategies on single graph items

The most common strategy for single graph items was the ‘typical’ case-value
plot (interpretation) strategy that we already found in our pilot study—
associated with a horizontal scanpath and only correct when applied to case-
value plots—with 37% and 71% for histogram and case-value plot trials
respectively (Table 3.7). The ‘typical’ histogram (interpretation) strategy—
associated with a vertical scanpath—was used for single histograms in 43% of
the trials. The most common strategies hypothesized based on the pilot study
were, therefore, confirmed. A third strategy was found—count-and-compute,
associated with a zigzag scanpath (Figure 3.5)—in which students add heights
of bars and divide by the number of bars.

Table 3.7 Strategies, percentage of trials (N = 150) per item type (correct strategy in
bold)

Histogram  Case-value plot  Count-and- Unclear
strategy strategy compute
strategy
Single histogram 43% 37% 18% 2%
Single case-value plot 0% 71% 29% 0%

Note. Although a correct count-and-compute strategy is also possible for histograms,
such a strategy was not found. In case-value plots, count-and-compute only returns
the mean if the sum of the heights of bars is divided by the number of cases.

StudentL18 describes a correct ‘typical’ histogram strategy for single Item02:

StudentL18: | was mostly [...] looking at the small counts.
[...]
Researcherl: Can you explain why you answered three here?
StudentL18: Because the first one [bar] was really long anyway and the rest

were all pretty small. So to my feeling that made more sense.
Because it was kind of in the middle as such. Not very far from the
middle [of the horizontal scale].

Most strategies applied to single histogram items (55%) were incorrect, namely
case-value plot and count-and-compute strategies. During recall, some
students reported a strategy that returns the median—dividing the area into
two equal parts, see the excerpt of studentL11 below—or the mode—the
position of the highest bar, in line with the literature (Frischemeier & Biehler,

95



Chapter 3

2016; Watson & Moritz, 1999). Both strategies were associated with the same
vertical scanpath, and, therefore, reported as a histogram strategy.

StudentL11: A bit where the area was somewhat the same already from the
right, so [the point on the horizontal axis] where the areas cancel
each other out [are equal].

3.4.2 Strategies on double graph items

In 50% of the trials with double histograms, students used a histogram strategy
for comparing the means (Table 3.8). Most students used a distribution-
informed strategy using specific features of the graph such as: same symmetry
and positions of the bar thus same mean, or similar shape but moved to the
right thus higher mean (Figure 3.7) in short: using ‘shift’ and ‘shape’
(Frischemeier & Biehler, 2016). This has some similarities with what Khalil
named ‘local slices’ (2005). However, in contrast to Khalil, our participants saw
the full graph at once. The ‘typical’ strategy in which students estimate
means—similar to what is used for single graphs—is rare for double graphs. A
distribution-informed histogram strategy—shift—is described for double
histogram Item09 (Figure 3.7, top):

StudentlL22: So his [postal worker Kees] mean is always one step higher anyway
and [postal worker] Rianne's one step lower because the [Kees’]
graph shifts one step [to the right].

Table 3.8 Strategies, percentage of trials (N = 150) per item type (correct strategy in
bold)

Histogram Case-value plot Count-and-  Unclear
strategy strategy compute
strategy
Double histograms 50% 49% 0% 1%
Double case-value plots 9% 87% 3% 1%

In trials with double case-value plots, students frequently (87%) used a case-
value plot strategy for comparing means. Most students applied a distribution-
informed strategy using specific features of the graph such as same shape and
number of bars, double heights, or more area. In contrast to histograms, in
case-value plots, more area does indicate a higher mean (see also the
discussion on the use of totals in Watson & Moritz, 1999). A count-and-
compute strategy—similar to the single graph items—was also found for
double graph items but much less frequently (3%).
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To our surprise, in 9% of the double case-value plots trials students
used a distribution-informed histogram strategy (Table 3.8), resulting in an
incorrect answer (Figure 3.8: same instead of Renesse). As a student stated:

StudentlL11: [...] the same, because the graphs are almost the same, only the left
graph has two extra bars on the outside, but if you average it, they
cancel each other out as well.

Researcherl: And why [...]?

StudentL11: Because they are exactly the same [symmetry]. But | now see that is
not correct because it is obviously not a frequency [on the vertical
axis].

3.4.3 Students’ answers compared to strategy correctness

Regarding answer correctness (Table 3.9) compared to strategy correctness,
case-value plots were solved considerably better than histograms and usually
also with a correct strategy. Case-value plot strategies were often used for
histogram items, resulting in both lower correct answers and lower correct
strategies. The discrepancy between answers and strategies (Table 3.9) is
mostly due to students' preferences for whole and half numbers. For example,
single case-value plot Item04 (Figure 3.5, middle/right) scored the lowest of
these plots (76%). For Item04, ten students answered 5—just outside the
answer range [2.6—4.8]—and two students overestimated the mean by
answering 5.5 and 6.

Table 3.9 Overview of the percentage of correct answers (N = 150 trials) and strategies
per item type

Item type Correct answers Correct strategy
Single histogram 43% 43%

Single case-value plot 83% 100%

Double histograms 39% 50%

Double case-value plots 74% 90%

Total 60% 71%

Students performed best on the three single case-value plots items—on
average, in 83% of the trials they correctly estimated the mean and scored
highest on Item08 (90%). Of the three double-case-value plot items, Item10
scored low, with 40% of the students answering correctly. Gaze data revealed
that there was no difference between students who answered incorrectly and
those who answered correctly regarding the fixations on the white space
(Figure 3.8) above the names Alex and Yves, as both groups had or did not
have fixations in these areas. Only two students explicitly mentioned that Alex
and Yves did not collect any litter, but they were initially confused by the
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graphs—see the excerpt below. Several students did not understand the role
of ‘bars’ with frequency zero, which is in line with the literature (e.g., delMas &
Liu, 2005).

StudentL07 Yes, | had my doubts about this one too, because there is a bar
missing on the left and then | want to compare it and that is not
possible. [...] then | start to doubt easily whether it is good or not
that bar is there and then | thought well if the bar is not there then
in this case the low numbers are not there so then the average
weight of the right one will be higher. Because it is less distributed.
It's all the same numbers, so to speak.

Researcherl: You said Renesse, so the left one [...]. While on the left, the two
bars are extra compared to the right.
StudentL07: Oh no never mind, average weight. No then because on the left

those bars are there, it means that something was picked up at all
instead of nothing on the right.

Figure 3.8 White space (ovals) above the names Alex and Yves (right hand graph in
Item10)

3.5 Conclusions and discussion

In this study, we investigated how and how well Grades 10—12 pre-university
track students interpret histograms and case-value plots. We found five
strategies. Our study confirmed the two most common strategies for
estimating the mean from single graph items found in the pilot study—a
typical case-value plot strategy associated with horizontal gazes and a typical
histogram strategy associated with vertical gazes. A third, new ‘typical’ count-
and-compute strategy was found—in line with other findings (e.g., Watson &
Moritz, 1999)—for both single and double graphs, and associated with a zigzag
scanpath. Although this could be seen as a variation of the case-value plot
strategy, we decided to report this separately due to its algorithmic character.
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These three typical strategies for estimating the mean from graphs were rarely
used for double graph items.

Furthermore, two new strategies were found for comparing means by
considering specific features of the graphs. In a distribution-informed
histogram strategy, students compared ‘shifts’, ranges and symmetry (spread,
shapes, cf. Frischemeier & Biehler, 2016). To our surprise, some students
applied a distribution-informed case-value plot strategy on double histogram
items. These strategies are item-specific, as scanpaths differ depending on the
distribution. Furthermore, some students ignored bars with frequency or
measured value zero, even when they looked at them (cf. deIMas & Liu, 2005).

Discussing these findings, first, we note that several students talked
about a mathematical object not present in the item (e.g., horizontal or
vertical line). Although imagined, this object played a role in finding the mean.
This imagined object was visible in the gaze data on the graph area of several
students on single as well as some double graph items. When students
estimated the mean from the graph (for single or double graphs), the same
object was used for similar graphs. When comparing means in the double
graph items, the object was often item-specific and included for example the
‘bars’ with zero frequency or weight or range. This is in line with findings from
other studies in which objects appeared in the form of triangles, center points,
or lines (Alberto et al., 2022). Further research, for example, using machine
learning algorithms or latent class or profile analysis (e.g., Hickendorff et al.,
2018), is needed to find out whether students can be grouped meaningfully
purely based on their scanpaths on the graph area and be related to the
framework of Frischemeier and Biehler (2016).

Second, as many students tended to focus on most noticeable features,
the different signs—case-value plots and histograms—are perceived as similar.
Our results might indicate that perception-action loops (Shvarts et al., 2021)
for case-value plots are stronger—or older—than for histograms leading to
both graphs being recognized as case-value plots. Future research is needed to
find out how specific perception-action loops for histograms can be built.

Third, we speculate that our gaze data can also be re-used to underpin
theoretical ideas about embodied aspects of thinking processes in learning
mathematics. Piaget (1952) showed that learning starts from reflexes.
Sensorimotor experiences (e.g., touch, vision) induced learning through
accommodation to the environment, assimilation (incorporating objects that
fulfill what is needed and rejecting objects that do not), and individual
organization which “exists, inasmuch as organization is the internal aspect of
this progressive adaptation” (p. 41). According to Vygotsky, thinking is an
especially complex form of behavior (1926/1997). For example, Vygotsky
describes an experiment with participants sitting between two objects with
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their eyes closed. When asked to think “hard of either of these objects [...] The
movement of the [participant’s] eyes and the straining of his muscles always
occurred in the direction his thinking was aimed at.” (p. 155). Here, Vygotsky
associates specific eye movements—motor actions—with thinking processes.
Moreover, stronger and more focused thoughts are associated with clearer
and more complex motor actions. This is, according to Vygotsky, also true for
mathematical thoughts. For example, young children performing addition or
subtraction move their lips, tongue, forehead or cheeks. “Even the most
abstract thoughts of relations [...] are related ultimately to particular residues
of former movements now reproduced anew.” (p. 162). Residues of
movements can be found in students’ gazes—the horizontal line representing
the estimated mean—which are sometimes described by students as the line
that makes all bars equally high. Students’ language described imagined motor
actions in line with their gestures as if these occurred. What is particularly new
in our study—compared to, for example, the research on trigonometry tasks
(Alberto et al., 2022)—is that we found residues of movements even though
students could not perform the described action. Eye movements can,
therefore, be used as evidence of sensorimotor coordinations that constitute
and contribute to mathematical competencies (Abrahamson et al., 2015).

3.5.1 Education

For educational practice, insight into students’ graph-based reasoning may
contribute to new perspectives on teachers’ own thinking processes. Teachers
sometimes also misinterpret histograms (Boels et al., 2019b; Dabos, 2014).
Therefore, awareness of fundamental differences between various types of
graphs that share similar most noticeable features is an important part of
teachers’ Statistical Knowledge for Teaching (Groth, 2013).

Second, gaze data provide fine-grained information on students’ where
students looked. Although the relation between a scanpath and students’
thinking processes is not straightforward, the present study support the
growing body of literature that gaze data can reveal students’ reasoning (e.g.,
Lai et al., 2013). This allows educators to link more closely to students’ thinking
processes. For instance, teachers can use students’ scanpaths for drawing
students’ attention to correct interpretations of graphs and pay explicit
attention to relevant—instead of most noticeable—differences between
graphs. As several students explicitly looked at the axis labels and still used an
incorrect strategy, this implies that just telling students to carefully read the
axis labels might not be enough. We also noticed that some students checked
their answer prior to reporting it. Although such findings are beyond the scope
of this study, eye-tracking seems well-suited for disclosing such thinking
processes. This is left for future research.
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Third, the present study also shows that the statistical key concept of
data (e.g., number of variables and measurement level, Chapter 2, see
https://youtu.be/zpRHhixoYmg and https://youtu.be/50d2uB908PI) should be
extended with an understanding of on which axis the data values are
depicted—being mostly the horizontal axis in a histogram, with very few
exceptions (e.g., age-gender-pyramid). Not fully understanding the key
concepts of data and distribution can lead to several misinterpretations
(Chapter 2). When students applied a case-value plot interpretation strategy to
a histogram, this related to several misinterpretations, including that the
frequency is mistakenly seen as the measured value (Chance et al., 2004), that
the number of bars is confused with the number of cases (Dabos, 2014), and
that the mean of the measured value is mixed with the mean of the heights of
the bars or frequencies in a histogram (Lem et al., 2014b). As these are all
related to how and where the data and the distribution of these data are
depicted in histograms, future interventions should aim to support students in
understanding these concepts in histograms. In addition, teachers could ask
students to explain their strategies to promote reflection.

3.5.2 Eye-tracking

A first methodological aspect of eye-tracking is that—compared to students’
verbal reports—more details of their problem-solving processes are visible. For
example, an imaginary horizontal line was visible in many more students’ gaze
data on single graph items than was reported by students. Furthermore, some
students were unable to correctly report their strategy in retrospect, even
when cued with their gaze. Hence, gaze data can reveal approaches that
students are not aware of or are unable to articulate. The subtle differences in
scanpaths for double graph items as well as the item and question-dependent
scanpaths emphasize both the need for triangulation and a domain-specific
interpretation of gaze data (e.g., Schindler & Lilienthal, 2019). For the double
graph items, we did not find a consistent way to distinguish between a strategy
involving estimating means, on the one hand, and a distribution-informed
strategy, on the other, based solely on gaze data. A possible future line of
research is to explore whether these variations can be identified with other
analysis methods.

Second, eye-tracking may also influence students’ thinking processes
less than thinking aloud. We noted, for example, that in retrospect, when
explaining—thus reflecting on—their strategy, several students realized that
they took an incorrect approach.

A third methodological aspect of our study is that we used spatial eye-
tracking measures: scanpaths on one AOI (graph area). Scanpaths are complex
data that usually require qualitative and labor-intensive analysis. Nevertheless,
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our study shows that spatial measures can reveal task-specific strategies that
would have stayed hidden using more traditional measures such as time on—
or count of transitions between—AOIs only (cf. Hyon&, 2010). Cued recall data
revealed that a correct vertical scanpath is not only associated with estimating
the arithmetic mean but also with the median and mode. Future research is
needed to investigate whether these can be distinguished, for example,
through using machine learning algorithms to analyze raw gaze data or
heatmaps.

Fourth, gaze data—scanpaths in particular—can potentially shed new
light on tenacious didactical problems in mathematics teaching—including
students consistently misinterpreting histograms. We speculate that this holds
not only for other misinterpreted graphs, including boxplots (Lem et al., 2013c,
2014a), violin plots, scatterplots, density curves (Nolan & Perrett, 2016),
stacked-dotplots (Lyford, 2017), increase diagrams, network topologies and
function graphs (Leinhardt et al., 1990) but also for other mathematical topics
where scanpaths may play an important role: line and point symmetry in
functions, congruency of triangles, the relation between a straight line, axis
scales (logarithmic, linear, normally distributed), and functions, and maybe
even the representation of a cubic and hexagon.
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Appendix A Background of the eye-tracking and
participants’ data

A.1  Details of the eye-tracker

A Tobii XII-60 with a sampling rate of 60 Hz was placed on an HP ProBook
6360b laptop with a magnetic strip between the laptop's 13-inch screen
(refresh rate 59 Hz) and keyboard. A chin rest was used for reduced data loss
and improved accuracy of the gaze data. The Tobii XII-60 uses Pupil-Corneal
Reflection (see Tobii’s user manual, n.d.-a and Holmqvist et al., 2023). Tobii’s
eye-tracking software automatically uses both bright and dark pupil methods
during calibration and, according to the product specifications, the software
automatically chooses the most suitable method.

By using harmless infrared light, the Tobii can detect where people
look. In this study, the Tobii Pro Studio software (Tobii, n.d.-a) recorded
students’ gazes on the screen in real-time. The distance between the screen
and the participant was 55-60 cm [mode and mean: 59 cm].

A Rgde microphone was used to record the cued recall (verbal data).
More details of the set-up are shown in Figure A.1. The participant used a
height-adjustable office chair to ensure a comfortable position on the fixed
chin rest.

Figure A.1 Set up of the laptop, Tobii eye-tracker, chin rest and microphone

The live viewer mode was enabled and used on a second screen that was
turned to the researcher and not visible to the participant. The raw gaze data
were exported with the data export function of the Tobii Studio Pro 3.4.5
version. Each participant’s data were exported in a separate .tsv-file (tab-
separated, comparable to a .csv-file) readable in, for example, Excel.
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A.2 Gaze data quality

Getting good data quality can be hard in an eye-tracking study. The quality is
influenced by the design of the experiment (e.g., a chin rest usually improves
data quality) and by the characteristics of the participants (e.g., wearing
glasses). We used a chin rest and asked participants not to wear mascara,
although a few of the participants did.

The calibration procedure consisted of a 9-point calibration on the
screen provided by the Tobii Pro Studio 3.4.5 software. The calibration
procedure was repeated for specific points on the screen if the gaze was too
far off the required spot. As the Tobii software does not supply specific quality
measures for the calibration, this was based on expert decision.

The Tobii software has no built-in validation procedure. A validation
screen was, therefore, included in the set-up at the start, after each item, and
at the end. Directly after the calibration by Tobii, students were instructed to
look at the middle of a series of four single dots appearing on the screen. Each
of these marked important positions in the item (Figure A.2), and each time,
only one dot was visible at the same time in a fixed order.

Figure A.2 A 4-point validation procedure was applied before and after the series of
items, left: position of points, right: letters indicating the order of points on the
screens

After each item, a validation cross appeared on the screen. Participants were
instructed to look at the middle of this cross (Figure A.3). This validation cross
was positioned at the right-hand side of the screen, in different positions each
time. This ensures that the first eye movement is never accidentally on the
graph area.
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Figure A.3 Fixation cross that appeared somewhere on the right-hand side of the
screen

Data loss is normal during an eye-tracking experiment and will appear during
blinking or looking away from the screen. Furthermore, epicanthic folds
(almond eyes), wearing glasses, contact lenses and makeup can also lead to
extra data loss. Although some of these conditions applied to some students,
we did not exclude any student from the data set as the data loss per trial
(averaged over all participants) and the data loss per participant (averaged
over all items) were below the exclusion point (34% or more; Table A.1). In
some cases, there was too much data loss for a specific trial, for example,
because the student had accidentally clicked through the item or because the
track of the gaze data got lost. If this happened, an attempt was made to
identify the strategy. If this was impossible, it was indicated that the strategy
was unclear and marked as unknown (type of strategy) and incorrect
(correctness of strategy). Two students reported wearing glasses, three
students reported wearing contact lenses. In total, 25 trials per participant
were recorded; only the first twelve trials are reported in this study.

Table A.1 Data loss

Average per participant  Average per trial over all 50

over all 25 trials participants, first twelve trials
Average data loss 7.21% 6.58%
Minimum data loss 1.00% 2.48%
Maximum data loss  27.78% 12.04%

In response to recent calls from researchers to provide more insight into the
quality of eye-tracking data, we provide measures of accuracy and precision of
the gaze data (Holmqvist et al., 2012, 2023; Strohmaier et al., 2020). Accuracy
and precision are especially important when using temporal or count
measures, as—for example—a low accuracy can indicate that fixations are
classified to a different AOI than where a participant was actually looking. For a
qualitative study like ours, where scanpaths from videos of the eye movements
are used, accuracy and precision have less influence on the final results.
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Furthermore, we placed the most important part of the task (graph area) near
the center of the screen where accuracy was expected to be higher than in the
corners. The corners of the screen were mostly left empty or used for less
important parts of the tasks where accuracy does not play a role (e.g., the
‘next’ button).

The four validation screens at the beginning and end were used to
calculate accuracy and precision. To determine accuracy, the offset was
calculated: the distance from the closest fixation (gaze-point) to a validation
point (Figure A.2 and Table A.2). “The offset gives an indication of the
discrepancy between gaze position as reported by the eye-tracker and the
assumed gaze position of the participant.” (Van der Stigchel et al., 2017, p.
3588). We used the raw x- and y-coordinates of a fixation (gaze-point) closest
to the validation point (x- and y-coordinates averaged over the two eyes by the
Tobii software, which can be found in the columns named GazePointX
(ADCSpx) and GazePointY (ADCSpx)). Only fixations within 170 pixels (3.5°) of
the center of the validation point were considered. The mean accuracy is 56.6
pixels (1.16°). As can be calculated from Table A.2, the mean accuracy for the
validation points at the start does not differ much from the end (4.9 pixels or
0.10°). As expected, the accuracy of the middle point of the screen (A, 11.4 and
15.3 pixels or 0.23° and 0.31°) is better than for the points in the corners of the
screen (B-D).

Table A.2 Accuracy and precision, averaged over all students except studentL50

Validation X position Y position Accuracy deg Precision deg
point (px) (px) pX pX

A —start 683.0 384.0 11.4 0.23 16.8 0.34
B —start 228.5 175.5 55.9 1.15 27.7 0.57
C—start 178.5 592.5 74.3 1.52 311 0.64
D —start 1187.5 542.5 74.9 1.53 339 0.69
A-end 683.0 384.0 15.3 031 17.1 0.35
B—end 228.5 175.5 69.0 141 259 0.53
C-end 178.5 592.5 79.2 1.62 35.1 0.72
D-end 1187.5 542.5 72.7 1.49 384 0.79
Mean 56.6 1.16 28.3 0.58

Precision was calculated as follows. The fixation (gaze-point) closest to the
validation point—see the calculation of accuracy—was used to determine
which fixations the Tobii Studio software considers as belonging to that point;
Tobii software column names FixationPointX (MCSpx) and FixationPointY
(MCSpx) were used as filters for the gaze-points. The root-mean-square
sample-to-sample (RMS-S2S, Holmqvist et al., 2023) distance (deviation) across
all fixations (coordinates of the gaze-points, columns GazePointX (ADCSpx) and
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GazePointY (ADCSpx)) was taken over the raw x- and y-coordinates of these
gaze-points to give an indication of the noise. This was done per student for
each validation point. This RMS-S2S was then averaged over all students per
validation point. StudentL50 was excluded from these calculations due to
technical problems. Under optimal conditions, the Tobii XII-60 has 0.4-0.5°
accuracy (with artificial eyes) and 0.32° precision Tobii (n.d.-b). As can be
expected, the offset for human eyes is higher (1.16°) but is nevertheless within
the acceptable accuracy limits for this type of eye-tracker given that the most
important part of the stimulus is near the middle of the screen. The precision
(0.58°) is considered good. The RStudio-code for these calculations can be
found in the data repository.

A.3  Self-reported grades

Students reported their grades (Table A.3).

Table A.3 Arithmetic mean of self-reported mathematics scores (scale 1-10; lowest—
highest) for choice of mathematics and grade levels

Mathematics Grade 10 Grade 11 Grade 12 Unknown Total

A 6.0 6.4 5.4 6.2 6.1
AandB 7.1 7.1
B 6.1 7.0 7.8 6.8
Band D 7.5 6.7 7.7 7.3
C 6.0 6.0
Total 6.2 6.6 7.0 6.2 6.5

Note. In Dutch schools, a score of 5.5 or above is regarded sufficient.
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A.4 Items and students’ answers

A4l Single graph items and students’ answers
In table A.4 an example of students’ answers can be found.

Table A.4 Students’ answers for ltem01

Answer Number of students (percentage)

1 1(2.0%)
2 2 (4.1%)
3 5(10.2%)
3.5 5(10.2%)
4 9 (18.4%)
4.25 1(2.0%)
4.5 2 (4.1%)
5 2 (4.1%)
6 3(6.1%)
7 4 (8.2%)
8 8(16.3%)
8.5 2 (4.1%)
9 1(2.0%)
9.5 1(2.0%)
10 2 (4.1%)
11 1(2.0%)
Total 49 (100%)

Note. The mean is 3.3; bold answers are noted as correct as they are within the range
mean +/- 1.1; here: [2.2, 4.4]. One student accidentally skipped this item.

Table A.5 provides an overview of all the answers given by the 50 secondary
school students during the eye-tracking study for the single graph items. The
original graph for which the students were asked to estimate the arithmetic
mean is given in the column Graph in item. The items were constructed in line
with the recommendations from Orquin and Holmqvist (2017) so that the
“stimuli [...] differ systematically on one or more features” (p. 6). The last
column shows histograms of students’ answers. Most students rounded to half
and whole numbers. Table A.8 provides an overview of the number of correct
answers per item for all items. The range for correct answers in single graph
items was based on the following criteria. First, we noted that students’
estimations were most often whole numbers and numbers rounded to the
nearest half (e.g., Table A.4). Second, we noted that the range in answers of
three experts in a small expert pilot was within +/-1.2 of the exact answer.
Unlike the students, these experts tended to round their answers to one
decimal. Third, we chose the range so that answers found by applying an
incorrect strategy (e.g., a case-value plot strategy applied to a histogram)
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would not be part of the range. As a result, all answer ranges for correct
answers were set to the mean +/- 1.1.

Table A.5 Students’ answers on single graphs (open answers)
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Item Graph in item . Histogram of students’ answers
()
2 § ® = (bin width: 0.5). The dotted red
= € g : line indicates the correct mean of
& S 2 £ thegraphinthe item
(G) 29
& €
ItemO 5.7
6
€
o
oo
o
k7
T
ItemO 2.4
8
o
kel
o
()
=}
©
7
()
[%2]
©
o
Iteml 3.7
2
o
o
o
()
=}
©
7
()
(%]
©
o

110



Students’ strategies when interpreting histograms and case-value plots: an ET study

A.4.2 Double graph items and students’ answers
Table A.6 provides an overview of all the double graph items. Table A.7
provides an overview of all students’ answers for these items.

Table A.6 Overview of double graphs items (multiple-choice)
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Table A.7 Overview of students’ multiple-choice answers on double graphs items
(correct answers in bold)

Item Graphs type Answer (count) Answer (count) Answer (count)
Item03 Case-value plots Texel (0) Cadzand (47) Same (3)
Item05 Histograms Julia (11) Willem (24) Same (15)
Item07 Case-value plots Kijkduin (1) Zandvoort (5) Same (44)
Item09 Histograms Kees (25) Rianne (5) Same (20)
Item10 Case-value plots Renesse (20) Scheveningen (24) Same (5)
Item11 Histograms Ellen (2) Titia (30) Same (18)
A.4.3 Item order, item type, and number of correct answers

In Table A.8, the order of the items, item, and graph type, as well as the
number of students answering correctly or incorrectly, are given. A fixed item
order was used in this study, with never more than two graphs of the same
type (histogram or case-value plot) in succession. If no answer was given (two
students each accidentally skipped one question), this was noted as incorrect.
As we expected most students who confuse case-value plots with histograms
to apply a case-value plot strategy to a histogram, we started with two single
left-skewed histograms. This was done to avoid priming (e.g., Lashley, 1951).
Graphs with the same most noticeable features (e.g., Item02 and Item08)
never directly followed one another.

Table A.8 Students’ answers correctness per item

Item Item type Graph type Correct Incorrect Total
Item01 Single Histogram 20 30 50
Item02 Single Histogram 19 31 50
Item03 Double Case-value plots 47 3 50
Item04  Single Case-value plot 38 12 50
Item05 Double Histograms 15 35 50
Item06 Single Histogram 25 25 50
Item07 Double Case-value plots 44 6 50
Item08 Single Case-value plot 45 5 50
Item09 Double Histograms 25 25 50
Item10 Double Case-value plots 20 30 50
Item1l Double Histograms 18 32 50
Item12 Single Case-value plot 42 8 50
Total 358 256 600
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A.4.4 Percentage of correct answers per item type and occurrence of
‘zero’ bars

In Table A.9, the items are clustered by item type. For each item, the

percentage of correct answers is given, as well as the occurrence of bars with a

measured weight or frequency zero. For Item10, the low scores are due to not

understanding the role of the two bars with measured value zero, see the

Results section.

Table A.9 Students’ answers correctness per item

Bars with frequency or

Item Item type measured value zero Correct
Item01 Single histogram No 40%
Item02 Single histogram No 38%
Iltem06 Single histogram No 50%
Item05 Double histograms No 30%
Iltem09 Double histograms Yes 50%
Item11 Double histograms Yes 36%
Iltem04 Single case-value plot No 76%
Item08 Single case-value plot No 90%
Item12 Single case-value plot No 84%
Item03 Double case-value plots  No 94%
ItemQ7 Double case-value plots  Yes 88%
Item10 Double case-value plots  Yes 40%

A.5 Codebooks and detailed results coding

Note that all codebooks and coding results are available in a data repository.

A5.1 Codebook general

The gaze and verbal data were coded separately. Next, these codes were
combined into a final code using the verbal data—if available—as a
triangulation of the gaze data, see the Data analysis section for more
explanation. From the pilot study, it appeared students did not change their
strategies over the first twelve trials (Boels et al., 2018). Therefore, items of
the same type (e.g., all single case-value plot items) were coded directly one
after another in the same coding session per participant so that the coding per
participant was kept as consistent as possible. For example, items 1, 2, and 6
(all with single histograms) were coded for one participant and then for the
next participant, and so on. In the next coding round, items 4, 8, and 12 (all
with single case-value plots) were coded for one participant, and so on.
Participants where the coding indicated a switch in strategy between items but
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within a series of one type of item were reconsidered after all participants
were coded for this type of item to make sure strategy switches between items
were not due to coding inconsistency. In the case of a switch of strategy during
a trial, only the code of the strategy that was used just before the answer was
given was used. The students volunteered for the cued recall, and after
collecting gaze data from the first 27 students, we completed the 25 cued
recalls on several items, depending on the time left before the 50 minutes (one
lesson) had passed. The gazes were coded from videos (available on request
from the first author). A still of such a video as well as the static gaze-plot for
these gazes are shown in Figure A.4.

Figure A.4 Video still (left) and static gaze-plot (right) of studentL49’s gazes on Item06

Note. The full video of L49’s gazes on Item06 can be found on the publisher’s website.
The static gaze-plot (right) contains all gazes of this student on this item. Although the
mean weight of the packages is approximately 5.7 kg, the student answers 9 [kg] even
though this student looked at the word ‘Gewicht’ (Weight) along the horizontal scale.
We removed sound (e.g., a student saying the answer) from the original video for
privacy reasons.

A.5.2 Codebook double graph items

Codebook for the gazes on double graph items

In the double graph items, the differences between a case-value plot strategy
and a histogram strategy are subtle. Therefore, the answer is considered
(Table A.10). When answer and gaze data lead to different codes, the gaze
data are leading.
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Table A.10 Codebook for the gazes on double graph items. Dh = double histogram,
dcvp = double case-value plot

Code Assign this code if
The gazes are The answer is
Histogram - on the top of bars in both graphs, Same or Texel (Item03
strategy indicating comparing double heights —dcvp)
- look at (max) frequency 8 and 16 in the Willem (Item05 — dh)
relevant graphs Zandvoort or Kijkduin
- fixations on or around the origin of (Iltem0Q7 — dcvp)
graphs Kees (Item09 — dcvp)
- going back and forth along the horizontal Same (Iltem10 — dcvp)
axis (range) Same (Item11 —dh)
- on the last bars or outer bars of each
graph
- see the codebook for single graph items
Case-value - back and forth between the top of the Cadzand (Item03-dcvp)
plot bars Julia or same (Item05-
strategy - on the bars with value or frequency zero  dh)
- on the top of last bars or outer bars of Same (Item07 — dcvp)
each graph Same or Rianne
- are not on the bars with value or (Iltem0Q9 — dcvp)
frequency zero where this is relevant Renesse or
- see the codebook for single graph items Scheveningen (ltem10
Do not assign this code if one of the —dcvp)
distribution-informed histogram strategy Titia or Ellen (Item11 —
options hold dh)
Count-and- - see the codebook for single graph items n.a.
compute
strategy There is a sound of counting during trial

Codebook for the verbal data for double graph items

The codebook for the verbal data for double graph items is given in Table A.11.

Table A.11 Codebook for the verbal data on double graph items

Code

Assign this code if
a student talks about

- extra bars outside compensate each other

- higher mean through extra bar on the left (overlooking the
extra bar on the right in the other graph)

- same range, double frequency

- one graph is shifted to the right compared to the other
graph

- see the codebook for single graph items

Histogram strategy
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Case-value plot - the two zero bars or missing bars lower the mean
strategy - comparing the heights of the bars

- higher bars in one graph thus a higher mean

- less bars thus a higher mean

- more bars thus a higher mean

- more area thus a higher mean

- same number of bars and same heights

- similar bars but reordered

- see the codebook for single graph items

Count-and-compute

strategy
- see the codebook for single graph items

A.5.3 Results final coding strategies

The qualitative analysis of the coded data led to a decision of what kind of
strategy was used by each student (Table A.12), and whether the student used
a correct or an incorrect strategy (Table A.12). This is not necessarily the same
as giving a correct answer. A student may, for example, use a correct strategy
to estimate the mean but then make an error in the estimation itself which
might lead to an incorrect answer. The codes of the gaze data were combined
with the verbal data. If the verbal and gaze data did not align, the gaze data
prevailed. When the data were unclear, the coder decided on the strategy’s
correctness. Strategies were coded unclear when a student accidentally
skipped a question (two students each skipped one item), when there were
not enough gaze data (two students each on one item), and when the verbal
data and gaze data did not align and the first coder could not reach a decision
(two students, one item).
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Table A.12 Final coding strategy type. In bold: number of trials (N = 50) in which
students use a correct strategy for this item

Iltem Histogram  Case-value Count-and-compute  Unclear Total
strategy plot strategy strategy

IltemO01 24 15 10 1 50
Iltem02 23 18 7 2 50
Iltem03 2 45 2 1 50
Iltem04 38 12 50
Item05 23 27 50
IltemO06 19 21 10 50
Iltem07 5 43 2 50
Iltem08 36 14 50
Iltem09 30 19 1 50
Iltem10 6 42 1 1 50
ltem11 22 28 50
ltem12 33 17 50
Total 153 366 75 6 600

Note. For the single graph items, most students used a ‘typical’ strategy; for double
graph items, most students used a ‘distribution-informed’ strategy. We did not find a
consistent way for coding these variations in scanpaths qualitatively, so we only
distinguished whether they used a strategy interpreting the graph as a histogram or as
a case-value plot.

Table A.13 Strategy correctness of students — number and percentage of trials (N = 50)

Item Iltem type  Graph type Correct Incorrect Unclear Total
Item01 Single Histogram 24 (48%) 25 1 50
Item02 Single Histogram 23 (46%) 25 2 50
Item03 Double Case-value plots 47 (94%) 2 1 50
Item04 Single Case-value plots 50 (100%) 50
Item05 Double Histograms 23 (46%) 27 50
Item06 Single Histogram 19 (38%) 31 50
Item07 Double Case-value plots 45 (90%) 5 50
Item08 Single Case-value plot 50 (100%) 50
Item09 Double Histograms 30 (60%) 19 1 50
Item10 Double Case-value plot 43 (86%) 6 1 50
Item11l Double Histograms 22 (44%) 28 50
Item12 Single Case-value plot 50 (100%) 50
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A.5.4 Static gaze-plots examples for specific coding categories

In the gaze-plots below, some examples of typical, distribution-informed and
count-and-compute strategies for double graph items can be found (Figures
A.5,A6,A.7, A8).

Figure A.5 Correct typical strategy for comparing the means of two case-value plots
(horizontal line segment superimposed for convenience of the reader)

Below, a distribution-informed histogram strategy: similar shape and double
heights thus same mean (Figure A.6).

Figure A.6 A correct distribution-informed strategy for comparing the means of two
histograms: using similar shape and double heights

Note. This distribution-informed histogram strategy is only correct if students conclude
from the double heights that means are the same.
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Figure A.7 A correct distribution-informed strategy for comparing the means of two
case-value plots: comparing the heights of the (outer) bars in and between the graphs

Figure A.8 A correct count-and-compute strategy applied to case-value plots

Note. Characteristic for this scanpath is the zigzag form on each graph area.

A.5.5 Examples of transcripts

Below are some transcripts with a short explanation. During the cued recall,
several students noted that they thought that weight was on the vertical axis
in the histograms. Some students talked about a horizontal line, making all
bars equal or the same area above and underneath an imagined line—all case-
value plot strategies. Some gestured a horizontal line, for example for Item01:

StudentL15:

Researcherl:

StudentL15:

Researcherl:

StudentL15:

Researcherl:

StudentL15:

Researcherl:

120

Then | think | flipped the axes in my head [...]

Okay, well you came to the answer ‘four’, how did you come to
that answer ‘four’?

That was about in the middle.

In the middle of what?

In the middle of the graph.

Can you point to where you are pointing if you mean that?
These bars.

Yes, okay so you are now pointing to a horizontal line at the
height of four.



Students’ strategies when interpreting histograms and case-value plots: an ET study

From the gaze data, this horizontal line was frequently visible in the eye
movements on the graph area of the single graphs for both histograms and
case-value plots (see Figure 3.2 in this chapter for an example from the pilot
study).

For single histogram Item02 a student stated:

StudentL10: Yes, just read the question first and then | did the same as before.
So try to make everything the same length.

Many students who answered incorrectly thought that the outer two bars in
the Renesse graph (a case-value plot) lowered the mean, see for example the
transcript of studentL03:

StudentL03: Well, you saw that they were both the same height in the middle.
Only that Scheveningen had no lowers at the beginning and at the
end, so then it is logical that it is a bit higher because two lowers
are taken off. From the average.

A.6 Instruction to the participants

The following instruction was part of the letter accompanying the informed
consent:

What do we study?
Graphs are everywhere—in newspapers, on television, in school textbooks,
and in surveys or, for example, to present school exam results in a clear
manner. We would like to know how we can support students to better
understand these graphs. In addition, we can then explain to teachers how
they can help students and the makers of textbooks (i.e., publishers) to
understand graphs even better. In addition, we can explain to journalists,
textbook authors, and researchers how they can make even better graphs.
Therefore, it is important that we discover how people read graphs.
We do this by following the eye movements of students and experts
(teachers). The device with which we do this is called an eye-tracker. This
device is placed on the laptop and has a camera and infrared lights. The light
from these lamps is invisible and harmless. The device measures exactly what
you are looking at without you noticing it. Your face is not filmed. We do
make audio recordings of what you say. We also ask the school what the
scores are from the CITO examination that the school takes in ninth Grade.
We do this to rule out that the results of our investigation are due to
something other than what we are investigating.
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What are you going to do in the study?

First, we will ask you a questionnaire with some general questions and a
questionnaire that measures what you already know about certain subjects.
Then, we must calibrate the eye-tracker. This calibration means that you will
be asked to look at certain points on the screen. Sometimes it doesn't work
immediately; then we just repeat it. It is also possible that it does not work at
all.

Calibration is often more difficult if you are wearing mascara or if you
have glasses you cannot remove. Therefore, please come without mascara. If
you are wearing glasses, you can usually do this, but occasionally it will not
work. Contact lenses are usually no problem.

After the calibration, you will be asked 25 questions on the computer,
each of which contains graphics. You determine the speed at which you
answer the questions. You must answer all questions out loud. Afterward, we
will ask you about the tasks you have had.

At the start of the session, the participant handed over the informed consent.
The researcher stressed that participation was voluntary and that the
participant could stop at any time without any consequences (as was also
written in the informed consent). Then, the participant would fill in both
questionnaires. Next, the participant was taken to the chair behind the eye-
tracker. The procedure of calibration, validation (looking at certain points on
the screen), answering questions, and looking at fixation crosses between
items was explained. The participant was asked to say the answer out loud for
single graph items. For double graph items, the participant was asked to click
the correct answer and was given the option to say the answer as well. After
the 25 trials, the video data of the participant were shown to the participant.
The participant was asked how s/he solved the item of which the gaze data
were shown. Only clarifying questions were asked. The participant was—if
necessary—prompted to look at her/his own gazes when explaining how the
item was solved. Due to technical problems, looking at one’s own gazes was
not available for a few items (double histograms) for the first participant, who
then clarified the strategy with only the item on the screen.

A.7 Lessons learned on doing eye-tracking research with our items

Although eye-tracking is not new, using gaze data is still rare in mathematics
education research (Lilienthal & Schindler, 2019; Strohmaier et al., 2020).
Therefore, we provide a list of lessons we learned when doing this study for
those who are novices in eye-tracking research. This list is unordered and not
complete. We also provide two lessons for those wanting to execute a similar
study. Note that Holmqvist et al. (2011) also provide a list with advice.
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Lessons learned about eye-tracking:

Consider whether eye-tracking is really necessary. It is time-consuming
to learn how to use the eye-tracker, to design items suitable for such
research, and it is not always successful.

Find a group of people with experience using eye-trackers. The first
author is very grateful that the eye-tracking seminar of the Faculty of
Social Sciences provided the opportunity for researchers from there
and other faculties to join and learn from senior researchers in this
field.

Use a chin rest if you use a remote eye-tracker whenever possible. It
does not make much difference for the participant, but it makes the
accuracy of the trials much better.

Check if there is both a calibration procedure (to make sure that the
eye-tracker knows where a participant is looking) and a validation
procedure (to verify how successful this calibration was). Make sure
that the calibration and validation backgrounds are the same as the
stimulus (items). Some advice that came too late for us was to take a
screenshot of the calibration screen results if the software does not
provide it.

Do a pilot with only a few participants. During our pilot, we discovered
that: (1) we made an impractical design for the eye-tracker software
we used, which made it impossible to know where a new trial started.
This happened because we wanted to use graphs in combination with
multiple-choice answers (or open answers). See the data repository for
our final setup; (2) therefore, we could also not use AOls from the
software during the pilot study; (3) using multiple-choice answers for
estimating the mean items guided students too much toward the
correct answer; (4) students were much faster in answering the items
than expected. This opened the possibility of a larger set of items.
Multiple-choice items combined with graphics are not possible in the
Tobii software if you also want the answers automatically scored. It
would be possible to use a separate screen for clicking the answer
options. We did not use this option because of the risk of influencing
students’ gazes on the items.

During the eye-tracking experiment, note down relevant information,
such as the geometry of the set-up (take a picture, measure distances
such as between participant and screen), whether a participant has
mascara, contact lenses, glasses, epicanthic eye folds, drooping eyelids

123



Chapter 3

124

(right/left/both). Keep distances the same for each participant as much
as possible. For example, we used a desk chair that we could raise
depending on the participants’ heights so that the chin rest was always
in the same position relative to the screen.

Cover windows if curtains let through too much light (some people
have used dark plastic waste bags) and other sources of light that
might create shadows in the room. Avoid light sources directly
on/above the screen and eye-tracker. Place the eye-tracker (and
screen or tablet) in between fluorescent tubes. More advice on factors
influencing gaze data quality can be found in the work of Holmqyvist et
al. (2012).

Anonymize/pseudonymize participants from the start (e.g., we used
LO1 for the first participant on the questionnaires, as the name for the
trial and so on). Otherwise, you have to change that afterward (before
or after exporting) your data export from Tobii to guarantee
anonymity.

Test the items on paper before you use them in the eye-tracking
software.

Have someone check for typos in your items as well as small
deviations. For example, it was hard to get the axis lengths of case-
value plots and histograms the same. Furthermore, in the graph of
Item03 a small mistake was made. As this was discovered only after
several trials and did not influence the correct answer, we did not
correct this.

Make sure that the items only differ where relevant and keep the rest
as constant as possible (colors, background, letter size, position, and so
on). See the work of Orquin and Holmqvist (2017) for more advice.
Have some small talk with the participant before you start. Have the
participant do something (e.g., fill in a questionnaire) before you put
them behind the eye-tracker. This gives them time to become at ease
with you, the setting, and so on.

Make a plan for what you say when, what to do in certain situations,
and where the equipment is placed. Use tape to mark places for
equipment if you must remove it between participants.

Try to avoid gazes hovering over a relevant area (e.g., the graph area)
when going from the question to answer options. In our double graph
items, we avoided this by giving the answer options directly
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underneath the question and above the graphs. In the single graph
items, we used open answers.

Think carefully about what measures are relevant to your stimulus and
research question. See the section on which metrics to use for gaze
data. Apart from the metrics mentioned there and in the Data analysis
section, also consider machine learning (with raw gazes, fixations on
AOIs, vectors for each saccade, and so on) or latent profile analysis
(see Hickendorff et al., 2018 for an introduction). Latent profile
analysis could, for example, be used to cluster AOIl-based gaze data
into groups.

Take a screenshot of the settings of your eye-tracker.

Before you calculate any metric, make sure that you have seen enough
gaze data (trials) to get a sense of what is going on. Take the time to
make yourself acquainted with these data. The advice the first author
received from colleagues was to watch the gazes, and when you are
done, watch even more.

Besides analyzing the video of the gazes (sometimes also called
dynamic gaze-plots) or AQIs, you can also think of analyzing static
gaze-plots or heatmaps. Make sure to save them all for a data paper or
later analysis if necessary.

If you make html files for your stimuli, use fixed places (instead of
dynamic) on the webpages as much as possible so that the webpages
can easily be re-used on another device using the same size and
position on the screen.

For machine learning purposes and power (for hypothesis testing), it
may be necessary to collect data from many students and on many
items; the Tobii Studio software may become very slow with large
amounts of data. This was a bit annoying during the recall, but most
time was lost during data export (one export file with all data was not
possible due to its size) and visualization creation (heatmaps, gaze-
plots). This is a combination of the software and the processor of the
laptop used.

Lessons learned about the items:

The single graph case-value plot items are, in a way, self-correcting, as
it is impossible to use a histogram strategy on these. This was not the
case for the double case-value plot items.

In a next experiment, we would consider positioning the double graph
items on a diagonal on the screen. This will make it easier to
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distinguish the typical (horizontal or vertical) gazes within the graph
area from gazes that go between two graphs. As this positioning has
some other disadvantages (e.g., you need a bigger screen for the same
size of the stimulus and the comparison of the graphs by the students
might be hindered by this positioning), another possibility might be to
place the graphs underneath each other in some items and next to
each other in others (although that might require a bigger screen).



Automated gaze-based identification of students’ strategies
in histogram tasks through an interpretable mathematical
model and a machine learning algorithm

“If you haven’t got it, you can’t show it. If you have got it, you can’t hide it.” 38
Zora Neale Hurston

This chapter is based on

Boels, L., Garcia Moreno-Esteva, E., Bakker, A., & Drijvers, P. (accepted).
Automated gaze-based identification of students’ strategies in histogram tasks
through an interpretable mathematical model and a machine learning
algorithm. International Journal of Artificial Intelligence in Education.

38 Hurston, Z. N. (1942). Dust tracks on a road, p. 143.
https://en.wikiquote.org/wiki/Zora_Neale_Hurston
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Abstract As a first step toward automatic feedback based on students’
strategies for solving histograms tasks we investigated how strategy
recognition can be automated based on students’ gazes. In a previous study,
we showed how students’ task-specific strategies can be inferred from their
gazes. The research question addressed in the present chapter is how data
science tools (interpretable mathematical models and machine learning
analyses) can be used to automatically identify students’ task-specific
strategies from students’ gazes on single histograms. We report on a study of
cognitive behavior that uses data science methods to analyze its data. The
study consisted of three phases: (1) using a supervised machine learning
algorithm (MLA) that provided a baseline for the next step, (2) designing an
interpretable mathematical model (IMM), and (3) comparing the results. For
the first phase, we used random forest as a classification method implemented
in a software package (Wolfram Research Mathematica ‘Classify Function’)
that automates many aspects of the data handling, including creating features
and initially choosing the MLA for this classification. The results of the random
forests (1) provided a baseline to which we compared the results of our IMM
(2). The previous study revealed that students’ horizontal or vertical gaze
pattern on the graph area were indicative of most students’ strategies on
single histograms and the IMM captures these in a model. The MLA (1)
performed well but is a black box. The IMM (2) is transparent, performed well,
and is theoretically meaningful. The comparison (3) showed that the MLA and
IMM identified the same task-solving strategies. The results allow for the
future design of teacher dashboards that report which students use what
strategy, or for immediate, personalized feedback during online learning,
homework, or massive open online courses (MOOCs) through measuring eye
movements, for example, with a webcam.

Keywords Eye-tracking; Computer in education; Histograms; Mathematica
Classify Function; Problem-solving strategy; Graphs.
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4.1 The challenge of gaze-based strategy identification in
statistics education

Imagine students learning statistics on a laptop. They interpret histograms to
solve a task. Assume that the webcam camera is good enough to track their
eye movements when thinking about the task. It is imaginable that the eye
movements of all students can be automatically recorded online® in the near
future to document students’ strategies. With available techniques, it is in
principle possible to give automated feedback on students’ task-specific
solution strategies. In this imaginary situation, feedback on students’ strategies
can even be given before students answer. We see this chapter as a first step
toward using gaze data as a learning analytics source in, for example, an
intelligent tutoring system (ITS) in statistics education.

Although techniques are available, there are still several challenges
regarding the use of gaze data as a learning analytics source in statistics
education, before an ITS can be considered. The first is the availability of gaze
data, as the use of eye-tracking in statistics education is rare (e.g., Strohmaier
et al., 2020). Recent reviews of eye-tracking studies in mathematics education
found only four studies in statistics education (one out of 33 included studies,
Lilienthal & Schindler, 2019; three out of 161, Strohmaier et al., 2020).

The second challenge is that current usage of gaze data often
addresses general pedagogical themes (e.g., metacognitive skills; Lai et al.,
2013) instead of task-specific strategies teachers in statistics education are
interested in (sometimes called didactics or domain-specific pedagogy). Most
studies investigating students’ strategies look at general strategies including
planning and evaluation (e.g., Eivazi & Bednarik, 2010) or global scanning
followed by local viewing (Van der Gijp et al., 2017). Other studies look at
cognitive models such as visual working memory (e.g., Epelboim & Suppes,
2001). The number of studies that uncover task-specific strategies in
mathematics in primary and secondary education (e.g., Lilienthal & Schindler,
2019; Strohmaier et al., 2020) and science (e.g., Garcia Moreno-Esteva et al.,
2020; Klein et al., 2021; Kragten et al., 2015) is still relatively small but growing.
For example, patterns in students’ gazes indicating strategies have already
been found in mathematical domains such as numbers (Schindler et al., 2021),
arithmetic (Green et al., 2007), fractions (Obersteiner & Tumpek, 2016),
proportional reasoning (Shayan et al., 2017), area and perimeter (Shvarts,
2017), Cartesian coordinates (Chumachemko et al., 2014), geometry (Schindler

39 For most people, online means on a website. In eye-tracking research, however, online often
refers to: real-time, hence, during the task solving process of the student. Here we refer to both
meanings of online.
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& Lilienthal, 2019), trigonometry (Alberto et al., 2019) and functions (e.g.,
parabola; Shvarts & Abrahamson, 2019). For mathematics and statistics
teachers, such strategies are important as they can reveal students’ knowledge
of and deficiencies in this specific topic (cf. Gal, 1995).

Third, a challenge is that automation of strategy identification by using
interpretable models or machine learning techniques in combination with gaze
data, is even rarer in statistics education: Only one of the four studies in the
previously mentioned review studies used a machine learning approach
(Garcia Moreno-Esteva et al., 2016). None of these studies used an
interpretable mathematical model. Our present study aims to address this
third challenge by investigating how these two data science tools—an
interpretable mathematical model and machine learning algorithms—can be
used to automatically identify students’ strategies on histograms based on
gaze data.

Fourth, although the use of gaze data in ITSs is not new, the majority of
studies on ITSs that use gaze data seem to focus on general skills such as
engagement (e.g., D’Mello et al., 2012). This is in line with a review of research
articles on artificial intelligence in education (AIED) in which an independent
cluster of recent eye-tracking articles emerged that “include ‘collaborative
learning’, ‘engagement’, ‘video-based learning’ and ‘recommender system’”
(Feng & Law, 2021, p. 293).

Fifth, many ITSs in mathematics and statistics education seem to focus
on procedural knowledge—problems that can be solved by following a
stepwise solving procedure such as solving a linear equation—although ITSs
that focus on students’ task-specific strategies do exist, also in statistics
education (e.g., Tacoma et al., 2019). To the best of our knowledge, none of
these seem to use gaze data as a learning analytic source.

That said, ITSs that use gaze data for identifying visual-based task-
specific strategies, as far as we are aware, do not exist yet in statistics
education. Before such a gaze-based ITS can be considered and developed, we
not only need to be able to link students’ mathematical task-solving strategies
to specific gaze patterns but also to automate the identification (or
classification, as data scientists would say) of such strategies. In our previous,
qualitative study, we inferred students’ strategies from their gaze data. In the
current study, we concentrate on automatization through the research
question: How can gaze data be used to automatically identify students’ task-
specific strategies on single histograms?

The potential of automated identification of such strategies is to make
large-scale, personalized feedback possible for online learning both in the
initial stages of learning and during expertise development (Ashraf et al., 2018;
Brunyé et al., 2019; Jarodzka, et al., 2017; Hwang & Tu, 2021). This can make
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feedback in online courses or during homework more efficient and more
accurate.

The aim of our chapter is to show how the identification of students’
task-specific strategies on histograms can be automated. We expect that this
work can nurture the dialogue between experts in the field of data science
algorithms—more specifically experts regarding interpretable mathematical
models (IMM) and machine learning algorithms (MLAs)—and educational
researchers. IMM and MLA experts may be more interested in how the IMM or
MLA was or could be tailored to the specific application. Educational
researchers may be more interested in using an MLA as it is, as a black box,
and wonder what it provides them and how well it works. The advantage of an
IMM for educational researchers, is that it is transparent in how exactly it
came to its decisions for individuals. We think this chapter can fuel the
dialogue between IMM and MLA experts and educational researchers to keep
the boundaries between disciplines permeable. At such boundaries, exciting
new research can emerge.

In this chapter, we developed an interpretable mathematical model
(IMM) and compared its results with a machine learning algorithm (MLA). We
used these two methods from data science along with theories and insights
from psychology research and neurosciences (e.g., on eye-tracking, what gaze
data can and cannot tell us and the sensorimotor system), theories and
insights from mathematics and statistics education research (e.g., on averages
and histograms) and bring this to the world of human-computer interaction (in
which, for example, the usability of an IMM or MLA is important). This means
that we sometimes need to bridge worlds in terms of terminology,
expectations, and explanations.

Our study is in line with the call for research focusing on methods for
using measures of micro-level learning processes—including gaze data (Harteis
et al., 2018). For the specific topic of histograms, our study also provides the
level of detail that Peebles and Cheng (2001) referred to: “From [...] eye-
movement studies it is argued that there is a missing level of detail in current
task analytic models of graph-based reasoning.” (p. 1069). Yuan et al. (2019)
showed that there is a need for searching for “visual cues that mediate the
patterns that we can see in data, across visualization types and tasks” (p. 1).
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4.2 Theoretical background of tasks and identification
methods

4.2.1 Estimating the arithmetic mean from histograms

Developing students’ statistical literacy, reasoning, and thinking is an
important goal of education (Ben-Zvi et al., 2017). Statistical literacy is
especially important in the world of “big data” and alternative truths (Burrill,
2020). Most adults will be data consumers, making decisions based on data
collected by others (Gal, 2002). Statistical data in tables are not always clear.
Messages can be clearer if these data are presented in more aggregated forms
in graphical representations—including dotplots, boxplots, and histograms—
that stress some aspects of the data (e.g., variability) and leave out other
information (e.g., the exact measurements). Students, however, find it difficult
to correctly interpret histograms.

A review of students misinterpreting histograms revealed that many of
their difficulties stem from not understanding the statistical key concept of
data (see Chapter 2). The key concept of data includes an understanding of
what, how many, and how variables and their values are depicted in a
histogram. Despite many carefully designed interventions to tackle
misinterpretations (e.g., Kaplan et al., 2014), students’ difficulties with
histograms remain (e.g., Cooper, 2018). We, therefore, decided to use eye-
tracking to study in depth how students interpret histograms (see Chapter 3;
Boels et al., 2018, 20194, 2023).

Strengths and caveats in students’ knowledge can be revealed by
asking them to estimate averages from data in different representations (e.g.,
histogram, dotplot, case-value plot; cf. Gal, 1995). Estimating the mean can be
seen as a prerequisite for assessing variability, as the variation in data is
compared to a measure of center (e.g., standard deviation from the mean).
Furthermore, our students are familiar with the mean, but not so much with
variability. Therefore, in a previous eye-tracking study, students were asked to
estimate the mean from various—but univariate—statistical graphs in 25 items
(e.g., see Chapter 3). In the present chapter, we re-use gaze data from a subset
of this previous study containing all five single histogram items.

Historical examples show that the mean has emerged from estimating
representative values for a dataset through compensation and balance (Bakker
& Gravemeijer, 2006). Students exhibit minimal difficulty in estimating the
mean from case-value plots (Cai et al., 1999), unless zero is one of the
measured values (see Chapter 3). Most students know how to calculate the
arithmetic mean from raw data (e.g., Konold & Pollatsek, 2004). In a study with
various items—including finding the “average” allowance from a histogram—
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five approaches were found for solving the items: average as (1) mode, (2)
algorithm, (3) reasonable, (4) midpoint, and (5) balancing point (Mokros &
Russell, 1995). Students often (implicitly) use the mean of frequencies in a
histogram (cf. Cooper, 2018). The latter is incorrect when applied to
histograms but correct for finding the mean from a case-value plot, and can be
seen as finding the horizontal line that makes all bars of equal height by using
compensation.

The weighted estimation of the mean in a histogram is the balance or
gravity point of the graph (e.g., Mokros & Russell, 1995). This mean can be
found by taking the range or spread of the data in the histogram into account
together with the height of the bars. For this approach, it is not necessary to
read off frequencies on the vertical axis. We call this approach a histogram
(interpretation) strategy or correct strategy. An estimation of the mean in a
histogram with equal bin widths can also be computed by multiplying the
frequency or percentage (height of the bar) with the middle value of that bar,
adding the results over all bars, and dividing this by the sum of the frequencies.
No students in the previous study used this approach. Instead, all that used a
computational approach added all frequencies and divided this sum by the
number of bars. This would be a correct strategy if the height of each bar was
representing weight and the number of bars was the number of measured
weights (as in a case-value plot). Therefore, this count-and-compute strategy is
incorrect for histograms.

In our previous study, we found several strategies for estimating the
mean from a histogram based on students’ visual search strategies (cf.
Goldberg & Helfman, 2011) inferred from their gaze patterns (see the
Empirical background of the re-used data section). A visual search strategy can
be part of a task-specific strategy. People use these strategies to get “from an
initial problem state to a desired goal state, without knowing exactly what
actions are required to get there (Newell & Simon, 1972)” (Van Gog et al.,
2005, p. 237). As the debate between Lawson (1990) and Sweller (1990)
illustrates, there are different opinions on what strategies are. In our study on
graph interpretation, students’ strategies typically consist of (1) visually
searching for the relevant information, (2) making inferences based on this
information, and in some cases (3) verifying the inference; see also the section
Theoretical interpretation of students’ gaze patterns. Given our focus on what
eye-tracking and data science tools (IMM, MLA) can provide to educational
researchers, we now first discuss the theoretical background of using eye-
tracking. Next, we discuss the background of our methodological choices
including eye-tracking, IMM and MLA, and provide a short introduction to
supervised MLAs. How we tailored these methods for our purpose, is discussed
in the research approach section.
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4.2.2 Use of gaze data

There are multiple reasons for using gaze data to identify students’ strategies.
First, eye-movement patterns (e.g., order of fixations*® or saccades) are online,
real-time measures that may allow for more adequate feedback than feedback
on answers only. Moreover, feedback on strategies can be provided earlier
during the task-solving process (e.g., Gerard et al., 2015; Mitev et al., 2018),
although strategy feedback can also be on answers (e.g., Tacoma et al., 2019).
Second, low-accuracy eye-tracking—for example, through webcams—is
expected to be a standard option for computers in several years’ time (e.g.,
Kok & Knoop-Van Campen, 2022), which would make it possible to give
feedback to large groups of students. Third, gaze data are direct motor data
that are almost impossible to manipulate. This makes measuring eye
movements more reliable than, for example, thinking-aloud protocols (e.g.,
Van Gog et al., 2005). In addition, younger students, novices, and sometimes
even experts find it difficult to articulate their thinking process, are sometimes
not aware of their thinking (e.g., Green et al., 2007) or might respond to what
they think the interviewer expects or what is easily accessible (e.g., Wilson,
1994).

The implicit assumption here is that eye movements reflect cognitive
processes. Spivey and Dale (2011) state: “Our most frequent motor
movements—eye movements—are sure to play an important role in our
cognitive processes. [...they] provide the experimenter with a special window
into these cognitive processes.” (p. 551). It is indeed generally assumed that
gaze data can provide evidence of conceptual actions, however with some
caveats (e.g., Radford, 2010). First, the relationship between eye movements
and cognitive processes is not straightforward (e.g., Kok & Jarodzka, 2017;
Russo, 2010). In addition, not every eye movement is part of a student’s
strategy (e.g., Anderson et al., 2004; Schindler & Lilienthal, 2019).
Furthermore, one could argue that students’ fixations on the screen do not
indicate where they looked, as people also observe through their peripheral
vision (Lai et al., 2013). Nevertheless, in our items, focused vision is needed for
locating detailed information (e.g., locating a bar, reading a specific number on
the horizontal axis). As the fovea has the greatest acuity (sharpness; Wade &
Tatler, 2011), locating a number on an axis is only possible with foveal vision,
and peripheral vision most likely guides our attention to it and to the bars (cf.

40 “A fixation is a period of time during which a specific part of [we use graph on the computer
screen here] is looked at and thereby projected to a relatively constant location on the retina.
This is operationalized as a relatively still gaze position in the eye-tracker signal implemented
using the [Tobii] algorithm.” (Hessels et al., 2018, p. 22). A period of time during which a
relatively fast switch of gaze between two fixations occurs is called a saccade.
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Kok & Jarodzka, 2017). Therefore, we can infer that the fixation on the screen
is what the student is looking at.

Choosing what eye-movement measures to use is a methodological
decision. According to a review study (Lai et al., 2013), the measures used
most often were temporal (e.g., total fixation duration, time to first fixation,
total reading time), followed by count (e.g., fixation count). The least used
measures were spatial (e.g., scanpath, fixation position, order of AOls).
Goldberg and Helfman (2010) stated that “with appropriate task design and
targeted analysis metrics, eye-tracking techniques can illuminate visual
scanning patterns hidden by more traditional time and accuracy results” (p.
71). Scanpaths can reveal learning in more detail (Hyona, 2010). Tai et al.
(2006), therefore, advise using spatial measures such as scanpaths in problem-
solving research.

Studies using students’ scanpaths for identifying strategies are rare,
and often use the sequence of AOls (e.g., Garcia Moreno-Esteva et al., 2018) or
scanpaths that are aggregated over time and fixations (e.g., in heatmaps,
Schindler et al., 2021). Up to now, scanpaths mostly require qualitative
inspection or analysis of the eye-movement data (e.g., Alemdag & Cagiltay,
2018; Susac et al., 2014)—especially when looking for task-specific strategies.
Figure 4.1 provides an example of such a scanpath (a sequence of fixations and
saccades). Qualitative analysis is both time-consuming and harder to objectify.
In this chapter, we, therefore, use the raw scanpath data to identify students’
strategies.

In studies using angles and direction of saccades in educational settings
(e.g., Dewhurst et al., 2018), scanpaths are often compared on multiple or all
AOIs*, In our previous, qualitative study, we took a new approach in using the
perceptual form (e.g., vertical gaze pattern) of the gazes on one AOI only
(graph area)—the one that was found was particularly relevant for students’
task-specific strategies (see also the following section, ‘inferring an attentional
anchor from gaze data’). This perceptual form consists of angles and direction
of saccades that are roughly aligned. So far, we have not found any other study
in education that uses alignment of saccades. For more details, see the
Research approach section (students’ strategies). A possible advantage of
looking at saccades over fixations or order of AOls is that it may be less
sensitive to spatial offsets (e.g., Jarodzka et al., 2010).

41 In addition, this study is about the influence of task difficulty on scanpaths. It does not
consider the kind of task-specific strategies we are aiming for.
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4.2.3 Inferring an attentional anchor from gaze data

For our theoretical interpretation of the perceptual form of students’ gaze
patterns on the graph area (horizontal or vertical line segments), we draw
upon insights from theories on enactivism and embodied cognition. According
to these theories, cognition arises from interaction with the environment (e.g.,
Rowlands, 2010). The focus of an actor’s interaction with this environment is
called an attentional anchor (AA) (AA; Hutto & Sanchez-Garcia, 2015). An AA is
“a real or imagined object, area, or other [...] behavior of the perceptual
manifold that emerges to facilitate motor-action coordination” (Abrahamson &
Sanchez-Garcia, 2016, p. 203). Other behavior of the perceptual manifold, for
example, includes students gesturing a horizontal line when explaining how
they made all bars equally high in a case-value plot strategy. The AAs found in
our previous research (see Chapter 3) facilitated students’ imagined actions
(strategies for finding the mean)—regardless of the strategies’ correctness.

Examples of AAs in motor action can be found in research on high
school trigonometry where students coordinate the movement of the left hand
to describe a circle and their right hand to describe a sine graph (Alberto et al.,
2019). Another example is the manipulation of two bars that are proportional
to each other, see Figure 4.1 (e.g., Shayan et al., 2017). Students needed to
keep the bars green, which occurred when the bars had a fixed ratio of, for
example, 1 : 2 (unknown to the students). They dragged both bars up to find
various points where both are green. Students had different strategies for
finding these points. In one strategy, gaze fixation is on the right-hand bar in
the middle, which is mathematically relevant, as this bar is twice as high as the
left-hand bar (Figure 4.1). As this imagined triangle emerges to facilitate the
coordination of the motor action, it is an example of an AA.

Figure 4.1 Stable triangular scanpath that was interpreted as an AA

Note. Circles are fixations (places where students looked), arrows indicate the
direction of saccades (fast transitions between two fixations), redrawn after Shayan et
al. (2017, p. 175).

136



Automated gaze-based identification of students’ strategies in histogram tasks

4.2.4 Theoretical interpretation of students’ gaze patterns

Although enactivism often assumes manipulation of an environment, there are
indications that people’s sensorimotor systems are also activated in situations
without physical manipulation (e.g., Fabbri et al., 2016; Lakoff & Nufiez, 2000;
Molenberghs et al., 2012). In the retrospective stimulated recall interviews,
students talked about the graphs as if manipulation were possible. For
example, studentL10 refers to chopping and flattening all bars (hence, using
compensation, Bakker & Gravemeijer, 2006), see the excerpts below. This
student describes sensorimotor actions, namely: breaking up the longest bar
into pieces that are then divided over the shorter bars, resulting in a horizontal
line along the top of the now equally high bars. This would be a correct
strategy for finding the arithmetical mean in a different type of graph (namely,
a case-value plot, e.g., Cai et al., 1999; Yuan et al., 2019). An imaginary
horizontal line segment is used for coordinating this imagined action. Gaze
data show this imaginary segment in the form of a stable scanpath indicating
the focus of interaction of this student, see Figure 4.2. We, therefore, interpret
this segment as an AA. Gazes on Item06 indicate that this AA was also visible
before item?20.

StudentL10: I looked at the graph itself [Item06] first and then | kind of looked
at the axes, how is it constructed and then | looked at the question,
and then | looked again at the frequency, how to group it. That was
it in my opinion.

Researcherl:  And were you doing that here the same way you did with those
other [previous] questions? Chop it into pieces?

StudentL10: Yes.

Researcherl:  You said five here [Item20].

StudentL10: Yes, because | thought the weight would be on the left side. So, if
you flattened it all out, between 4 and 6 would be the imaginary
[horizontal] line.
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Figure 4.2 Part of the stable scanpath of studentL10 on Item06 (left) and Item20 (right)

Note. The stable scanpaths reveal the horizontal line segment along which the student
looks on ItemO06 (left; here superimposed on the figure for the reader) and ltem20
(right). Circles indicate fixations, thin lines indicate saccades. As the weight value is on
the horizontal axis, so is the actual mean. However, from the eye movements of this
student, we can conclude that the mean of the frequency is estimated, instead of the
mean weight. The interview data support this conclusion. This stable scanpath,
therefore, indicates an incorrect (case-value plot interpretation) strategy.

4.2.5 Considerations for strategy identification with machine learning
algorithms

For automated strategy identification, an analytic model of this strategy is
needed. A machine learning algorithm* (MLA) automates building an
analytical model. An MLA is a computer program that improves with
experience (Kersting, 2018; Mitchell et al., 1990; Molnar, 2019). An MLA is not
explicitly programmed to use any particular input features. ‘Features’ here
refers to variables constructed from input data.

An MLA can be supervised or unsupervised. Being supervised means
that the training cycle of the program is fed with, for example, the correctness
of the strategy; in unsupervised learning, only the gaze data would be given to
the program during the training cycle and the program might infer correctness
information by itself. As we previously identified two groups in our qualitative
study, we wanted to see if the MLA could identify those students correctly.
That calls for a supervised MLA. During the training cycle, see Figure 4.3, an
MLA is fed with the raw gaze data as well as a classification code for the
already identified strategy (O for incorrect, 1 for correct). After this learning or
training cycle, the trained MLA identifies the strategy of other students (or
trials) that were not part of the training set.

42 |n the media, machine learning (ML) and artificial intelligence (Al) are often regarded as
synonyms, but there is a difference. Interested readers are referred to Kersting (2018).
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Figure 4.3 Training and identification cycles of a supervised MLA

student gaze data (sequence of x-y-pairs)
Training cycle

MLA (black box)

strategy correctness (0 or 1)

other student or same student new trial gaze data (sequence of x-y-pairs)

Identification cycle

strategy correctness (0 or 1)

MLA (black box)

v

We used Mathematica’s implementation of random forest in the ‘Classify
Function’ (version 13.2.1; WRI, 2020) with default parameters. The Classify
Function automates and optimizes the data preparation process. For example,
it automatically handles the different lengths of input vectors of x-y-pairs (it
normalizes input features).

We underline that we used the MLA as a baseline to compare our
interpretable mathematical model (IMM) with. We see it as a tool. Educational
researchers may be more interested in how well such an MLA performed and
what it can provide for them. MLA experts may be more interested in the
details of the ML method. It is like users of an electric screwdriver being
interested in how well it works and designers of such screwdrivers being
interested in the details of how this screwdriver was assembled and could be
optimized and whether better ones exist. We would like to emphasize that our
article is not a report about research into machine learning methods. It is a
report of a study of cognitive behavior which uses machine learning tools to
analyze its data. Hence, the purpose of our research was not to conduct an in
depth investigation into which machine learning methods would work best for
our data but to see how well our IMM performed compared to an MLA.
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An important prerequisite for ML analysis is that the dataset is large
enough and contains enough information for the MLA to identify (classify)
students’ strategies. For this purpose, we decided to do a ‘sanity check’ and
see if the MLA would be able to identify students’ answer correctness. As 50%
of the students answered Item06 correctly (Table 4.1), an MLA with an
accuracy of about 50% would not be better than throwing a coin. Fifty percent
accuracy could also be reached by identifying all students having a correct
strategy. Therefore, for the prerequisite of enough information to be met, the
accuracy of this answer identification needs to be well above 50% when using
balanced data as in Item06. We decided to set it to 70% or above, as this is a
low-stake classification problem. Such a sanity check can be used as a first step
before proceeding to the manual determination of students’ strategies
through qualitative research, or when qualitative research is still in progress.
To judge the performance of an MLA, other metrics also need to be
considered; see the Methodological evaluation criteria section. Therefore, we
first trained the MLA on students’ answers (and then identified other students’
answers) before we retrained the MLA on students’ strategies (and then
identified other students’ strategies).

4.2.6 Considerations for analyzing eye movements with an MLA

The use of an MLA for analyzing gaze data is still unusual (e.g., Kang et al.,
2020) and even more so for educational use (e.g., Brunyé et al., 2019; Mitev et
al., 2018). For example, in a review of eye tracking in medical education, the
use of an MLA is described in only two out of 33 studies (Ashraf et al., 2018). In
many studies, areas of interest (AOIs) are used. AQOls are predefined areas of
the item that are judged by the researchers as being distinct from each other
and relevant to the strategy. Eye movements on these AQOIs or between them
are recorded. Typically, the information is often reduced to a single measure
for each AOl—for example, whether an AOI was visited or not. In our study, we
used raw gaze data on one large AOI to study the perceptual form of the
scanpath. Examples of AOI usage in ML studies are the order in which AOls are
visited, or the number of fixations on the areas of interest (e.g., Garcia
Moreno-Esteva et al., 2020; Najar et al., 2014). In other studies, temporal
measures are used, such as the total duration for fixations on an AOl or mean
duration per fixation (e.g., Voisin et al., 2013). Schindler et al. (2021) used
heatmaps of students’ gazes in an MLA, thus discarding the order of fixations
in the scanpath pattern. However, in most eye-tracking studies, no MLA is used
at all (e.g., Strohmaier et al., 2020; Van Gog & Jarodzka, 2013). In some studies,
an interpretable (vector) model was made from the raw data (e.g., Dewhurst
et al., 2012). The use of multimodal data—including eye-movement data—in
combination with an MLA is an emerging line in educational research (Jarvela
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et al., 2019). What is new in our study, to the best of our knowledge, is that we
feed the MLA (and IMM) with the raw gaze data to identify students’ task-
specific strategies.

An advantage of supervised MLAs for analyzing gaze data is that they
provide a rather generic approach. However, the disadvantage of many MLAs
is that they are effectively like black boxes that do not reveal how they identify
the results from the data, and, hence, what analytical model emerges (e.g.,
Guidotti et al., 2018; Kuhn & Johnson, 2013; Lakkaraju et al., 2019; Rudin,
2019). Therefore, it is unknown what gaze data patterns are used by the MLA
for data classification.

Several solutions are suggested in the literature to overcome this
disadvantage. More transparency can be created by (1) model or global
explanations, (2) outcome or local explanations, or (3) model inspection or
differential explanations (e.g., Guidotti et al., 2018; Lakkaraju et al., 2019).
Explainable means that humans can understand how the MLA reached its
decision (e.g., Doshi-Velez & Kim, 2017). An alternative is to create an (4)
interpretable model directly from the data, sometimes after first using MLAs to
understand what is relevant in the data (e.g., Rudin, 2019), or (5) use white-
box techniques such as models that are made a priori. The disadvantage is that
(5) is based on human assumptions, not on data; this risks relevant information
in the eye-movement data being overlooked (e.g., Villagra-Arnedo et al., 2017).

In our case, (1) model explanation could involve trying to extract the
general rules that the MLA uses to decide what strategy a student uses (for
examples from weather forecasting, see McGovern et al., 2019). Outcome
explanations (2) might involve trying to extract why student A is identified as
having strategy z (for clinical examples, see Krause et al., 2016; for an example
with birds, see Rudin, 2019). Model inspection (3) could be understood as
finding out how sensitive the model is to variations in the data.

As (2) is even more complex to achieve, we decided to make an
interpretable model instead (4). An interpretable model is a model that
captures the most important characteristics of the strategy, in a way that can
be understood by human beings and that is transparent (Rudin, 2019). An
interpretable model is often a mathematical and logical model (e.g., Hancox-Li,
2020; Lakkaraju et al., 2019; Molnar, 2019); in our case, it consisted of a set of
rules that approximately describes the stable scanpath of the gazes. We call
this our interpretable mathematical model (IMM).

To provide a baseline for this IMM, we compared it with a random
forests MLA. We used Mathematica’s implementation of random forest in the
‘Classify Function’ (version 13.2.1; WRI, 2020) with default parameters. The
Classify Function automates and optimizes the data preparation process. For
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example, it automatically handles the different lengths of input vectors of x-y-
pairs (it normalizes input features).

The Classify Function initially choose random forest as the best MLA for
each of all five items in a previous version of the software that we started our
analyses with. In the newest version (13.2.1) another MLA (logistic regression)
provided slightly better results for several of our items and random forest for
others. We report the results for random forests for several reasons, including
consistency, and that the MLA is only a baseline for our IMM. For all further
analysis we seeded these random forests to make sure that our results are
reproducible. An advantage of the Classify Function in the Mathematica
software is that users do not need to deal with the details of machine learning
methods. The Classify Function is used “as is” and automates many aspects of
the methodological stack. Specifically, to give an example, it automates the
selection of the machine learning method and the preparation of data
(consisting of only the—temporally ordered—x- and y-coordinates of fixations
on the AOI graph area) so the selected method can be applied to it. Note that
timestamps are not provided to the MLA, so the MLA does not ‘know’ that the
data is temporally ordered or that data from other AOIs are removed. The
downside of our approach is that we know little about how the Classify
Function is handling our data. For example, data preparation and feature
selection is all hidden in the software and we, therefore, consider it a black
box, even though the MLA it initially selected —random forest—is itself known
for its possibilities for feature extraction (e.g., through a feature importance
plot). Our data, which are continuous, are by themselves difficult to interpret
(x- and y-coordinates). Ultimately, the problem is that it is impossible to know
whether the classification is based on gazes that are typical for the task-
specific strategy at hand (cf. Kuhn & Johnson, 2013). In addition, the first step
of (3) was performed by using the random forest MLA trained on one item for
classifying strategies on other items and vice versa for all item pairs.

4.2.7 Considerations for the construction of an interpretable
mathematical model

An (IMM) is transparent in what and how characteristics of students’ gaze
patterns are used to identify students’ strategies. To detect task-specific
strategies and ensure that the IMM is usable—an evaluation criterion, see the
next section—we use the idea of an attentional anchor (AA) as described
earlier to search for a task-specific perceptual form of the gazes (stable
scanpath; see the section on Theoretical interpretation of students’ gaze
patterns). The advantage of using an AA for constructing an IMM is that it is
both task-specific (for each topic and task a different perceptual form is
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expected) and generalizable (it has been found already for topics and tasks in
various mathematical domains).

4.2.8 Methodological evaluation criteria

Validity, reliability, and causality are important methodological evaluation
criteria in educational research. Different terminology and definitions are used
in data science and human-computer interaction research for evaluating MLA
results. In this section, we compare these terminologies.

First, in educational research, validity “concerns whether we really
measure what we intend to measure” (Bakker & Van Eerde, 2015, p. 443). In
educational research, threats to the validity are internal and external, for
example, maturation of subjects between measurements, subject selection
effects on results, loss of subjects, changes in instrumentation, and so on
(Eisenhart & Howe, 1992). This mostly applies to how the data were collected
and what can be inferred from them. Regarding the data collection, as all data
were collected in one session, maturation does not apply. Also, we did not
exclude any subjects from the dataset, hence, there is no loss of subjects. We
did not change our instrumentation, and so on. What does apply is that we
selected subjects from pre-university track students in Grades 10—12 only,
from one school, and only those who volunteered (which is inevitable).
However, we observed the same phenomena (strategies) in different subjects
in previous studies with secondary school teachers (Boels et al., 2019b) and
with university students (Boels et al., 2018). Moreover, qualitative research
does not seek to generalize from sample to population but from variation in
the data to the phenomenon (Levitt, 2021). Regarding what can be inferred
from the data: we combined the gaze data with the results of cued recall. Cued
recall means that students were shown their gazes (the cue) and asked to
explain what strategy they used (cf. Van Gog et al., 2005). This ensures that the
data collection was valid. For the MLA and IMM, validity can be understood as
whether these actually measure the phenomenon (strategies). As we discuss in
the Research approach section, this is true for the IMM by its design, but we
cannot be sure about the MLA. However, the results of the IMM suggest that
the phenomenon can be measured from the gaze data.

Second, reliability in educational research is about “independence of
the researcher[s’ judgment]” (Bakker & Van Eerde, 2015, p. 443) or small
variation in outcomes. Reliability of a method entails that its results can be
reproduced with the same population with comparable items (e.g., Golafshani,
2003). Reliability, in this sense, can be understood as the MLA results having
about the same and sufficient accuracy as the results of the qualitatively
identified strategies and of those of an IMM. Another way to look at the
reliability of MLAs in this sense is by comparing results on different items (e.g.,
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train the MLA with data of one item and identify students’ strategies for
another). When there is sufficient overlap, all are considered to identify the
same phenomenon. This, in turn, makes the MLA results more reliable.
Reliability here refers to what data scientists sometimes call the performance
of the MLA. In human-computer interaction research, reliability (also) involves
the safety of the system, downtime, and consistency in the results (e.g., Bosnic¢
& Kononenko, 2009; Webb et al., 2020), which is not relevant to us as we are
not building an application.

Data scientists, however, define “reliability of classification as an
estimated probability that the (single) classification is in fact the correct one”
(Kukar & Kononenko, 2002, p. 219). To avoid confusion, we will, therefore, use
performance when evaluating our results. Performance is also checked
through cross-validation (e.g., Berrar, 2019) which involves applying the
trained MLA to unseen data. We used several cross-validation procedures.
First, we used a procedure often applied in statistical research—jackknife—
which is a form of resampling (e.g., Efron & Stein, 1981) which means that the
answers or strategies for all 50 students are identified in an iterative process
by the MLA based on learning from the other 49 students. Since there are 50
students who can be left out one at a time, there are 50 ways to do this and
the 50 results are averaged. Second, we performed a leave-one-out cross-
validation (LOOCV) which means that data from 49 students are used as
training data, and the strategy of the 50th student is classified. This is done 50
times until all students’ data are used as test data once. Furthermore, we used
a stratified 5-fold cross-validation which means that the data are split into
groups of ten students. Stratified means that in each group of ten students, the
number of students with a correct strategy is roughly the same. Then, the MLA
is trained with 40 students and classifies the strategies of the remaining 10.
This is repeated five times until data from all groups are used once as test data.

An MLA’s performance can be measured in different ways; through
accuracy, through a confusion matrix (e.g., comparing the results of the MLA
with the results of the qualitative coding), and through a ROC* plot (Fawcett,
2006; see the Results of applying an MLA and IMM section) that gives an idea
of the true positives and false negatives rates. Accuracy is expressed as a
percentage of correctly predicted or identified cases (e.g., Afonja, 2017). As
explained earlier, for our supervised MLA in this low-stake situation, we regard
an accuracy of 70% or higher as good. In addition, we consider 80% or above as

43 ROC stands for Receiver Operating Characteristic. Originally it was used to judge how well a
specific Receiver Operated meaning how well it was picking up enemy signals (radar). In our
case, the plot visualizes how well the signal (in our case: true positives) is detected compared to
false negatives.
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very good, and 90% or more as excellent. However, accuracy can be
misleading. For example, if only ten percent of the students used the correct
strategy, and the MLA identifies all strategies as incorrect, the accuracy would
be 90%, but this identification would not be valid. Therefore, accuracy should
be used with precaution. In a confusion matrix, counts for true and false
positives and negatives are reported separately (see the Results section and
Appendix A of this chapter). From this matrix, sensitivity and specificity can be
calculated using the following formulas (cf. Kuhn & Johnson, 2013), which give
a better idea of how the MLA is performing:

Sensitivity
_ #samples qualitatively coded correct and by MLA identified as correct (strategy)

#samples qualitatively coded having correct strategy

This formula is often shortened to (e.g., Fawcett, 2006):
o true positives true positives TP
Sensitivity = — - = — - =7
true positives + false negatives  total positives in true class P

In this second formula it is not immediately clear what is considered to be the
‘true’ class, whereas in the first it is clear that we took the results of the
qualitative study as the ‘true’ results and the MLA results as the hypothesized
class. For example, for Item01 and the IMM, TP = 14and P = 14 + 10,
(Table 4.6), therefore, sensitivity = g = 0.583 ... which is rounded to 0.58
(Table 4.5, Results of applying an MLA and IMM section).

Specificity
_ #samples qualitatively coded incorrect and MLA identified as incorrect (strategy)

#samples qualitatively coded having incorrect strategy

Similarly to the above formula for sensitivity, the formula for specificity is often
shortened, to:

true negatives true negatives TN

Specificity = = = —
pecificity true negatives + false positives  total negatives in true class N

Third, in educational research, measuring is only valid “if and only if (a) the
attribute exists and (b) variations in the attribute causally produce variations in
the outcomes of the measurement procedure” (Borsboom et al., 2004, p.
1061). Data science does not use the word validity. With the MLA, we intend to
measure students’ strategy correctness based on their gazes. Therefore,
variations in students’ gazes should produce variations in the classification by
the MLA. Furthermore, if an IMM can be understood by human beings—and
describes the observed phenomenon accurately—it adds to the validity of both
the model and the MLA (e.g., Doshi-Velez & Kim, 2017; Rudin, 2019) as well as

145



Chapter 4

to its usability (e.g., Guidotti et al., 2018). Usability is another criterion from
human-computer interaction literature. In the previous section, we described
how an IMM that meets these criteria can be constructed.

Fourth, causality implies that a change in the results of the MLA is due
to a change in the real system (Doshi-Velez & Kim, 2017). Although not every
eye movement is part of the task-solving strategy (e.g., Schindler & Lilienthal,
2019), eye movements and strategies do associate (e.g., Kok & Jarodzka,
2017). Therefore, instead of causality, we use association, meaning that if
students perform a specific pattern of gazes, they use a specific strategy. If
there is an association between a gaze pattern and a strategy, the accuracy of
identifying this strategy by the IMM and the MLA will be sufficient or better.

4.3 Research approach

In a previous study, we collected and qualitatively analyzed students’ gaze and
stimulated recall data and classified these into groups (Table 4.2) of students
using the same strategy (see Chapter 3). The present study consists of three
phases: (1) analysis of gaze data on one AOI (that contains the stable scanpath)
through a random forest MLA; (2) construction of a separate interpretable
mathematical model (IMM) based on the gaze data and using insights from
qualitative research; and (3) comparison of the results of the MLA with the
IMM and with the results of the previous qualitative study as the MLA is a
baseline to compare our IMM to. The most important information from the
previous study is presented in the following section. Next, the first two phases
of the present study are explained in more detail. A comparison of the results
is made in the Results section.

4.3.1 Empirical background of the re-used data

Participants

This study re-uses data from an eye-tracking study with 50 Grades 10-12
students of a Dutch public* city high school (see Chapter 3). All participants
are Dutch pre-university track students (15-19 years old; mean age 16.3; all
with normal or correct-to-normal vision; 23 males, 27 females).

4 In the Netherlands, private schools are rare and in general, there is no difference between
state schools in terms of students’ results.
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Eye-tracking apparatus

The gaze data that are used as input for the IMM and the MLA were collected
with a Tobii XII-60 eye-tracker with a sampling rate of 60 Hz that was placed on
an HP ProBook laptop between the laptop’s 13-inch screen and keyboard
(Figure 4.4). A chin rest was used to reduce data loss and improve the accuracy
of the gaze data. Furthermore, a 9-point calibration on the screen was used.
The Tobii Pro Studio 3.4.5 software recorded in real-time where people looked
at the screen by using harmless infrared light to detect their gaze. Data loss
was minimal (7.2% on average) and none of the students (averaged over all
trials*®) or items (averaged over all students) went over the exclusion point of
34%. The mean accuracy is 56.6 pixels (1.16°) with the highest accuracy on the
graph area (mean 13.4 pixels or 0.27°). The average precision (0.58°; RMS-S2S;
Holmqvist et al., 2023) is considered good. For other measures of gaze data
quality, see Chapter 3. We, therefore, did not exclude any student, although
for some specific trials, data loss could come close to or even over this
exclusion point (e.g., studentL39 and studentL32 had 27.5% and 46.0% data
loss respectively on their trial of tem01). Some data loss is normal, due to
blinking, wearing glasses or make-up, epicanthic eyes, or students looking
above or below the screen while thinking. Another reason for not excluding
students is that this would not be representative of a future gaze-based
feedback application where real-time data collection and processing would
occur.

Figure 4.4 Set-up of the experiment

Note. The red arrows in the right-hand picture point at the eye tracker (bottom left,
see the red oval) and chin rest apparatus (top middle). The person in the picture is not
a participant.

45 In mathematics education, we usually talk about an item, task or problem. In eye-tracking
research, a series of gazes of one student solving one such item is called a trial.
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Tasks

The data on five histograms items are used and analyzed in the present
chapter, see Figure 4.5. The question for all five items was: “What is
approximately the mean weight of the packages [name of postal worker]
delivers?”

The students verbally estimated the mean (Table 4.1); their answer was
coded as correct or incorrect. Answer correctness can differ from strategy
correctness, due to, for example, underestimation of the mean, even if a
correct strategy was used to locate the mean.

Students’ strategies

Qualitative data were collected through expert judgment on students’
strategies on the items (Table 4.2), which in turn was based on (1) videos of
students’ gaze data on the items; (2) interview data when available; (3)
students’ answers. Three common strategies were identified (Table 4.2): a
histogram strategy (Figure 4.6—a correct strategy that reads off the estimation
on the horizontal weight axis), a case-value plot strategy (Figure 4.2—a
strategy that would be correct for a case-value plot but is incorrect for finding
the mean from a histogram as it returns the mean frequency, read on the
vertical frequency axis), and a count-and-compute strategy (an incorrect
strategy“® that, for example, adds the height of the bars, hence the
frequencies, and divides by the number of bars—resulting in a kind of zig-zag
pattern of horizontal and vertical gazes, see Chapter 3 for more details). Both
the case-value plot strategy and count-and-compute strategy relate to the
same misinterpretation: interpreting the histogram as a case-value plot (Boels
et al., 2019a; Cooper, 2018); the difference is whether students estimated
(case-value plot strategy) or calculated (count-and-compute strategy) the
mean. Hence, almost all strategies can be attributed to one of two classes: one
in which students correctly interpreted the graph as a histogram and one in
which students incorrectly interpreted the graph as a case-value plot.

46 Although a correct variant of this strategy is, in theory, possible, we did not find such a correct
variant in the gaze data, nor in students’ explanations.
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Figure 4.5 Graphs (all single histograms) used in Item01 (upper left), 02 (upper right),
06 (middle left), 19 (middle right) and 20 (bottom)
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Table 4.1 Answers given by the students, N = 50 (see also Chapter 3, Table A.9)

Item Correct  Answer Average of Number of Percentage of
answer  range correct given students students correct
answers ? answers correct
ltem01 3.3 2.2-4.4 5.6 20 40%
ltem02 2.7 1.6-3.8 3.8 19 38%
ltem06 5.7 4.6-6.8 6.9 25 50%
ltem19 6.4 5.3-7.5 6.9 34 68%
Item20 6.3 5.2-7.4° 6.7 17 34%

Note. ? Experts were asked to give an answer to these items as well. Based on these
results as well as students’ preference for whole numbers, the answer range was set to
+/-1.1 for all items.

b |f the answer 7.5 had been included, 18 students would have answered correctly.
Furthermore, 10 students answered 5 for Iltem20.

Table 4.2 Strategies, percentage of trials (correct strategy in bold), N = 50 per item
(see also Chapter 3, Table A.12)

Iltem Histogram Case-value Count-and- Unclear
strategy plot strategy compute strategy

ltem01 48% 30% 20% 2%

Iltem02 46% 38% 12% 4%

Item06 38% 42% 20% 0%

Item19 44% 42% 14% 0%

Iltem20 46% 34% 16% 4%

A second coder coded 10% (25 trials). The interrater reliability of the coding in
Table 4.2 measured with a Cohen’s Kappa of .62 is considered substantial
(Landis & Koch, 1977). Four out of five disagreements involved the second
coder choosing a count-and-compute strategy and the first coder choosing one
of the other strategies. If this coding is aggregated to correct (histogram
strategy) and incorrect (all others)—as used as input for training the machine
learning algorithm—agreement goes to 22 out of 25 trials, which corresponds
to a Cohen’s Kappa of 0.73 (substantial).

We used a code for a correct (bold) or incorrect strategy (all other,
mostly misinterpreting the histogram as a case-value plot) as input in the
training phase of the MLA and compared these to the results of the IMM and
of the testing phase of the MLA (we explain later how the testing was done
relative to the training). The eye movements belonging to correct strategies
were mainly vertical and answers were read on the horizontal axis, as the data
in a histogram are positioned along this axis (Figure 4.6).
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In contrast to most eye-tracking studies, in the qualitative study, we looked at
the perceptual form of the scanpath, for example, the vertical gaze pattern
(Figure 4.6), and refer to this as a stable scanpath if it includes multiple aligned
fixations and saccades along this scanpath and was explicitly mentioned by at
least some students as being relevant for their strategy (e.g., Boels et al., 2018,
2019a; Chapter 3). This vertical line is formed by looking back and forth
between the balance point of the graph on the horizontal axis and the height
of the bars as a weighting factor. Incorrect strategies contained mainly
horizontal gaze patterns and searching for the answer on the vertical
(frequency) axis—hence using incorrect data—and leveling all bars (Figure 4.1
in the section on the Theoretical interpretation of students’ gazes).

Figure 4.6 Part of a stable vertical scanpath (left) and all gazes (right) on Item06

Note. The left figure reveals the vertical line segment (left: superimposed for the
reader) in studentL26’s gazes on Item06 (right: all gazes). Circles indicate fixations, thin
lines indicate saccades: fast transitions between two fixations. The left figure is
translated for the reader’s convenience. These gazes indicate a correct (histogram
interpretation) strategy.

4.3.2 Random forests machine learning analysis

For the machine learning analysis we used the random forest MLA that is
implemented in the Mathematica software as described in a previous section,
both for training the MLA—with a subset of students—and for the
classification of the remaining students by the trained MLA. The aim of our ML
analyses was to set a baseline for an IMM (see next section). We started our
analysis with Item06 from the original 25 items in the qualitative study (e.g.,
Chapter 3). The first reason for choosing this item is that 50% of the students
answered this item correctly (Table 4.1) which is—in theory—an ideal situation
for MLA. If it did not work with this item, we would not expect the MLA to
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work on other items. The second reason was that we expected students to
have settled on a strategy by the sixth item of the original study—in line with
our observations from the qualitative study—possibly making the identification
of strategies easier than for the first two items. The third reason was that this
graph is skewed to the left, making large horizontal eye movements—part of
the incorrect strategy—more likely to be explicit than in graphs that are
skewed to the right (e.g., Figure 4.7).

Figure 4.7 Example of all gaze data on Item02 (left) and Item06 (right) of studentL27

Note. This student incorrectly answered six and eight, respectively. The incorrect
strategy is visible by the many horizontal saccades going from the left-hand side of the
graph to the middle or right-hand side and the absence of vertical gazes going from the
top or middle of bars to the bottom of the graph (see also Fig. 4.2 and 4.5 for
comparison). The horizontal saccades in the gaze cloud on the graph area in ltem02
(left) are smaller than in Item06 (right). On both graphs, this student applied an
incorrect strategy, even though for the first items (e.g., Item02) this student looked at
the titles of the axes®.

In the present study, we used a supervised MLA. The MLA is fed with the raw
data of the gazes: the x- and y-coordinates of the eyes for selected timestamps
and the correctness of the answers (0 = incorrect, 1 = correct). As the stable
scanpath (see students’ strategies section) occurred only in the graph area, we
did not use other AOIs here. Note that we are interested in task-specific
strategies, not in general reading or viewing strategies. Both the previous
qualitative study and another study (Lyford & Boels, 2022) suggested that
reading axes was not a relevant part of such a strategy and would add noise
when used in an MLA. Examples of other AOls were the horizontal label (title
of the horizontal axis), vertical label, horizontal axis, vertical axis, graph title,

47 Looking at statistical graphs (e.g., concentrations of greenhouse gases from 0 to 2005), experts
tend to spend more time on AOIs that help them understand the data in the graph (title, legend,
axes) compared to novices (Harsh et al., 2019). The gaze pattern of studentL27 on Item02
indicates that attending axes and graph titles might not be enough.
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question, and ‘next’ button. We filtered and prepared the data as follows.
First*®, we removed all data that fell outside the computer screen (all rows
with x- and y-coordinates outside the range 0—1366 horizontally, and 0-768
vertically). Then, we calculated new y-coordinates as 768 minus the original
values, as the coordinate system is upside down in the Tobii software
compared to the Cartesian plane commonly used in mathematics and
preferred in Mathematica®® so that a y-coordinate of 700 in Tobii indicates a
position close to the bottom of the screen. In Mathematica, we selected the
data that Tobii indicated as being within the graph area (signposted by a 1 in
the column ‘AOI graph’ in the dataset) and then selected the coordinates that
were in the graph area (pixels 500 to 1100, horizontally, and pixels that were
originally between 190 to 525, vertically, for all items, Figure 4.8). We also
removed few bad data (start and end line of the gazes on an item, as well as
incomplete data due to data loss as described elsewhere). The order of the
gaze data was kept in the input file but without timestamps.

The tool we used (the Classify function in Mathematica version 12.1)
initially automatically chose random forest (considered to be a high-
performance model, Kuhn & Johnson, 2013) as the best MLA for our
continuous gaze data (WRI, 2020). During the review process, we made once
more all analyses with the newest version of Mathematica, 13.2.1. Instead of
the random forests, the software now suggested that logistic regression
performs slightly better in most cases, and random forests in some. However,
our analyses that are based on random forests still hold as the conclusions that
can be drawn from these analyses with logistic regression are the same. As the
MLA is intended as a baseline for our IMM, we, therefore, report the results of
random forests for all items in the remainder of this article. We seeded the
random forests and prescribed it as method in follow-up analyses (see code
line below). Although random forest is known for its explainability the way it is
embedded in the software made us consider it a black box. This ML-model is
not to be confused with the IMM we constructed and is described in the next
section. The following code line was used for obtaining a trained classifier
function in follow-up analyses (some detailed codes can be found in the
Appendix A of this chapter):

48 Even before that, some data cleaning was partially done by hand, as, due to the huge amount
of data, the Tobii software could not deliver the data in one database with all students and items
together. Instead, all data were delivered per student (25 trials per student), whereas we
wanted to have all data per item (50 trials per item). Moreover, the original dataset contained
few empty lines that needed to be removed.

49 |n version 13.2.1, the vertically flipped coordinate system used by the Tobii software now can
also be used.
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Classify[{datarow1 -> class1, datarow2 -> class2 ... datarow50 ->
class50}, Method -> "RandomForest"]

Here, each data row is a sequence of x-y pairs—the coordinates of the gaze
locations on the screen, in pixel units, keeping the original order of the
fixations—and each class is either O (incorrect strategy) or 1 (correct strategy).
Classify returns a classifying function. After this training cycle, a list of data
rows is fed to this Classify Function to obtain the algorithm’s classification of
the data. It returns a list of zeros and ones: the algorithm’s identification of
students’ strategy correctness.

Figure 4.8 Example of the AOI graph area (yellow rectangle) in Item06

Note. The size and place of this AOI are the same for all five items.

The ML analysis consisted of two steps: (1) verification of whether
prerequisites were met (see the section Considerations for strategy
identification with machine learning algorithms) and (2) identification of
students’ strategies. At each step, the MLA was re-trained. We repeated these
two steps for all five items. As the results of the second step were above our
expectations, we decided to take an extra step: training the MLA with one item
and testing the MLA with another; see the Results of applying an MLA and
IMM section. We did this for all item pairs. In addition, we performed several
cross-validation procedures as described in the Methodological evaluation
criteria section.

154



Automated gaze-based identification of students’ strategies in histogram tasks

4.3.3 Construction of an interpretable mathematical model

In the second phase, we constructed an interpretable mathematical model
(IMM) based on attentional anchors (AA) found in a qualitative analysis of
students’ strategies in a previous study (see Chapter 3). Two AAs were found:
an imaginary horizontal line and an imaginary vertical line. We tried several
ways of capturing these two strategies mathematically, with varying success.
The best model we found relies on the following algorithm, which is based on
saccade lengths and angles. The cut-off values below were found empirically
by testing many values close to a slope of 1. The starting point 1 for the slope
followed from insights about the two AAs from the qualitative study. For each
participant, we transform the sequence of saccades on the graph area into a
sequence of -1, 0, and 1 values (Table 4.3):

e |[f asaccade is less than 200 pixels long (Euclidean distance), map it to
0.

e |If asaccade is at least 200 pixels long and the absolute value of the
slope of the saccade line is greater than or equal to 0.875 (or %), map it
to 1 (these saccades are considered vertical).

e |If asaccade is at least 200 pixels long and the absolute value of the
slope of the saccade is less than 0.875, map it to -1 (these saccades are
considered horizontal).

Our algorithm continues as follows:

e Splitthe -1, 0, 1 valued sequence into subsequences of identical
consecutive values.

e Delete the duplicates in each subsequence of the sequences and join
the subsequences.

= Remove the “0” cases; this is equivalent to disregarding saccades that
are “short”.

e Add up the elements of our sequence.

= |If the total is negative or 0, we replace the sequence with O; if the total
is positive, we replace the sequence with 1. This counts the number of
runs of consecutive “long” horizontal or vertical scans, and based on
the total, determines whether there were more horizontal or vertical
sets of long scans. Replacing the sequence with a value of 0 indicates
that the scanning is “mostly horizontal,” if we disregard short saccades
and regard consecutive long scans with similar slopes as a single
“scanning run”.
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Table 4.3 Example of applying the algorithm for the IMM

Step in algorithm  Result

1-3 {1,-1,0,0,-1,1,1,1}

4 {{-1, -1}, {0, 0}, {-1}, {1, 1, 1}}
5 {-1,0,-1,1}

6 {1,-1, 1}

7 -1

8 0

An illustration of what we do is given in the following graphs, in which the
scans that are considered horizontal are in red and the vertical ones in blue
(Figure 4.9). The green saccades are shorter than 200 pixels. The color
becomes lighter as the sequence progresses, to get a sense of the order in
which the saccades occurred. In the left-hand graph, there are more blue lines
than red ones, indicating a correct strategy for finding the meanin a
histogram. In the right-hand graph, there are only red lines, so this scanning is
regarded as horizontal. The 200 pixels saccade length cut-off point was fixed,
thus not scaled to the width and height of the graph area (AOIl). The size of the
AOIl in Figure 4.9 is indicated with a black rectangle (not present in the item)
and is the same for all histogram items. As the AAs are similar on all five items,
we constructed one IMM for all items. This means that the IMM is a more
general model compared to the random forest models as the latter are
different for each item.

Figure 4.9 Examples of horizontal and vertical eye movements that were counted in
the IMM

Note. Red—long horizontal—gazes correspond to value 1 in step 7 of the IMM, blue—
long vertical—gazes correspond to 0 in step 7. Lighter colors indicate later occurrence.
Green saccades are less than 200 pixels (hence disregarded). Left is an example of a
correct strategy for Item06 (more blue vertical gazes), right an example of an incorrect
strategy (more red horizontal gazes). Readers are referred to the online enlargement
of this figure for subtle differences in coloring.
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4.4 Results of applying an MLA and IMM

The details of the results, including confusion matrices, can be found in the
Appendix A of this chapter (Tables A.1-A.8).

4.4.1 Machine learning algorithm results

Supervised machine learning with students’ answers’ correctness
The identification accuracy of the MLA for students’ answers for the first item
we looked at, Item06, turned out to be 88% (very good) with a jackknife cross-
validation procedure. As we aimed to identify strategies, not students’
answers, we needed accuracy to be at least 70%. This criterion is met for all
items when using version 13.2.1 (Table 4.4). Based on the confusion matrices
(Tables A.2—A.3) sensitivity and specificity were calculated (Table A.1).

Next, we trained the MLA with gaze data on one item and then
identified answers on another item (Table A.6) for the results. Accuracies
varied between chance level (32%) to well above (70%).

Table 4.4 Accuracies of the IMM and of the random forests MLA after cross-validation

Validation Classification of: ltem01 Item02 Item06 Item19 Item20
procedure

Jackknife Answers (mean) 83% 80% 88% 86% 82%
Jackknife Strategies (mean) 71% 71% 86% 88% 83%
Leave one out  Answers 66% 68% 74% 60% 58%
Leave one out  Strategies 60% 38% 64% 78% 48%
5-fold Answers 62% 62% 62% 58% 68%
5-fold Strategies 56% 56% 64% 74% 62%
IMM Strategies 62% 70% 84% 70% 72%*

Note. @ With a small adjustment of the slope, this could go up to 74%. Accuracy is
expressed as a percentage of correctly predicted or identified cases (e.g., Afonja,
2017). The results of the qualitative study are treated as the positive case.

Supervised machine learning with students’ strategies’ correctness

The accuracy of the random forests MLA for identifying students’ strategies in
the first item we looked at, Item06, turned out to be 86% with a jackknife
cross-validation procedure. This result is considered very good. Consistency of
the MLA was tested through various procedures such as jackknife, leave-one-
out cross-validation, and 5-fold cross-validation (see section Methodological
evaluation criteria). Overall, the MLA correctly identifies 71% to 88% of
students’ strategies (jackknife cross validation) for five different (but all
histogram) items (Table 4.4). Percentages for correct strategies in the
qualitative study (Table 4.2) varied between 38% and 48% (or 52%— 62% when
reversed) and strategies identification results are all well above these chance
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levels with jackknife. When applying other cross-validation procedures, results
drop and vary from around chance level (38%) to good (78%) for leave-one-out
cross-validation to around chance level (56%) to good (74%) for 5-fold cross-
validation. We consider these results a baseline for the IMM.

Next, we trained the MLA with gaze data on one item and then
identified strategies on all other items. Accuracies varied between around
chance level (52%) to quite well above that level (80%; Table A.7). Specifically
interesting are the results when gazes on Item01 are used as training data
(Figure 4.10). Testing this trained random forest MLA for identifying strategies
on other items resulted in accuracies that vary between good (72%) and very
good (80%) which suggests that the MLA has the potential to generalize
beyond a specific item, even when shapes and skewness of the histograms
differ. See also the ROC plot (Fig. 4.10).

Figure 4.10 ROC plot for strategies with train-test item pairs for random forest

Note. Ideally, for educational use, points should be concentrated in the upper left
corner of the plot and close together for all items.

Based on the confusion matrices (Tables A.4—A.5), specificity and sensitivity
(e.g., Kuhn & Johnson, 2013) were calculated (Table 4.5). Sensitivity
(identification of correct strategies) is low to acceptable and lower than the
low to excellent specificity (identification of incorrect strategies) after cross-
validation. An excellent specificity is favorable for a future application that
seeks to provide feedback to this particular group of learners. In practice this
could mean that only a few students who used an incorrect strategy will be
missed (Q-incorrect, MLA-correct, type | error) which we consider most
important for feedback. In addition, some more students who used a correct
strategy would get feedback implying that they used an incorrect strategy (Q-
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correct, MLA-incorrect, type Il error) while they were not. As such feedback
would hint at the correct strategy, this feedback could make them think once
more and then conclude that their strategy was correct, which is not a
problem.

Table 4.5 Sensitivity and specificity of the MLA and the IMM when classifying
strategies

Cross-validation Metric Item01 Item02 Item06 Item19 Item20
procedure

Leave one out CV Sensitivity  0.58 0.45 0.21 0.64 0.39
Leave one out CV Specificity 0.62 0.32 0.90 0.89 0.56
5-fold CV Sensitivity 0.50 0.50 0.21 0.59 0.57
5-fold CV Specificity 0.62 0.61 0.90 0.86 0.67
IMM Sensitivity 0.58 0.46 0.74 0.36 0.43
IMM Specificity 0.65 0.89 0.90 0.96 0.96

Note. Calculation of sensitivity and specificity is not possible for jackknife.

The confusion matrices (see Appendix A of this chapter), provide further
insight into how well the results of the MLA align with the results of the
qualitative coding. Differences between the qualitative coding of the strategies
and the MLA results can be due to what data scientists call ground truth noise
in the data. Ground truth, here, is what the strategies actually “are” (in the real
world, independent of coding). Educational researchers would explain this
noise as inconsistencies, inaccuracies (e.g., due to merging two different but
similar strategies in one code) or errors in the qualitative coding (as coders
usually do not fully agree on the qualitative codes), or as noise in the gaze data
(e.g., not every fixation or saccade on the graph area being part of the
strategy). Differences can also be used to reconsider qualitative coding.

4.4.2 Results from the interpretable mathematical model

With the IMM described earlier, we can correctly identify 62% to 84% of
students’ strategies (Table 4.4). From the confusion matrices (Tables 4.6-4.7)
that compare the results of the IMM with the results of the qualitative study
(Q), sensitivity and specificity can be calculated (Table 4.5). Sensitivity varies
between low and good; specificity varies between acceptable and excellent,
see also Figure 4.11.
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Table 4.6 Confusion matrices for Item01, 02, and 06 (IMM)

Item01 Item02 ItemO06

Q-correct Q-incorrect Q-correct Q-incorrect Q-correct Q-incorrect
IMM-correct 14 9 10 3 14 3
IMM-incorrect 10 17 12 25 5 28

Note. N = 50 per item.

Table 4.7 Confusion matrices for Item19 and 20 (IMM)

Item19 Iltem20

Q-correct Q-incorrect Q-correct Q-incorrect
IMM-correct 8 1 10 1
IMM-incorrect 14 27 13 26

Note. N = 50 per item.
4.4.3 Comparison of IMM and random forests MLA results

The accuracy results of the IMM are quite close to the results of the random
forests MLA with the jackknife cross-validation. In addition, the overlap
between the IMM and MLA in identifying students’ strategies before cross-
validation was good and varied between 66% and 82% (Table A.8). The results
of the IMM are better than the MLA after cross-validation. Moreover, the
results of both the IMM and the MLA indicate that strategies might be clearer
in Item06, which is in line with what we qualitatively found. In the ROC plot
(Figure 4.10) the MLA results after cross-validation are compared to the IMM
results. The plot shows that the IMM performs better. Altogether, this is
considered a very good result, as it is not possible to know what parameters
our MLA is using. As the accuracy of strategy identification of the MLA and the
IMM is sufficient or above, the association is also sufficient or above.

The IMM is a more general model than the random forest models as
the latter is different for each item. Given the MLA as a baseline for the IMM,
we consider the current IMM likely to be a main component of a more general
and precise model explaining gaze behavior during the kind of cognitive tasks
considered in this article. The fact that the MLA, when trained on one item,
relatively successfully predicts performance in a different item can be
considered as evidence that the gaze data contain information about cognitive
behavior on this task, even though this behavior is not explained by the MLA.
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Figure 4.11 ROC plot for strategy identification (Fawcett, 2006) in which “the point
(0, 1) represents perfect classification” (p. 862). Random forest is the MLA the IMM is
compared with

Note. Ideally, for educational use, points should be concentrated in the upper left
corner of the plot and close together for all items. One triangle is hidden behind the
square in the lower left corner. The MLA provides a baseline for the IMM. Although the
IMM worked well, the plot shows there is room for improvement.

As this chapter aims to provide proof of principle, we did not further optimize
the IMM. We chose the IMM that had the best overall performance for all
items among the models we tried. When aiming to use the model in an
application, one way to refine the IMM could be to split the model into two
models: one only for identifying incorrect strategies (with two possible
outcomes: the strategy is incorrect® or unknown) and one only for correct
strategies. Combined, both models would have four options for strategy
identification: correct strategy, incorrect strategy, unknown, or contradicting
outcomes. Unknown means that the strategy is unknown, contradicting
outcomes would require an extra rule for deciding what strategy it is. Another
idea for optimizing these two models—besides adjusting the slope that
distinguishes between horizontal and vertical gazes to obtain better results for
specific items—is to adjust the saccade length in the model. In the current
model, only saccades of at least 200 pixels are considered for both horizontal
and vertical gazes. The saccade length for the vertical gazes could be scaled
(shortened) to the size of the AOI. The relatively small height of the graph area
(335 pixels) as opposed to the width (600 pixels) would justify such an

50 This incorrect strategy could also be further divided into a case-value plot interpretation
strategy and a count-and-compute strategy not further discussed here.
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adjustment. A possible improvement of the IMM could also be to incorporate
alignment of saccades (relevant for the most common strategies). As the aim
of the IMM in this research is not to find the best model but to show that the
perceptual form of the stable scanpath can be captured by a model, we did not
try to further optimize this model.

In addition, the performance of both IMM and machine learning might
be influenced by students switching their strategy during or in between trials,
making strategy identification less clear. There is some evidence in the
interview data (e.g., Chapter 3 and below) that students’ strategies were
influenced by item13 to item18 (with dotplots) which were designed to
scaffold students in applying a correct strategy (e.g., Lyford, 2017). Although
this did not result in a higher number of correct strategies, it might have
changed the strategies on a more subtle level.

StudentlL22: Yes then [Item19] | was going to change my approach a little bit. Then
| started doing it a little bit similar to what | did with the dots. So then
here is about more and there is again less, so then it will be
somewhere here in between.

4.5 Conclusions and discussion

Automated identification of students’ strategies is a prerequisite for targeted
intelligent feedback. The present study took on this challenge by providing an
example of automated identification of students’ task-specific strategies on
single histograms based on gaze data. This could allow for future applications
such as real-time feedback based on gaze data, for example, collected through
webcams (e.g., Knoop-Van Kampen et al., 2021).

We analyzed a set of gaze data in three phases: (1) an analysis of raw
gaze data on one AOI (that contained the relevant scanpath) through an MLA
that provided a baseline for the second step; (2) the construction of a separate
interpretable mathematical model (IMM) using the same gaze data and
insights on the perceptual form of this stable scanpath from previous
qualitative research; and (3) an evaluation of the results by comparing the
performance of the MLA, the IMM and the overlap between the two. The IMM
outperformed the MLA in several cases.

The MLA (phase 1, random forests as implemented in the software
Mathematica Classify Function) has the advantage that it can process raw gaze
data (x- and y-coordinates). It has the disadvantage that it is a black box in that
it does not explain how it reached its decision for an individual student. The
results of the random forests MLA after cross-validation provided our baseline
for the IMM (phase 2). The IMM performs well (62% to 84% accuracy) with the
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advantage of being transparent for individual decisions and theoretically
meaningful. The overlap between the results of the IMM and MLA is sufficient
(phase 3).

Although these results are encouraging, an issue in data science is
whether an MLA trained on one item is able to identify students’ strategies for
similar but different items. We, therefore, trained the MLA on one item and
then tested it on all other items, and repeated this until all items were used
once as training items. The accuracy results varied between around chance
level and well above. The latter indicates very good performance. Combined,
these results indicate that the IMM and MLA do describe the same
phenomena—strategies—and that these strategies can be derived from
students’ gaze data.

What is new in our approach is that the filtering and preparation of the
gaze data for the IMM and MLA are based on one AOI that contains the
perceptual form of the gazes, instead of, for example, the number of
transitions between AOQIs. This perceptual form is a stable scanpath indicating
the student’s focus of interaction and is interpreted as an attentional anchor
(AA, e.g., Abrahamson & Sanchez-Garcia, 2016). In our previous research
(Chapter 3) we found that this perceptual form is indicative of students’
strategies.

A prerequisite for the approach used is that a stable scanpath has been
found in the gaze data. Furthermore, it requires gaze data to be classified into
groups of students using the same strategy. Both prerequisites were met for
our study. A further prerequisite for ML analysis is that the dataset is large
enough and contains enough information for the MLA to identify (classify)
students’ strategies.

A limitation of our study is that we had gaze data on only fifty students.
We alleviated this limitation by showing it worked for five items with
differently shaped histograms, by using a resampling approach (jackknife cross-
validation), and by training the MLA with gaze data from one item and then
having it identify strategies for all other items. For future research, collecting
data from a larger and different population is recommended. Another
limitation of our study is that we use one item type (single graphs) and five
variants of one graphical representation (histograms). It would be interesting
to apply our approach to other domains, following the three phases described
above for each new topic. Once the IMM is optimized and the MLA is trained,
both an IMM and an MLA could be implemented. The MLA might be more
accurate (see results of the jackknife cross-validation) but is computationally
more complex. The IMM is easier, faster, provides insight into the relevant part
of the gaze pattern that its decision was based on, and can deal with partial
data. This allows feedback on strategies before an answer is given. The
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agreement between the IMM and MLA can be used as an indication of how
certain the strategy identification was.

From a methodological perspective, a first contribution of this study is
that our approach is both item-specific and generalizable. It is important that
both IMM and MLA are item-specific, as the mathematical strategies of
students are specific to an item type. Our IMM and MLA meet this
requirement since the stable scanpath is specific to a given item; a stable
scanpath refers to the perceptual form of this scanpath (e.g., a horizontal line,
triangle, or point), not the sequence of AOIs. We expect that a stable scanpath
can be found in gaze data on items in various domains (e.g., Strohmaier et al.,
2020). It is also important that this method is generalizable, and, therefore,
suitable for other mathematical domains. First, IMMs and MLAs (e.g., Rudin,
2019)—such as our set of rules for the IMM—are general methods. Moreover,
our approach is also theoretically generalizable in the sense that educational
researchers aim for “how and why the studied events occurred (or not)” (Yin,
2013, p. 326). The studied events are students’ strategies and are observed as
stable scanpaths that indicate students’ focus of interaction with the item.

It could be argued that our approach is not very generalizable as x- and
y-coordinates are sensitive to, for example, scaling, position of the graph on
the screen, and shape of the histogram. However, the same could be argued
for AOls, as AOlIs are x- and y-coordinates binned into categories by
researchers and, therefore, are also item-specific. Furthermore, coordinates
can be rescaled which adds to their generalizability. In addition, we showed
that for five differently shaped histograms, the IMM performed above chance
level to good and the MLA performed at chance level to very good after cross-
validation. In addition, the same IMM was used for all five items which makes
it a more generable model than the MLA that was initially retrained for each
item. Also adding to the this generalizability is that, for several items, we have
successfully trained the random forest MLA with this one item and then tested
it for all other items.

A second methodological contribution is that all gaze data on one AOI
are used, in contrast to methods that use aggregated data such as the
transition from one AOI to another (e.g., Garcia Moreno-Esteva et al., 2020).
Unlike heatmaps that are produced afterward (e.g., Schindler et al., 2021), raw
gaze data offer the possibility of real-time feedback.

Third, we show that it is possible to automatically identify students’
task-specific strategies from their gaze patterns. As soon as a stable scanpath is
found, we think this can be grasped in an IMM as well as through an MLA,
hence, be automated. Scanpaths are found for tasks in various mathematic
domains: numbers (Schindler, et al., 2021), arithmetic (Green et al., 2007),
proportional reasoning (Shayan et al., 2017), area and perimeter (Shvarts,
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2017), Cartesian coordinates (Chumachemko et al., 2014), geometry (Schindler
& Lilienthal, 2019), trigonometry (Alberto et al., 2019), parabola (Shvarts &
Abrahamson, 2019), statistical graphs (Chapter 3) and more (Lilienthal &
Schindler, 2019; Strohmaier et al., 2020). Therefore, we believe that a similar
approach can be used for other topics.

Fourth, using raw gaze data opens the possibility of implementation in
an online (e.g., Cavalcanti et al., 2021) and adaptive tutoring system (e.g.,
Scheiter et al., 2019) with real-time feedback. The IMM can process raw data
directly without the (black-box) preprocessing that the MLA performs and the
results are straightforward to interpret.

Fifth, studying the differences between the results of the IMM and
MLA on the one hand, and the qualitative coding on the other hand have the
potential to improve the qualitative coding. Whenever the three methods lead
to a different outcome, a closer inspection of the gaze patterns on the item,
combined with interview data (if available), may lead to new insights for
qualitative coding. This would combine the best capacities of people and
machines, as suggested by Van de Schoot (2020). Sixth and final, our approach
offers a new road for replicating results from a qualitative study.

From a theoretical perspective, this study shows that an AA can be
used as a theoretical lens to search for a stable scanpath that reflects a
mathematical strategy that is meaningful to the students. These stable
scanpaths can be linked to the idea of an AA as follows. In a retrospective
recall, students talked about an imagined action. This imagined action is—
according to students—coordinated by an imaginary mathematical object: a
horizontal or vertical line. As an AA is an existing or imagined object or area
that emerges to facilitate or coordinate sensorimotor actions (Abrahamson &
Sadnchez-Garcia, 2016), we also interpret these lines as an AA.

In addition, the manipulation of an imaginary object manifest in the
gaze data could suggest links between theories of mental processes and
embodied cognition. The AA was previously found when students interact with
the environment. In our items, students cannot physically manipulate the
graph. Nevertheless, gaze data show a stable scanpath indicating scanning this
imaginary object corresponding to a concrete location on the graph area on
the screen (Chapter 3). We believe this reveals that cognitive processes can
also be embodied and that eye movements can be a manifestation of both the
perception and the action.

This chapter may fuel the dialogue between educational researchers
and data science experts. An advantage of our IMM is its interpretability. MLAs
may be experienced as a black box and educational researchers may focus on
how well it performs rather than how it performs. As educational researchers,
we wondered what the application of data science tools to our data would
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bring us. It is important to promote the dialogue between educational
researchers and MLA-experts, to keep boundaries between disciplines
permeable. At such boundaries, exciting new research can emerge.

Future research into finding stable scanpaths for applying this method
might, for example, concern geometry such as the Pythagoras theorem or the
cosine rule. In calculus, one might consider interpreting the slope or direction
field when learning to solve differential equations. To allow task-specific gaze
patterns to emerge an alternative way of introducing a topic could be
considered (e.g., JanfBen et al., 2020). Finally, the domain of graphical or
diagrammatic literacy could be a future line of research. Several examples can
be found in the literature of students having difficulties with graphs in
mathematics (e.g., difficulties with complex line graphs, Carpenter & Shah,
1998; overgeneralization of linearity, Leinhardt et al., 1990; misreading of
graphs, Roth & Bowen, 2001; inadequate strategies, Tai et al., 2006), but also
in science education (e.g., Kragten et al., 2015). All these domains have in
common that spatial patterns may play a role.

Another direction for future research could be to improve the IMM and
to investigate the apparent trade-off between its sensitivity and specificity. We
know that students used several strategies but it is unclear whether and how
this is visible in this trade-off. In addition, a possible improvement of the IMM
could be to tailor it to each item. Furthermore, the alignment of saccades
could be included in the IMM (important for the most common strategies, see
Chapter 3).

Future research might also focus on the appearances and changes of
students’ strategies over time. By using an IMM and an MLA, online automated
feedback becomes possible on students’ strategy, in some cases maybe even
before students give their answers. This might make online feedback in
massive online courses, online teaching, and homework more accurate and
efficient. Another possibility would be to provide teachers with a dashboard on
students’ strategies (e.g., Knoop-Van Kampen et al., 2021). The agreement
between an MLA and an IMM could then be used to provide a measure for
how reliable the strategy identification is. A prerequisite is the availability of
cheap equipment for measuring eye movements. We expect more exact
measuring of eye movements will be available for consumer computers in the
near future, for example, through webcams. Whether this will be implemented
in software and used by consumers will also depend on ethical discussions
about privacy, fairness, bias, et cetera.
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Appendix A Additional code and results

In this Appendix we provide additional code and all results of the IMM, random
forests ML-analysis, and cross-validation procedures.

Mathematica code used to find the best method for the data

pickMethod[answerTrainingData[[item]],answerData[[item]],met
hod, seed, performanceGoal]

tob = DateObiject][]
beforeValidationResults =
Monitor[Table[{pickMethod[answerTrainingData [item] ,
answerData [item] ,
Automatic, "1234", Automatic], pickMethod[strategyTrainingData
[item] ,
strategyData [item] , Automatic, "1234", Automatic]},
{item, 1, 5}], item]
DateObject[] - tob
Clear[tob]

Overview of the results for sensitivity and specificity
For the results of strategy classification, see Table 4.5 in the article. Below, the
results for answer classification can be found.

Table A.1 Sensitivity and specificity of the random forests of answers

Validation What IltemO01 Iltem02 Item06 Item19 Item20
procedure

Leave one out Sensitivity 0.26 0.32 0.72 0.82 0.00
Leave one out Sensitivity 0.90 0.90 0.76 0.13 0.88
5-fold Sensitivity 0.11 0.05 0.40 0.68 0.12
5-fold Sensitivity 0.94 0.97 0.84 0.38 0.97

Confusion matrices of answers

Table A.2 Confusion matrices of answers for all items, random forests MLA, after
Loocv

ItemO1 Item02 Item06 Item19 Item20

Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi
MLAc 5 3 6 3 18 6 28 14 0 4
MLAI 14 28 13 28 7 19 6 2 17 29

Note. N = 50 per item. The results of the qualitative study (Q) compared with the
results of the MLA random forests, ¢ = correct answer, i = incorrect answer. The
qualitative study is treated as the positive case. For example, the number 5 in the top-
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left corner of Item01 stands for 5 students identified by both the qualitative study and
the MLA as having a correct strategy.

Table A.3 Confusion matrices of answers for all items, random forests MLA, after 5-
fold cross-validation

ItemO1 Item02 Item06 Item19 Item20

Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi
MLAc 2 2 1 1 10 4 23 10 2 1
MLAI 17 29 18 30 15 21 11 6 15 32

Note. N = 50 per item. The results of the qualitative study (Q) compared with the
results of the MLA random forests, ¢ = correct answer, i = incorrect answer. The
qualitative study is treated as the positive case.

Confusion matrices of strategies

Table A.4 Confusion matrices of strategies for all items, random forests MLA, after
Loocv

Item01 Item02 Item06 Item19 Item20

Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi
MLAc 14 10 10 19 4 3 14 3 9 12
MLAI 10 16 12 9 15 28 8 25 14 15

Note. N = 50 per item. The results of the qualitative study (Q) compared with the
results of the MLA, c = correct strategy, i = incorrect strategy. LOOCV = leave-one-out
cross-validation. The qualitative study is treated as the positive case.

Table A.5 Confusion matrices of strategies for all items, random forests MLA, after 5-
fold cross-validation

ItemO1 Item02 Item06 Item19 Item20

Qc Qi Qc Qi Qc Qi Qc Qi Qc Qi
MLAc 12 10 11 11 4 3 13 4 13 9
MLAI 12 16 11 17 15 28 9 24 10 18

Note. N = 50 per item. The results of the qualitative study (Q) compared with the
results of the MLA, c = correct strategy, i = incorrect strategy. The qualitative study is
treated as the positive case.
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Results of the analyses when using one item as training item

Table A.6 Accuracy of answer prediction for all items for the random forests MLA

Item01 Item02 Item06 Item19 Item20
Item01 X 64% 68% 46% 62%
Item02 70% X 52% 38% 64%
Item06 58% 56% X 62% 60%
Item19 42% 48% 58% X 38%
Item20 62% 64% 52% 32% X

Note. N = 50 per item. The item in each row is used as training item. The items in the
columns are the test items. For example, when using ItemO01 as training item, the
accuracy of predicting students’ answers on ltem02 is 64%.

Table A.7 Accuracy of strategy prediction for all items for the random forests MLA

ItemO1 Item02 Item06 Item19 Item20
Item01 X 72% 72% 80% 80%
Item02 66% X 70% 58% 58%
Item06 66% 66% X 62% 68%
Item19 60% 56% 64% X 68%
Item20 52% 58% 62% 70% X

Comparison of the random forests MLA and IMM results

Table A.8 Confusion matrices of strategies for all items for the random forests MLA
versus the IMM

Item01 Item02 Item06 Item19 Item20
MLAc MLAi MLAc MLAIi MLAc MLAi MLAc MLAi MLAc MLAI
IMMc 20 10 11 13 11 6 7 2 7 4
IMMi 4 16 4 22 3 30 9 32 8 31

Note. N = 50 per item. The results of the MLA random forests compared with the
results of the IMM, c = correct strategy, i = incorrect strategy. The MLA before any
cross-validation is treated as the positive case.
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Assessing students’ interpretations of histograms before and

after interpreting dotplots: A gaze-based machine learning
analysis

“The bulk of the world’s knowledge is an imaginary construction.” >*
Helen Keller

This chapter is based on

Boels, L., Lyford, A., Bakker, A., & Drijvers, P. (Accepted). Assessing students’
interpretations of histograms before and after interpreting dotplots: A gaze-
based machine learning analysis. Frontline Learning Research.

51 Keller, H. (1910), Chapter 8, The Five-sensed World. Quoted in: Keller, H. (2002, p. 289).
Organization & Environment, 15(3), 285-292. https://www.jstor.org/stable/26162186
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5.1 Introduction

Statistical literacy includes “people’s ability to interpret and critically evaluate
statistical information, data-related arguments [...], which they may encounter
in diverse contexts, and when relevant” (Gal, 2002, p. 4; emphasis in original).
As data consumers, citizens should be able to correctly interpret various
graphical displays. This is particularly important in this era of vague and fake
news “that place interpretive and evaluative demands on a reader or viewer”
(Gal & Geiger, 2022, p. 2). In this study we specifically focus on the graphical
representation of histograms.

Histograms can reveal particular aspects of the distribution of the data
often hidden in other graphs (e.g., Pastore et al., 2017). Furthermore, as
histograms are ubiquitous in research and education, they need to be learned
(cf. Garfield & Ben-Zvi, 2008b). For example, searching for ‘histogram’ in
Google Scholar resulted in more than 3.2 million hits (June 13, 2023).
Therefore, the guidelines for assessment and instruction in statistics education
Il (GAISE 1) for all Grades up to Grade 12 contain several examples of
histograms and dotplots (for levels A, B, and C), with levels B and C roughly
corresponding to middle and high school (Bargagliotti et al., 2020). Moreover,
some alternatives for histograms, such as boxplots, are even more complex
(e.g., Bakker et al., 2004, Lem et al., 2014a).

However, many people persistently misinterpret histograms (e.g.,
Cooper, 2018; Kaplan, 2014). For example, Bakker (2004a) found that
secondary school students (Grades 7-8) considered the individual heights of
bars in a histogram to be the heights of individual people, rather than
aggregations of data. Students’ conceptual difficulties with histograms are well
documented (e.g., Chapter 2), but it is unclear how to support students in
learning to interpret histograms.

Figure 5.1 Example of dotplot ltem17 for which students were asked to compare two
datasets regarding their mean
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Several studies suggest that having students solve dotplot items can scaffold
this learning (e.g., delMas & Liu, 2005; Garfield & Ben-Zvi, 2008b; Makar &
Confrey, 2004). In most of these studies, students’ answers and verbal reports
were the main source of information. Dotplots have the advantage that they
show all individual data points as well as their distribution (Figure 5.1). In
addition, the absence of a vertical scale in dotplots can turn students’
attention toward the horizontal scale, which is where the variable is presented
in both graphs. However, little is known about whether solving dotplot items
allows students to become aware of aspects of graph representation and
statistical variables that are useful for interpreting histograms. The aim of this
study is, therefore, to explore how solving dotplot items influences secondary
school students’ thinking on a detailed level when they interpret histograms.
Our overall research question is: In what way do Grades 10-12 pre-university
track students’ histogram interpretations change after solving dotplot items? In
the Theoretical background section, we will specify this overall question with
three sub-questions.

Figure 5.2 Example of a dotplot (left) and a histogram (right) depicting the same
distribution

Note The dotplot was part of Item16. The histogram was part of ltem05, not
further discussed here (for more details, see Chapter 3).

As we elaborate further in the Theoretical background section, gaze data can
reveal students’ strategies in real-time, and in more detail, compared to
concurrent thinking aloud (verbal reports) and without the risk of influencing
the thinking process (Van Gog et al., 2005; Van Gog & Jarodzka, 2013). We use
students’ gaze data when solving four items with histograms before and after
solving similar items with dotplots, as well as their answers on these items. The
four histogram items were taken from a larger sequence with 25 digital items
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in total. Furthermore, we examined transcripts from stimulated recall (Lyle,
2003) verbal reports about students’ strategies (for more details see section
Data collection methods: Eye-tracking, stimulated recall verbal reports). In the
next section, we elaborate on difficulties with histograms and dotplots and
discuss how gaze data can be used.

5.2 Theoretical background

5.2.1 Review of statistics education literature

In this section, we review statistics education literature on the problem (many
students persistently misinterpreting histograms), a gap in this literature (the
variation in results on students’ interpretations of dotplots), and graphs that
are suggested for supporting students in learning to interpret histograms.

Histograms are persistently misinterpreted

Many people persistently misinterpret histograms (e.g., Cohen, 1996; Setiawan
& Sukoco, 2021). Researchers and teachers think that there is no difference
between bar graphs and histograms (e.g., Clayden & Croft, 1990; Tiefenbruck,
2007). Dabos (2014) found that some college teachers did not see when
students incorrectly counted the number of bars in a histogram to get the total
frequency instead of adding the bars’ heights. First-year university students in
educational sciences had difficulties finding or interpreting the mean, median,
variation, and skewness in histograms (Lem et al., 2013c). College students
interpreted the horizontal salary scale in a histogram as a timescale (Meletiou,
2000). Middle school students used unequal intervals in a histogram with
frequency on the vertical axis—instead of density—hence, not correcting the
frequencies for unequal bin widths (McGatha et al., 2002). Other middle school
students thought that bars in histograms are connected for easier comparison
(e.g., Capraro et al., 2005). Students in Grades 6-12 answered histogram items
17% to 53% correctly on average (Whitaker & Jacobbe, 2017). Many students
mistakenly took bars’ heights as the measured value. Such students possibly
think that only nine packages are depicted in the histogram in Figure 5.3 (the
number of bars) instead of 67 (the actual number).

Dotplots are not always correctly interpreted

Generally, dotplots are interpreted better than histograms (e.g., delMas et al.,
2005), although stacked dotplots (in the early days also called line plots; e.g.,
Tiefenbruck, 2007) might still confuse students (e.g., Lyford, 2017). Lem et al.
(2013c) found that university students understood dotplots slightly better than
histograms (on average, 55% correct responses for dotplots versus 51% for
histograms). However, in that study two dotplot items scored worse.
University students taking introductory statistics explored variability and

175



Chapter 5

standard deviation through a kind of stacked dotplots (delMas & Liu, 2005).
Most of these students did not fully understand how standard deviation was
related to the distribution of data in a histogram.

Figure 5.3 An example of a histogram

Note. The measured variable (weight) is along the horizontal axis. Weights of 67
packages (sum of frequencies) are depicted in this histogram. The arithmetic mean
weight is 3.3 kg.

A local instruction theory in statistics education suggests that dotplots are
suitable for supporting students’ learning of distribution and variability in data
represented in histograms (e.g., Bakker & Gravemeijer, 2004; Garfield, 2002).
Garfield & Ben-Zvi (2008b) stated “studies [that] suggest a sequence of
activities that leads students from [...] dotplots [...] to histograms” can support
students in “developing the concept of distribution as an entity” (p. 175). An
advantage of dotplots over histograms is that dotplots show the distribution of
data in a disaggregated form. In addition, dotplots have the possibility to draw
students’ attention to the variable being depicted along the horizontal axis—
similar to histograms—, as dotplots typically have only this axis. A possible
disadvantage of dotplots for teaching students to interpret histograms
(aggregated data) is that dotplots might invite them to see the data as
individual cases (Konold et al., 2015) instead of looking at aggregated
measures (including arithmetic mean).

One explanation for dotplots sometimes being misinterpreted is that
students do not understand where the measured values are depicted in
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5.2.2 Review of literature on eye-tracking in education

In this section, we review what is already known from gaze data in education
and what measures are most suitable for our aim. In addition, we elaborate on
how gaze data can be connected to students’ strategies. We end each section
with a sub-question.

Use of spatial gaze measures to reveal students’ strategies for interpreting
histograms

The use of gaze data for studying learning is not new (e.g., Strohmaier et al.,
2020). For example, Garcia Moreno-Esteva et al. (2018) and Khalil (2005)
studied students’ visual cognitive behaviors on statistical graphs. A main
advantage of eye-tracking “is that it can provide detailed information about
the time-course of processing” (Kaakinen, 2021, p. 170). Most studies neglect
this level of detail by using gaze data measures that are temporal (e.g., total
fixation duration, reaction times), count (fixation count, number of saccades
between relevant or irrelevant parts of the stimuli), or both (e.g., Kaakinen,
2021; Lai et al., 2013). Traditional time measures, for example, can hide visual
scanning patterns (Goldberg & Helfman, 2010). A similar argumentation can be
made for count measures such as percent of fixations on specific parts of the
screen (Godau et al., 2014).

Spatial measures, such as a sequence of Areas of Interest (AOls, e.g.,
Garcia Moreno-Esteva et al., 2018, 2020) can disclose the kind of detailed
information Kaakinen (2021) refers to. Spatial measures, such as scanpaths,
seem better suited for providing detailed information about students’ thinking
(Hyond, 2010). Dewhurst et al. (2018) were one of the first who studied
(simplified) scanpaths using vectors in (scene) viewing tasks. Their vectors
include direction and magnitude of saccades.

In a previous study, we qualitatively analyzed students’ scanpath
patterns (sequence of fixations and saccades) when students estimated the
mean from histograms (Boels et al., 2019a). After qualitatively coding 300
videos with students’ gazes and verbal reports of 25 students in that study, we
found that the perceptual form of students’ scanpath patterns within one
AOIl—the graph area—was most relevant for students’ task-specific strategies
on these items, see Figure 5.5 (Chapter 3). This perceptual form can be
captured by the direction (angle) and magnitude (length) of students’
saccades.

In that study, we found several scanpath patterns that were indicative
of students’ task-specific strategies. All patterns were found on the graph area
only. In one pattern, the perceptual form of that pattern was identified as
vertical if successive saccades on the graph area were vertical and roughly
aligned with each other (Figure 5.5). This vertical scanpath pattern indicates
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that this student (correctly) tried to find the balancing point of the graph as an
estimation of the mean. Another scanpath pattern was a horizontal gaze
pattern indicating that this student (incorrectly) tried to make all bars equally
high which results in the mean of the frequencies instead of mean weight. In
total, five different scanpath patterns were found for students estimating and
comparing means of histograms, each related to a specific strategy (Chapter 3).
Other AOIs did not emerge as relevant to these students’ task-specific
strategies.

Figure 5.5 Example of a vertical scanpath on Item20

Note. Circles indicate fixations (positions on the screen where students look longer),
thin lines between the circles indicate saccades (fast transitions between two
fixations). A vertical line segment—indicating a scanpath—is superimposed for the
reader’s convenience. A scanpath is a sequence of fixations and saccades. “A fixation is
a period of time during which a specific part of [the computer screen] is looked at and
thereby projected to a relatively constant location on the retina. This is operationalized
as a relatively still gaze position in the eye-tracker signal implemented using the [Tobii]
algorithm.” (Hessels et al., 2018, p. 22). (The figure has been translated into English.)

As the overall research question for this study indicates, we want to explore in
what way secondary school students learn from dotplot items. Given that the
scanpath patterns on the graph area indicate students’ strategies, we examine
differences in these patterns on histogram items before and after students
solved items with dotplots. We only address the main differences, those being
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differences relevant to students’ task-specific strategies. The first sub-question
for the present study is, therefore:

What are the main differences in students’ gaze patterns on
histogram items before and after solving dotplot items?

Connecting gaze data to students’ strategies

Although scanpaths can reveal students’ strategies on a detailed level, there is
no simple relation between eye movements and strategies (e.g., Orquin &
Holmqvist, 2017; Russo, 2010) as not every eye movement is part of a task-
specific strategy (e.g., Schindler & Lilienthal, 2019). Therefore, it is often
needed to also ask at least some students what approach they took to solve
the items.

Instead of concurrent think-aloud protocols, recalls (retrospective
reports) are preferred for complex items (e.g., Van Gog et al., 2005) as
concurrent thinking aloud may influence both eye movements and students’
thinking (Van Gog & Jarodzka, 2013). The disadvantage of such retrospective
think-aloud reports, however, is that students may have forgotten their
strategy after completing all items. This risk can be reduced by having students
look back at their eye movements (e.g., Guan et al., 2006; Kragten et al., 2015;
Van Gog et al., 2005). Therefore, in the stimulated recall (cued retrospective
reports), we individually cued each student with their own gazes. How we did
that, is explained in the data collection section. The second sub-question for
the present study is:

What indications can be found in students’ verbalizations during
stimulated recall that changes in their approaches to histograms
occurred?

5.2.3 Learning from a series of items: the practice effect

Students learning from a sequence of tasks is known as the practice, test-
retest, or retesting effect in assessment theories (e.g., Heilbronner et al., 2010;
Scharfen et al., 2018). The practice effect refers to improved performance
(often scores or answers) due to repeated assessment with the same or
similar, equally difficult items. The time interval between two assessments can
be very short—5 or 10 minutes—to find such an effect (e.g., Catron, 1978;
Falleti et al., 2006). The practice effect was found for several general cognitive
function assessments for items that required memorization (e.g., of numbers),
change detection (e.g., of changed colors between two items), and matching
(e.g., what parts of items are alike). In addition, familiarity with test
requirements can cause differences between the test and retest results (e.g.,
Falleti et al., 2006) and reduce anxiety (e.g., Catron, 1978). Furthermore,
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regression to the mean can cause extreme results—high and low performance
scores—to come closer to the mean, resulting in both under- and
overestimation of improvement (e.g., Temkin et al., 1999). For achievement or
knowledge tests, such as formative assessments in secondary education, the
practice effect is also associated with actual or true learning as opposed to
most cognitive tests, for example, 1Q tests, for which learning is unlikely to
occur (e.g., Lievens et al., 2007; Scharfen et al., 2018). Lumsden suggested that
the practice effect can also be found within a sequence of items (1976). In
addition, gaze data have been used to examine the practice effect (e.g.,
Guerra-Carrillo & Bunge, 2018; Ptomecka et al., 2020). Although this is not the
focus of our study, to the best of our knowledge, our study is the first that
looks at a within-a-sequence-of-items practice effect.

Most research investigating the practice effect uses scores on
standardized tests (e.g., in this meta-analysis: Hinton-Bayre, 2010). However,
standardized tests often lack instructional relevance (e.g., Hohn, 1992).
Practitioners, such as mathematics teachers, are more interested in knowing
whether students learn from a low-stake sequence of items. Moreover,
teachers are interested in students’ strategies, hence “gaining qualitative
insight into student understanding” (Bennett, 2011, p. 6). In this study, we,
therefore, examine students’ changes in strategies during solving items as an
indication for potential learning. To exclude several other possible influencing
factors—such as peers’ or teachers’ interventions—we use items from one
sequence of items with statistical graphs.

For some items, students verbally reported their answer (estimation of
the arithmetic mean), while for other items, they chose one of three answer
options (comparing means, Figure 5.4). If a change in students’ strategies
occurred, toward a correct instead of an incorrect strategy, we would expect a
difference in students’ answers, including answer correctness. Therefore, the
third sub-question for this research is:

What are the differences in students’ answers on histogram items
before and after solving dotplot items?

5.2.4 Rationale for Using a Machine Learning Algorithm

For very small data sets or very short sequences of tasks, the first sub research
guestion could theoretically be answered through the careful, manual study of
gaze data. Our study, however, seeks to use machine learning to both augment
the effectiveness of identifying differences in students’ gaze patterns between
items and to identify these differences at a scale that would be impractical to
do by hand. To build an analytical model of the gazes, a non-ML-approach
could be used. The ones we tried (e.g., logistic regression) performed relatively
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poorly (see also Lyford & Boels, 2022). Instead, we use supervised learning, a
subset of MLAs that use training data and pattern recognition to predict a well-
defined output (Friedman et al., 2001). In particular, the present study makes
use of random forests algorithm (Breiman, 2001), which will allow us to
effectively and efficiently identify systemic differences in gazes between our
two hundred student-item pairings. These random forests can not only be
efficiently trained and used to identify patterns in students’ gaze data, but they
are likely to identify systematic differences in gaze data that are unnoticeable
upon manual inspection (James et al., 2013). In addition, through assessing the
importance of specific variables (Figure 15) random forests allow for some
interpretability so that researchers can better understand what some of the
differences in gazes might be (e.g., proportionally more vertical instead of
more horizontal gazes could indicate a change from an incorrect to a correct
strategy), and postulate about possible mechanisms.

5.3 Materials and methods

Details on participants as well as details on the eye-tracking method and two
items (Item02 and Item11) were previously reported in a qualitative study
(Chapter 3). Two items were previously used in a machine learning analysis
(Iltem02 and Item20; Chapter 4) but with a different aim, namely, to examine
how a machine learning algorithm (MLA) could identify students that used a
correct or incorrect strategy—for solving the item—purely based on their gaze
data on the graph area of this item. For the reader’s convenience, we
summarize here all information relevant to the present study.

5.3.1 Participants: pre-university track students Grades 10-12

Participants were 50 Grades 10-12 pre-university track students from a Dutch
public secondary school [15—-19 years old; mean = 16.31 years]; 23 males, 27
females (more details in Table 5.1). In the Netherlands, secondary school
students are in a pre-vocational, pre-college, or pre-university track. Generally
speaking, pre-university track implies mostly high-performing students. All
participants had statistics in their mathematics curriculum. Each student
individually solved the items in a separate room in their own school.
Participation was voluntary; permission from the Utrecht University ethical
committee was obtained, and informed consent was signed. Participants
received a small gift for their participation.
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ltem21—require students to compare the mean of the data in two histograms.
We will henceforth refer to these as ‘double-histogram’ items. The question
for both items was: Which postal worker delivers the heaviest packages on
average? For each item, three answer options were given: (a) [Ellen/Elizabeth]
delivers the heaviest packages on average, (b) [Titia/Monsif] delivers the
heaviest packages on average, and (c) The mean weights for both are
approximately the same. The correct answer for both items is (c).

Figure 5.6 Graphs of single-histogram items (left) and double-histogram items (middle
and right) in the before (top row) and after (bottom row) versions

Note. Translated into English and numbering added. The numbering of the items (e.g.,
Item11) refers to the numbering in the original sequence of 25 digital items (Chapter
3). Each after item (bottom row) is a mirrored version of the before item (top row).

Six of the items between the items before and after were non-stacked (messy)
dotplots that were specifically designed to scaffold students (Iltems13—18 from
the original data collection, e.g., Figures 5.1, 5.2, and 5.4). As described in the

Theoretical background section, we used dotplots to draw students’ attention
to specific features of the histograms that are important but might have been

misunderstood.

5.3.3 Data collection methods: Eye-tracking, stimulated recall verbal
reports

Data of a previous qualitative study is re-used for this study (Chapter 3). Data
collection included students’ answers on each item, x- and y-coordinates of
gaze data on the items through an eye-tracker, and stimulated recall verbal
reports. Collection of the gaze data and stimulated recall are shortly described
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Figure 5.8 AOlIs of before Item11 (top) and Item02 (bottom)

Note. Upper row: the graph area consists of the yellow and green areas named
It11b_graph L Ellen and It11b_graph_r_Titia. Bottom row: the graph area is the light
blue area named It2_graph.
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No students were excluded from the data set, as the data loss per trial
(averaged over all 50 participants) and the data loss per participant (averaged
over all 25 items from the original dataset) were below the exclusion point
(34% or more). The mean accuracy is 56.6 pixels (1.16°) with the highest
accuracy on the most relevant part for our study: the graph area (middle of the
screen; 13.4 pixels or 0.27°). The average precision (0.58°) is considered good.
More details on accuracy, precision, and the eye-tracker can be found in
Chapter 3 in line with advice from Holmqvist et al. (2023). The design of the
complete sequence of items (25 items in total), including files used in the Tobii
Studio software, as well as AOI sizes and output are available from a data
repository.

Data collection through stimulated recall verbal reports

Stimulated recall (Lyle, 2003) is also known as “cued retrospective reporting”
(Van Gog et al., 2005, p. 273). It is called retrospective “own-perspective video
think-aloud with eye-tracking” (Mclntyre, 2022, p.4) when used with a head-
mounted eye-tracker. The first part of the verbal reports consisted of cued
retrospective think-aloud. This means that students watched videos of their
own gazes laid over the items, while they explained their thinking when they
solved the items. This took place after students solved all items of the
sequence of 25 items (Boels et al., 2023). During the second part of the verbal
reports, clarifying questions were asked such as why they stated that their
previously given answer was incorrect. In this second part, participants were
also confronted with inconsistencies in their reports, such as differences
between the answer given during recall and the answer during item solving.
Time constraints influenced how many items could be questioned when
students reported verbally. During this stimulated recall, we illuminated the
location where students looked—through a kind of spotlight—and made the
rest of the graph darker (see also Chapter 3). We preferred this method over
having students look back at their fixations (e.g., red dots) for two reasons.
First, it prevents students from making different eye movements when looking
back—and describing the corresponding strategy—instead of the strategy they
initially used. Second, this makes visible the exact information that the learner
has looked at, instead of the information being covered by, for example, a red
dot (the fixation; e.g., Jarodzka et al., 2013).

5.3.4 Data analysis through a machine learning algorithm

We used different methods for analyzing our data. For the first sub-question
about differences in gaze data, we analyzed our data through a machine
learning algorithm (MLA). For the second sub-question about changes in
students’ strategies, we coded transcripts of verbal reports (for the codebooks,
see Chapter 3). For the third sub-question about students’ answers, we
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explored changes in answers and answer correctness. In the remainder of this
section, we elaborate on the analysis with a machine learning algorithm.
Studies usually only report on successful approaches. As a result, other
researchers keep reinventing the wheel. For the first sub-question, we,
therefore, decided to report both the MLA approaches we tried: our failed
attempt to use time metrics as inputs for the MLA and a successful approach
with spatial metrics.

Before applying a machine learning algorithm, we first wanted to get a
better understanding of the underlying data. Therefore, first, we plotted a
graph using the time metric total fixation time per AOI (also known as total
dwell time or total fixation duration). Next, we used this same time metric as
input for training our MLA. This approach failed to produce an accurate MLA.
Moreover, although this time metric is commonly used, recent literature
strongly advises against using total dwell time (Orquin & Holmqvist, 2017).
Second, we examined saccade directions and magnitudes (spatial metrics).
Finally, using these spatial metrics as inputs for our MLA was successful, which
is in line with the results of previous studies (Chapters 3 and 4).

In the next section, we first describe how the MLA we used (random
forest) works for those not familiar with MLAs and wanting to roughly
understand these. Next, we describe how we applied the MLA in a failing
approach using total dwell time and in a successful approach using saccade
direction and magnitude.

Gaze-data analysis through a machine learning algorithm (random forest)
A machine learning algorithm (MLA) learns from input data without explicitly
being programmed to use certain characteristics of the data. Supervised
learning algorithms (see Figure 5.9) are a subset of machine learning
algorithms whose training data contain known output values—in our case
whether a student’s gaze data belonged to a before or after item. Supervised
MLAs are broadly used for pattern recognition and for making predictions
(Friedman et al., 2001). Specifically, our work focuses on the use of random
forests to identify whether student gaze patterns change substantially
between similar items across our sequence of items.
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Chapter 5

participants’ data—with the possibility of sampling the same participant’s data
multiple times—and each split in the tree uses a small subset of the total
number of variables. The exact size of each sample is part of the tuning process
and our final values can be seen in the supplementary R-code.

Figure 5.10 Example of a decision tree. ESE means east-south-east direction of the
saccade

Allowing each tree to be built on only a subset of data and variables typically
leads to a worse-performing tree than if all data were available (Dzeroski &
Zenko, 2004). However, the risk of building one (the best) tree only, is that this
tree might work perfectly for exactly the given data set, but not on data sets
that are similar but slightly different. This is called overfitting. Building many
trees using independently sampled data and variables stops any individual tree
from drastically overfitting the training data and leads to trees that are
relatively uncorrelated (Hansen & Salamon, 1990). These uncorrelated trees
are then used together in an ensemble to make classifications, known as the
random forest. Each tree makes a prediction about the class of the given
data—in our case whether the user is seeing the item for the first or second
time—and then the votes are totaled. Whichever class receives the most votes
is the resulting classification of the random forest (Breiman, 2001).

This technique of simultaneously combining multiple machine learning
algorithms—the trees in a random forest—together is known as ensemble
learning. This approach is effective since the combined knowledge of many
algorithms is often more accurate than any single algorithm (Dzeroski & Zenko,
2004). Here, we train our ensemble using gaze data as inputs and a binary
output indicating whether the user is seeing the item for the first time or the
second time. We use the randomForest package in R (Liaw & Wiener, 2002) to
implement our random forest. Our final, fully-tuned model utilized the
following hyperparameters: 1,000 trees, 5 variables considered at each split, a
minimum node size of 1, and a maximum tree depth of 5.
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Assessing students’ interpretations of histograms before / after interpreting dotplots

We identified these optimal hyperparameters using a grid search of
size 375 (we tried all combinations of three different values for each
hyperparameter). Our nested resampling scheme utilized both an outer
resampling and inner resampling of 5-fold cross validation. The reported best
hyperparameters are the average values used across each of our outer
resamplings. We likewise evaluated our model using 5-fold cross validation. To
ensure no students’ data were part of both the training and testing data when
evaluating our model, we split the data into five groups, each group containing
10 students. We then used the 10 students’ data (yielding a total of 20
student-item pairings) as testing data, and trained our random forest on the
remaining 40 students’ data (80 student-item pairings). This process was
repeated five times until all students’ data have been separately used as
training and testing data. The software used for this data analysis is RStudio
(RRID:SCR_000432). The full reproducible code to build our random forest as
used in RStudio as well as the processed data are available through a data
repository. The original data can be found in Boels et al. (2023).

A failed MLA—using dwell time on AOIs

As described in the beginning of this section, we first plotted the data before
we analyzed it with an MLA. This plotting is considered part of the data
analysis, as the plots can provide indications of what features might be
relevant as inputs for the MLA. Differences in where and how long participants
looked—fixated—were explored over time throughout each of the four items
of interest. As an example, Figure 5.11 shows the fixations for two selected,
archetypical participants, LO1 and LO5, who progressed very differently
through the same item (here, the double-histogram ltem11). The x-axis, time,
has been rescaled from 0 to 1 so fixations could be compared between
participants who spent different amounts of time on each item. A time of 0.5,
for example, indicates the time at which the given participant is halfway
through completing Item11. In this figure, points are jittered (shifted a slight
amount in a random direction) to better display the density of points in a given
AOI at a given time.

StudentL01, like many participants, fixated on several different AOls
throughout their time working on Item11, often moving back and forth
between the graphing area and the corresponding axis. StudentL05, however,
spent most of their time fixating on the graph area of both the left and right
graphs—stopping briefly to look at the right graph’s vertical axis and label after
having spent a considerable amount of time looking at the graphing area. In
addition to these two main archetypes, the remaining gaze patterns varied
widely between each of the four items and between participants on a given
item.
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Assessing students’ interpretations of histograms before / after interpreting dotplots

To quantify the differences between student approaches to the before and
after items, we began by identifying features (variables) for training our series
of random forest models. If the random forest algorithm can consistently
differentiate between gaze data from the before and after item in each pairing,
then some combination of features must exist that is more prevalent in one
item when compared to the other, indicating a difference in gaze patterns
between the paired items.

For each of the two item pairings (pairing ltem02 and Item20, pairing
Iltem11 and Item21), we began by treating each participant-item combination
as our unit of observation, yielding a total of 200 data points (50 participants’
gaze patterns across two items in each of two pairings). For each data point,
we calculated the proportional time spent in each AOI, we identified the path
each participant took through the AOls, and converted this information into
features for our random forest model.

In short, this initial approach was unsuccessful. To prevent readers
from scrolling back and forth, we provide a short description of these results
here. There were no discernable differences at the individual level between
each pairing of before and after items. Participants spent roughly the same
proportion of time looking at each of the AOIs when they saw the before items
as when they saw the corresponding after item. Though the order in which
participants progressed through each of the AOIs differed between before and
after items, no discernable pattern emerged, and the correspondingly trained
random forest algorithms were unable to accurately predict whether a
participant was viewing a before item or an after item in a given pairing. We,
therefore, do not further elaborate on this approach in the Results section.

A successful approach—exploring saccade direction and magnitude

Based on previous qualitative work (see Chapter 3), we then used directional
movements—saccades—first by, again, visually investigating whether
differences appeared in saccade patterns between before items and after
items. We noticed a clear difference in the pattern of saccades due to the
mirrored orientation of the otherwise-identical graphs in ltem11 and Item21.
Thus, our subsequent analysis focused on mirrored versions of the after items,
Iltem21 and Item20, so that the graph area is made identical to their before
counterparts. In other words, we took the gaze coordinates for the mirrored
after items and adjusted them to match the corresponding coordinate of the
unmirrored before items. Without this un-mirroring, the random forest
algorithm could have easily differentiated between gaze data from the before
and after items in each pair. Figure 5.12 shows the patterns of saccades for the
same two selected archetypical participants—L01 and LO5—on one particular
pairing, tem11 and mirrored-ltem21. In this figure, all saccades are centered
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at the origin and radiate outward based on the direction and magnitude of the

saccade. Only saccades of magnitudes greater than 200 pixels are shown since

these are the saccades used in our final model. Saccades of less than 200 pixels
were generally eye movements that are not indicative of students moving from
one fixation point to another.

Given the size of the graph areas (width 489 pixels, height 313 pixels
for double graph items, 600 x 335 for single graph items), the maximum
possible saccade magnitude is 687 pixels (diagonal). The maximum speed for
human saccades is approximately 700 degrees per second (Fuchs, 1967; Oohira
et al., 1981) which is 570 pixels per 16.7 ms (a sampling rate of 60 Hz equals to
one sample every 16.7 ms). Therefore, the maximum for long saccades was set
at 600 pixels; longer saccades were considered to be artifacts. Furthermore,
we removed ‘saccades’ smaller than 50 pixels. Given the accuracy of the eye-
tracker (mean 13.4 pixels in the center of the screen and mean 56.6 pixels over
all measures), we consider these small ‘saccades’ part of fixations or noise.
Although this meant removing more than ninety percent of the measurements
on the graph area, the accuracy of our MLA became slightly better.

We defined the beginning of a saccade to be a movement with a
velocity greater than 50 pixels per 16.7ms. We defined the end of the saccade
as any two consecutive 16.7ms windows where the participant’s gaze had not
moved more than 50 pixels. Points of fixation were determined by averaging
the x- and y-pixel values of gazes in between two saccades, and each saccade’s
direction and magnitude were calculated between these points of fixation.

Figure 5.13 shows all saccades of a magnitude of 200 pixels or more for
each of the four items. There is a discernable difference in the number of
vertically oriented saccades between before and after items, especially in the
Iltem02 and Item20 pairing. The Item11 and Item21 pairing also shows
differences in the orientations of many horizontally facing saccades. Notably,
there are several more northwest- and southeast-facing saccades in ltem11
and more northeast and southwest-facing saccades in Item21 (after mirroring).
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Chapter 5

Figure 5.13 Saccades of magnitude 200 pixels or more of all participants on Item11 and
Item21 (double-histograms, top) as well as Item02 and Item20 (single-histogram,
bottom)

Note. Notice the difference in the density of students’ saccade directions between the
before items (left) and after items (right).

We examine differences in students’ gaze patterns on histogram items. If the
random forest algorithm can consistently differentiate between gaze data
from the before and after item in each pairing, then there must be some
combination of features (variables) that is more prevalent in one item when
compared to the other, indicating a difference in gaze patterns between the
paired items. To construct our random forest model, we tried different sets of
features—placing each saccade into mutually exclusive bins depending on the
direction, magnitude, and phase of the saccade, regardless of the point of
origin. We tested two different directional schemes, two magnitude schemes,
and three phase adjustment schemes, yielding a total of twelve combinations.
Here, a phase adjustment is the angle (in radians) at which the direction bins
are shifted, where 0 radians is equivalent to 0 degrees in mathematics—a
saccade pointed eastward—and pi radians is equivalent to 180 degrees—a
saccade pointed westward. Table 2 shows the details of each scheme. The
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identified as belonging to the after item. Each metric was calculated using 5-
fold cross validation.

We categorized the features into bins (see Table 2) for two reasons.
First, we wanted to extract the variable importance metrics from our random
forest in a way that might better inform us why the model was differentiating
so well. More specifically, which direction or magnitude of saccade is more
present in one item’s data and not the other’s. If we would have used
continuous features, this interpretation would have been much more
convoluted to human beings. Second, we also tried a continuous features
model. That model performed worse. This might be because saccades that are
close in direction and magnitude are functionally identical. In other words,
perhaps a saccade of 25 degrees and a saccade of 5 degrees both imply that a
student is scanning from left to right, and the difference in angles is either an
artifact of data error or a meaningless difference between fixation points.

5.4 Results

Our overall research question is: In what way do secondary school students’
histogram interpretations change after solving dotplot items? In this section
we answer this question through answering the following three sub-questions:

1) What are the main differences in students’ gaze patterns on
histogram items before and after solving dotplot items?

2) What indications can be found in students’ verbalizations
during stimulated recall that changes in their approaches to
histograms occurred?

3) What are the differences in students’ answers on histogram
items before and after solving dotplot items?

5.4.1 Main changes in students’ gaze patterns on histograms

The first sub-question is answered by using a random forest model. The twelve
combinations of direction, magnitude, and phase schemes (Table 5.2) yielded
accuracies, sensitivities, and specificities that varied between 55% and 88%
(Table 5.3). The standard deviations for each performance metric are reported
in parenthesis using 100 resamples. The most accurate combination for both
pairings was direction 2, magnitude 2, and phase adjustment 1, which
corresponded to the most granular direction and magnitude bins and no phase
adjustment. The details of each combination can be seen in Table 5.2. This best
combination yielded a remarkably high 77% accuracy for the single-histogram
items (Table 5.3) and 86% accuracy for the double-histogram items (Table 5.4).
We note that accuracy alone can be potentially misleading—in our study
attributing scanpath patterns randomly would yield 50% accuracy. Therefore,
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Figure 5.15 Plots showing the importance of variables for single-histogram
MLA-model (top) and double-histogram MLA-model (bottom)
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StudentL20:

Researcherl:

StudentL20:

Because there's a lot less than one kilogram, and relatively a lot [of]
two kilograms. And then after that it really expands to nine
kilograms but those are all very small numbers. So, then you end up
with three.

Yes. So now that you look at it again you think | should have given a
completely different answer?

Yes.

What this transcript also shows is that this understanding of how to estimate
the mean from a histogram took place sometime after single-histogram
ltem02, but it is not clear when exactly this understanding occurred. For some
students, it occurred after (at least one item of) the second series of histogram
items, as the following student excerpt shows. This student reflects on the
chosen approach in (left-skewed, single histogram) Item19 in the stimulated

recall:

StudentLO1:

Researcherl:
Researcherl:
StudentLO1:

Researcherl:

StudentLO1

The mean will be about between five and nine, because there are a lot
of values [measured weights] there. And then around seven, because
that's a little bit more to the left to zero from the middle between five
and nine.

Would you like to look at your eye movements again?

[LO1 looks back at eye movements]

[...] You gave the answer ten. And that's where you looked.

Ten? [sounds astonished]

Yes, look at your eye movements again.

[LO1 looks back eye movements]

Oh yes, in that case | misread the axes.

For twenty-six students, there was (almost) no room for improvement,
because they already gave answers within or close to the answer range during
the before sequence of single-histogram items. Another four to twelve
students seem to have learned specifically from the dotplot items. For
example, studentL16 answered seven (instead of 2.7) for single-histogram
Iltem02, but starts giving answers within or very close to the answer range for
all following single dotplot items, and continues with these correct answers for
the second series of single-histogram items after the dotplot items. During the
recall, this student first describes a correct strategy for finding the mean from
Iltem02 which is not in line with the given answer:

StudentL16:

202

Yes, again looking at frequency and weight, and then we see that
the one occurred very often and the further you get [to the right]
actually the less [frequency]. So, then the mean goes much more to
the one than to the high numbers.
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Researcherl: Yes, you then said about seven.
StudentL16: Yes, then | looked at it wrong again. Then | got weight and frequency
flipped again.

5.4.3 Differences in students’ answers to histogram items

At first glance, there seems to be no real difference in answer correctness
between Item02 and Item20 (Table 5.5). Nevertheless, there are two
indications in students’ answers that students learned between Item02 and
Item20. First, the answer range chosen for correct answers impacts answer
correctness and was set the same for all items. In this study, students seem to
prefer whole and half numbers. Enlarging the answer range to include the next
whole or half numbers would result in (a non-significant) improvement in
answer correctness (see note Table 5.5). Answer correctness is, therefore,
quite sensitive to researchers’ choices. Hence, changes in students’ answers
are a better indicator of students’ learning potential.

Second, differences between students’ answers and the actual mean
are much lower for ltem20 compared to Item02. We calculated the difference
between the actual mean and the estimated mean (= Maig). Maif is, as
expected, lower for the after item. We explored if this difference was
significant through a one-tailed paired-t-test, as we expected that dotplot
items would support students in correctly estimating the mean from
histograms in the after items. The assumptions for a paired t-test, such as the
unimodality and rough symmetry of the paired differences, were checked and
met. The results for before Item02 (Mg = 1.1, SD = 1.8) compared to after
Iltem20 (Mg = 0.4, SD = 1.7) indicate that it is possible that dotplots improve
students’ performance on the after item, t(49)=-1.7, p = 0.0469 < 0.05. We
consider this (and the next) p-value significant in the way the statistician Fisher
intended: “in the old-fashioned sense: worthy of a second look” (Nuzzo, 2014,
pp. 150-151). The 95%-confidence interval for the differences in Mgy is <-Inf,
-0.014] and Cohen’s d measure for effect size is 0.40. Altogether, this points
toward an improvement in answers. Note that, on the one hand, effect sizes
tend to be larger in researcher-made tests compared to general (standardized)
tests as well as in studies with small sample sizes. On the other hand, (very)
short interventions often have lower effect sizes (e.g., Bakker, Cai, et al.,
2019). Furthermore, although students’ answers’ correctness improved for the
double-histogram item after the dotplot items, this improvement is not
significant, as p = 0.3428 > 0.05 (e.g., McNemar, 1947).
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Instead of attributing the smaller My —for single histogram items—to the
solving of dotplot items, one alternative explanation is that the mean of
Iltem20 (M = 6.3) compared to Item02 (M = 2.7) is closer to the mean of the
frequencies (M = 4.9 for both). Nevertheless, we do not expect that this is the
case, as for another left skewed item of this sequence of items (Item06, not
further reported here, see Chapter 4) the mean of the frequencies (M =7.1)
was also close to the mean of this item (M = 5.7), but the difference between
actual and students’ mean (M = 1.2) was similar to before Item02. To further
exclude this alternative explanation, we suggest enlarging the difference
between the actual mean and the mean of frequencies by adding more data
(e.g., 50 packages) to the graphs. This number of added packages should not
be too high to avoid students guessing from the size of the numbers what the
weights are, as may have played a role in an item with SAT scores according to
Kaplan et al. (2014).

5.5 Conclusions and discussion

In this study, we answer the main research question of in what way Grades 10—
12 students’ histogram interpretations change after solving dotplot items.
More specifically, we look at students’ estimations and comparisons of means
from histograms. We expected that solving dotplot items would focus
students’ attention on the measured variable (weight) being depicted along
the horizontal axis. In turn, that would invite students to estimate the mean of
the weights (along the horizontal axis) instead of the mean of the frequencies
(along the vertical axis) in the histograms. We examined three indications that
taken together can suggest detailed-level changes in students’ histograms
interpretations: a change in students’ gaze patterns, a shift in students’
strategy for solving the histogram items, and an improvement in students’
answers. If the changes are for the better, the relevance of knowing them is
that they could underpin the learning potential of using dotplot items before
solving histogram items—a hypothesis put forward by researchers in statistics
education.

For the first indicator—a change in students’ eye movements—we
looked at differences in students’ gaze or scanpath patterns on the graph area
through a machine learning algorithm. Two main differences—on student
level—between scanpath patterns on before and after items were found. First,
there were proportionally less horizontal directions (ESE/WNW) in the gaze
patterns on the after items than the before items. Second, proportionally more
vertical directions (NNW/NNE) were found in the after items. A horizontal gaze
pattern is associated with an incorrect strategy while a vertical gaze pattern is
associated with a correct strategy. Our best implementations of random
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forests were able to accurately classify (roughly 80% of the instances) whether
it was the first (before) or second (after) time a participant had seen an item in
one of two pairings. What we can attest to, is a significant, discernable
difference in the way participants looked at the before items and when viewing
the mirrored after versions, even after accounting for mirroring in the graphs.
As we could not identify other confounding factors®3, it seems reasonable to
conclude that our findings exhibit evidence that students changed the way
they approached an item when seeing its mirrored version later in this
sequence of items. The results of our MLA are in line with the results of
previous studies (Chapters 3 and 4).

We cannot be certain whether the observed differences in gazes
indicate a change in strategies. Although scanpaths can disclose students'
strategies at a detailed level, the relationship between eye movements and
strategies is task-dependent (e.g., Orquin & Holmqvist, 2017; Russo, 2010). In
addition, not every eye movement is part of a task-specific strategy (e.g.,
Schindler & Lilienthal, 2019). Therefore, other data—such as our second and
third indicators—are often needed to support or refute conjectures about the
association between scanpath patterns and strategies.

The second indicator of changes in students’ histograms
interpretations—a shift in students’ strategy for solving the items—was
evaluated by coding students’ stimulated recall verbal reports. The excerpts
provide evidence that at least some students changed their strategies, from an
incorrect approach for estimating and comparing means from histograms to a
correct approach, during or after solving the dotplot items.

The third indicator—improvement in students’ answers—was explored
through both answer correctness, the difference between students’ estimation
of the mean and the actual mean for single-histogram items, and the changes
in students’ answers on the double-histogram multiple choice items. Answer
correctness did not change significantly on either item type. Nevertheless, the
difference in students’ estimation of the mean compared to the actual mean
was significantly smaller for the after item compared to the before item. We
use ‘significantly’ here in the sense Fisher intended: worthy of further
investigation. Data collection with new and more participants—from the same
population (Dutch Grades 10—12 pre-university track students)—is needed to
investigate the hypothesis that this difference becomes smaller, that there is a
change in multiple choice answers, and that both are due to solving the
dotplot items.

53 Students solved similar items in the sequence of items preceding the before items. Therefore,
we consider it less likely that solving a similar but mirrored item contributed to the change in
gaze behavior, although we cannot rule this out.

206



Assessing students’ interpretations of histograms before / after interpreting dotplots

The three indicators taken together suggest that at least some students
changed their strategy during or after solving the sequence of dotplot items. A
change in gaze behavior was observable through our machine learning analysis
with random forests. Depending on how learning is defined, this change could
point to a learning effect of solving dotplot items.

Interpreting the results, we abductively arrived at the following
explanations for our results. First, the change toward proportionally more
vertical gazes on the after items, is in line with the conjecture that the absence
of a vertical scale in dotplots can turn students’ attention toward the
horizontal scale which is where the variable is presented in both histograms
and dotplots. These students possibly figured out that the mean can be
estimated from the measured values along the horizontal axis. However, we
cannot rule out that factors other than solving dotplot items could have
contributed to this change.

Second, we consider the most likely explanation for the mixed results
that solving dotplot items promoted readiness for learning (Church & Goldin-
Meadow, 1986) about histograms. Having students reflect on their previous
strategy while they were cued with their own gazes during retrospective verbal
reporting then might have given them new insights. After solving the dotplot
items, histogram items seem to lie within the region of sensitivity for learning,
hence within students’ zone of proximal development (Vygotsky, 1978). It is
possible that the questions asked by the researcher (an adult), which were
intended to figure out how students solved the items, unintentionally
stimulated students’ thinking by asking them to explain—hence, reflect on—
their strategies. Further research is needed to check this explanation. An
alternative explanation for the results would be that other items after the
second series of histogram items induced students’ thinking. Although we
cannot exclude this alternative, we regard this to be less likely.

Further discussing the results, we note that this study is novel in the
following ways. First, to the best of our knowledge our study is the first in
education that combined a quantitative analysis of the scanpath patterns
found in spatial gaze data with insights from a previous qualitative study about
what part of the scanpath pattern is relevant for students’ strategies (namely,
the scanpath on the graph area only). The use of qualitative insights
contributes to the validity of the study while the quantitative approach
through machine learning analysis contributes to the reliability of it. Most eye-
tracking studies that use spatial measures investigate the sequence of AOls
(Garcia Moreno-Esteva et al., 2020) and the same holds true for those
combining it with MLAs (e.g., Garcia Moreno-Esteva et al., 2018). Instead, we
used vectors (i.e., direction and magnitude) of saccades. Studies in education
that utilize vectors are rare (e.g., Dewhurst et al., 2018). Second, novel is the
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use of an MLA for finding differences in gazes that are relevant for changes in
students’ task-specific strategies between tasks.

Our study has several limiting factors. First, many of the participants’
gaze data contained data loss. Although data loss is normal due to blinking or
looking away from the screen, some data loss could be avoided by pre-
excluding participants who wear glasses, contact lenses, or mascara. In
addition, an eye-tracker could be used that is better in catching gazes from
people with epicanthic folds (almond eyes). As we aimed for a naturalistic
setting, we did not exclude any of such participants. In addition, for some
participants we had sparse data. Some of these participants spent only a few
seconds looking at a given item. This made predictions and training more
challenging. Most of these participants appeared to parse the graph and
answer the corresponding question(s) in a rapid but reasonable manner,
although one participant appeared to scan the graph and answer the question
in such a rapid way that it is unlikely that they had time to fully understand
what the graph was depicting. Since no participants’ data were removed, it is
likely that some amount of data cleaning and removal of outlier participants
would increase the accuracy of our random forests, although our data
collection scheme does not allow us to know with certainty why a certain
participant’s gaze data were sparse for a particular item.

A second limiting factor was that we restricted our final analysis to the
graph area of each item, excluding AOIs such as the axes labels and the graph
title. The inclusion of these AOIs yielded more noise and worse results, but
further work might investigate the possibility of productively including them.
Third, answer correctness and students’ strategies correspond only to a limited
extent. Finally, and most importantly, our sample size—50 participants and 2
items yielding 100 participant-item pairings—is relatively small for machine
learning and statistical analysis. Our results indicate strong evidence of a
change in gaze patterns between the before and after items, but more data are
needed to generalize these findings appropriately.

A theoretical contribution of this study is that having students solve
‘messy’ dotplot items can create readiness for learning histograms. A reflection
phase seems to be needed to make use of the knowledge obtained. We
speculate that this partly explains the results from the literature on dotplots
(e.g., Garfield & Ben-Zvi, 2008b; Lyford, 2017). Another reason for these
results, we believe, is that only ‘messy’ dotplots contribute to students’
understanding of where the measured value is. Stacked dotplots already
contain an information reduction step (the binning) that could lead to similar
misinterpretations as for histograms (see Chapter 2). We, therefore, advise
investigating whether stacked dotplots need to be avoided in secondary
education.
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As a first methodological implication, our study shows how an MLA in
combination with eye-tracking data can be used to reveal phenomena that are
of interest to researchers of education. Future use could include interpreting
graphical representations in biology, physics, economics, and geography. By
choosing features (variables) that are relevant to the phenomena of interest
(here: students’ strategies for solving a histogram item) and meaningful to the
researchers, an MLA can give insights into subtle, detailed-level differences in
students’ strategies that are hard to detect through other research methods,
such as time measures in eye-tracking research or qualitative analysis of gaze
data by researchers.

A second methodological implication is that there seems to be a
practice effect within a sequence of items for at least some students, in line
with suggestions from Lumsden (1976). A practice effect refers to improved
performance after ‘practicing’ (i.e., repeatedly solving of similar or the same
items). This is also important for judging the validity of summative assessment.
More research is needed to confirm this within-a-test practice effect. Catron
(1978) found an effect of item types on an IQ test. For example, he showed
that development of a strategy in strategic items improved performance on
retesting. The present study does not consider an effect of item type. Further
research is needed to find out whether and for what items the order and type
of items influence the within-a-test practice effect.

What are possible implications of our findings? The ML approach is
generalizable to other sequences of items or any instance when a user may
wish to classify eye-tracking data into one of many discrete categories. Further
analysis is needed to correlate the number of saccades of specific directions
and magnitudes with particular viewing strategies. In other words, does the
presence of certain features (variables, such as horizontal or vertical saccades)
indicate students taking a particular strategy, and if so, is this strategy more
common when viewing a before item as opposed to an after item? Moreover,
we think our ML approach can also be used when researchers want to know
whether solving X (a question about a graph or image) changes the way
students solve Y (a question about a different type of graph or image).

For testing a future hypothesis that students’ estimations of the mean
from histograms become closer to the actual mean after solving dotplot items,
we suggest making a sequence of 24 items: eight histogram items (improved
versions of the existing items from the original sequence with more data in
them as well as one extra left skewed single histogram and one extra double
histogram), eight dotplot items (all items containing the same data as the first
eight histograms) and then again eight histogram items (all mirrored versions
of the first eight histogram items). To check a future hypothesis that giving
students stacked dotplots is a less effective way to scaffold them, a variant of
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this design could be made with stacked dotplots only, instead of ‘messy’
dotplots (with the stacks in between two values on the horizontal scale; all
stacked dotplots contain the same data as the first eight histograms). To check
a future hypothesis that the reflection phase is important, a variant with and
without stimulated recall verbal reports could be conducted followed by
another series of histogram items. In all these variants, machine learning
analysis can support this hypothesis testing.

For practitioners, insight into what students learn from doing a
sequence of items is also relevant for homework and formative assessment, in
particular, if no feedback is given—which is quite a common situation (e.g.,
when there is less student-teacher interaction). The observed differences in
gaze patterns together with the other evidence in this study, suggest that a
sequence of items can create readiness for learning, but a teacher may still be
needed to ensure that students reach their full potential.
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Chapter 6

Abstract Many students persistently misinterpret histograms. We think this is
partly due to a lack of embodied experiences. To answer the question of what
sequence of tasks—designed from an embodied instrumentation
perspective—can support students’ understanding of histograms and the
underlying key concepts, we created a hypothetical learning trajectory (HLT).
We used five design guidelines based on our theoretical framework: (1)
identify the actions that could have constituted the target artifact (histogram),
(2) design motor-control or perception tasks to which these actions are the
answer, (3) have students (digitally) perform these actions with feedback, (4)
stimulate reflection on actions, (5) create possibilities for transfer of actions by
varying contexts and environments. The main steps in the HLT are experiencing
a lack of understanding, reinventing the role of both axes and arithmetic
means in histograms and transfer. Our multiple-case study with five 10-12th
graders suggests that most conjectures of the HLT were met, but transfer could
be improved. Students’ gestures indicated using actions from previous tasks to
solve current tasks. The results suggest that embodied experiences with
reflection contributed to overcoming some well-known misinterpretations.
Overall, we show how students can be guided to reinvent more complicated
mathematical artifacts from actions with simpler ones.

Keywords Embodied design; Dotplot; Histogram; Hypothetical learning
trajectory (HLT); Sequence of statistical tasks; Statistics education.
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6.2 Review of the literature on histograms

6.2.1 Misinterpreting histograms

An extensive literature review revealed that many students persistently
misinterpret histograms (Chapter 2). Misinterpretations included that Grades
7-12 students incorrectly interpreted the height of bars as people’s heights
(Bakker, 2004b) and calculated the mean from histograms by dividing the sum
of frequencies by the numbers of bars (Ismail & Chan, 2015). The review study
revealed two of the statistical key concepts that underlie students’ difficulties
when interpreting histograms: data and distribution. Much research focuses on
specific misinterpretations related to distribution (e.g., center, variability,
shape). Nevertheless, several of these misinterpretations may originate in the
much less studied concept of data.

The concept of data encompasses “the need for data; how data
represent characteristics or values in the real world; how data are obtained;
different types of data, such as numbers, words, and so forth” (Garfield & Ben-
Zvi, 2004, p. 401). Gould phrases this as “understanding who collects data
about us, why they collect it, how they collect it”, “understanding how
representations [of data] in computers can vary and why data must sometimes
be altered before analysis” (Gould, 2017, p. 22). It includes ‘data moves’ which
is merging data, constructing new data based on existing data, and so on
(Erickson et al., 2019), and the difference between variable (e.g., weight) and
data (e.g., numbers representing the measured weights). For graphical
representations, this concept of data encompasses how data are represented
in, for example, histograms, boxplots, case-value plots, and along what axis the
measured variable is represented (Chapter 2). This is a broader concept of data
than that found in the GAISE Il guidelines (Bargagliotti et al., 2020), in which
data is used as ‘raw data’ and didactical choices needed to be made.

We focus on three aspects of the key concept of data in histograms
that many students tend to misinterpret:

e What the data are. The number of bars is incorrectly seen as the
number of cases N (e.g., Ismail & Chan, 2015; Sorto, 2004).

e How many variables a histogram depicts. Some people incorrectly
think histograms display two statistical variables (e.g., Cohen, 1996;
Meletiou, 2000; Zaidan et al., 2012).

e What the measured values are. Frequency (depicted along the vertical
axis) is incorrectly seen as the measured value (e.g., Bakker, 2004a). In
addition, graphs without context (only bars) can be histograms or case-
value plots and should be avoided (e.g., Cooper & Shore, 2010). Some
contexts are associated with specific axes in graphs (e.g., body height
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hand border value). We also learned that messy dotplots could create
readiness for learning (Chapter 5; Lyford, 2017).

6.2.4 Advice for the content of tasks

The following advice can be extracted for the content of tasks from the
statistics education literature. Use realistic problems (e.g., Biehler, 1997). Start
with graphs in which all measured values are visible, such as dotplots (delMas
& Liu, 2005), and then coordinate them with histograms, for example, via an
overlay (e.g., Bakker, 2004a). Have students sort histograms (Garfield & Ben-
Zvi, 2008a). Develop students’ conceptions of mean, spread, and variability
informally and in context first (Garfield & Ben-Zvi, 2008a). Have students
explore histograms containing small and large variation and remove or add
outliers. Students first need to predict or estimate the mean before
determining or calculating it (themselves or by technology). Other
recommendations for the content of tasks are to work with small and large
data sets (Garfield & Ben-Zvi, 2008a), give feedback (e.g., by confronting
students with results), have students construct graphs themselves (e.g., from a
table, Eshach & Schwartz, 2002), let students flexibly use multiple
representations (e.g., Lem et al., 2013c) and have them estimate or predict
(e.g., what the mean is) before feedback is given. In doing so, students must be
“forced to record and then compare,” as otherwise, they tend to see only
confirmatory evidence in the results (Garfield & Ben-Zvi, 2008a, p. 41). Many
studies advise using measures of central tendency (e.g., Gal, 1995). We
address this separately in the next section.

6.3 Theoretical framework for the design

We think the persistence of students’ difficulties with histograms is partly due
to a lack of sensorimotor experiences. Vygotsky stated that mathematical
thinking is grounded in such experiences (1926/1997):

When thinking of something round [...] we realize through the
movements of our eye muscles the very same adaptive
movements, the very same focusing on objects which we had
once perceived in actuality. Even the most abstract thoughts of
relations that are difficult to convey in the language of
movements, like various mathematical formulas, [...] even they
are related ultimately to particular residues of former movements
now reproduced anew. (p. 162)
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applied this in one task by having students drag measured values to their
correct position on a horizontal scale. (b) Create productive struggle
(Abrahamson & Bakker, 2016; Kapur, 2014; Roth, 2019). For this, some
ambiguity in task (formulation) might be needed (Foster, 2011). For example,
we used a body height context which is associated with the vertical axis while
these body heights are depicted along the horizontal axis. (c) Support students
by reducing the complexity of the environment through limiting degrees of
freedom (Bakker, Shvarts, & Abrahamson, 2019; Bernstein, 1940/1967), which
makes tasks manageable and focuses the students’ attention on the target
knowledge. For example, in several tasks, students can change the height of a
bar in a histogram—to see how this influences the mean—but not its position
or bin width. Also, in the first tasks on the mean, we used histograms with only
two bars. (d) Guide students to gradually reinvent mathematics through
sensorimotor actions and/or perceptions. To accomplish this, in consecutive
tasks, (mathematical and statistical) artifacts such as axis, numbers, bars or line
segments are added that can guide students toward the mathematical and
statistical discourse. Abrahamson et al. (2021, p. 168) call this “mathematical
appropriation.” For example, in several tasks, students drag a vertical line to
their estimated mean. (e) Start with a macro learning problem that triggers
intentionality within body-artifacts functional systems.

(3) Have students (digitally) perform these actions with feedback. This
guideline contains two aspects: (a) have students perform the actions and (b)
provide students with feedback. For persistent problems like students’
conceptual difficulties with histograms, it is worth looking at who is doing the
mathematical actions—the student or the software? In most statistical
software, actions are hidden—for example, a histogram appearing directly
when an option is clicked (e.g., InZight, Minitab®®, minitools) or displayed, such
as moving dots in a dotplot to the correct bin (e.g., TinkerPlots, Fathom,
CODAP>?). Sometimes, both are available (e.g., VUstat, GeoGebra®8). However,
in embodied design, students initially perform the actions themselves (e.g.,
build a dotplot or histogram from data). Hence, the construction of target
artifacts is not outsourced to the (digital) environment until students have
reinvented and established each artifact themselves (Chase & Abrahamson,
2015). For instance, height of bars in a histogram is not outsourced until
reinvented. Therefore, the unit height in our histogram overlay onto a dotplot
in our first tasks is not equal to the height of a dot, and a stacked dotplot is
avoided. We chose to give feedback after the students answered: a check box

56 https://www.stat.auckland.ac.nz/~wild/iNZight/; https://www.minitab.com/en-us/
57 http://tinkerplots.com/; https://Fathom.concord.org/; https://CODAP.concord.org/
58 https://www.vustat.eu/; https://www.geogebra.org/
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Chapter 6

analyzed the HLT step by step. For each step of the HLT (Simon & Tzur, 2004),
we analyzed each student’s reasoning in relation to the conjectured learning
and aligned this with extra information about each case. Furthermore, we
merged the gained information about each HLT step by comparing and
contrasting the cases—in line with the method of cross-cases analysis. Typical
tasks for each step in the HLT are described in a section including results; an
overview of the HLT is found in the data analysis section and some tasks are
described in Appendix A of this chapter.

6.4.1 Participants

Participants were five, pre-university track students in Grades 10 and 12, see
Table 6.1. They all took the Mathematics A course on applied analysis in
economics and health contexts, and statistics (Daemen et al., 2020). Their
mean self-reported mark for mathematics was 6.7 on a ten-point scale (10 is
highest, 1 is lowest; 6.9 for females, 6.5 for males), indicating normal
mathematical abilities. Participants were given a 30-euro fee for their
participation. Approval from the Science-Geosciences Ethics Review Board was
obtained under number Béta S-21578, and written consent of participants and
their legal representatives (if necessary) was obtained.

The participants’ primary experiences were based on the most
common textbooks that introduce histograms in Grade 9 after introducing
stem plots and frequency tables. In Grades 10-12, students with Mathematics
A re-encounter histograms. Textbooks sometimes confuse histograms and
case-value plots and pay no attention to relevant differences. Students use a
calculator for standard deviation, mean, median, first and third quartiles, and
interquartile range and learn to read off values from histograms and boxplots
and to draw these graphs. Comparing graphs (samples) is done through
calculations in hypothesis testing only.

Table 6.1 Participant characteristics

Student Age Grade Sex

S1 15 10 Female
S2 16 10 Female
S3 16 10 Male
S4 18 12 Male
S5 18 12 Female

6.4.2 Data collection

Students filled in a questionnaire on their characteristics and pre-knowledge.
Students’ discussions were audio and videotaped. The students’ worksheets
and grid papers were also collected.
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6.4.3 Setting of the intervention
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Chapter 6

guideline for teachers and software designers both for the teaching
experiment and for future use and 3) to analyze what actually happened
compared to what we conjectured would happen. When conjectures are
supported, tasks are kept; if not, we try to explain why and how tasks could be
improved in a future redesign. In addition, the first author held mini-interviews
with some (pairs of) students, with questions—Can you describe what the
similarities and differences are between those graphs? (case-value plot and
histogram, Task 1)—addressing Hla: By comparing means and variation of
data in two graphs, students experience that they focus on most apparent
features that are similar for both graphs (such as shape, number, and position
of bars), but irrelevant for this comparison. The mini-interviews, together with
students’ written materials, and videotaped discussions, were to verify
whether the conjectures of the HLTs were met. Some relevant conjectures are
discussed in the next section.
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6.5 Materials, conjectures, results, and ideas for redesign
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6.5.1 HLT step 1: Learning initiation—experiencing not understanding
Materials and conjectures HLT step 1: Task 1
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histogram is related to the number of cases, not to the measured value ‘body
height.” When all dots are placed, a check button is available. The conjectures
are:

H2a: By moving dots, students perceive that every dot in
a bar stands for one measured value.
H2b: By horizontally moving dots to their correct position

on a horizontal scale, students notice that the position of a dot
depicts the measured value.

Figure 6.4 In Task 2, the body heights of ten students are already depicted in a dotplot.
Students are asked to position the heights of the six students at the far right by sliding
these dots to their correct place on the number line. The labels on these six dots are
(from left to right): 191, 176, 161, 185, 174, and 164

Results HLT step 2

Despite our design guidelines, we did not see much productive struggle. All
students immediately tried to move the dots to their correct position. Students
understood that the values along the horizontal axis were depicting body
height. One student noticed he cannot choose the vertical position of balls:

S4: Well, you can’t choose in height.
S5: No, he adjusts it himself.

One of the mini-interviews illustrates that the conjectures were met for these
students:

S1: That determines the [body] height. Of the student.

T: And how, um, how do you see that it has a certain height?

S2: What do you mean? Where it is located? Like, on the x-axis [gestures
horizontally with index finger] or something?

Ideas for redesigning HLT step 2

The action of connecting the data points with the table is missing in the
current design of this task. In the next cycle, student names rather than
numbers will be put on the balls so that students need to use the table.
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6.5.3 HLT step 3: Reinventing the role of the vertical scale in
histograms

Materials and conjectures HLT step 3: example Task 3

Tasks 3 and 4 both aim at reinventing histograms. The target knowledge is
some aspects of the key concept of data, such as the number of cases and the
measured values. The context is creating a histogram that supports a school
principal in deciding which two chair sizes to buy. Each chair size is suitable for
students with certain body heights. The histogram depicts students’ heights. As
chair sizes are related to students’ heights, the histogram could be used for
taking an informed decision about what chair sizes to buy. Both tasks
concentrate on the following content: the height of a bar in a histogram
depicting the number of cases in it (only when bin widths are equal). In Task 3
(Table 6.2 and Figure 6.5), students first drag down sliders to make the bins.
Next, a pulled-up strip creates the height of the bar. In this task, a goal-
oriented sensorimotor action aims to facilitate the perception of the height of
the bar depicting the number of cases. When all bars are done, there is a check
button with a green v or red x as feedback. The size (height) of the dots is
purposefully not chosen as a unit height in the histogram, as we want students
to think about what the height of each bar represents.

Tasks 3 and 4 have a similar layout. In Task 4, we created a context in
which students need to move some dots to a new position based on changes in
the data. As this influences the histogram, students also need to adjust the
bars’ heights. Task 4 aims to ensure that students understand the relation
between the height of a bar and the number of dots (cases) in it. After Tasks 2—
4, we expect students to understand these three most important aspects of
the key concept of data: perceive that there is only one statistical variable
(students’ height), that the values of this variable are along the horizontal axis,
and that the height of the bar is related to the number of cases in each bar
(equal bin widths only). The conjectures are:

H3a: By dragging the (grey) separating lines down,
students notice that there are different measured values
(students’ height) depicted in one bar.

H3b: By moving the (orange) sliders up, students notice
that the height of the bars is related to the number of cases in a
bar when class intervals are equal.

Results HLT step 3

All students mention that they do not know what a histogram is. S5 slightly
hesitates when discussing the 10 cm steps. She first gestures horizontally to
indicate which axis this 10 cm refers to and then states: “Yes, that’s right”.
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Note that this gesture matches the enactments in the previous task and helped
this student to rethink what runs along the horizontal axis. In addition, S4
dragging down sliders—creating bins—was enough for S5 to see it boxed as
shown by her bimanual gesture, in which she uses her thumb and index finger
as if grabbing two boxes, and moves these down, repeating S4’s action. Her
gestures grounded her understanding. The teacher intervenes a bit later to
explain they can pull the orange slider up. Guided by S5, S4 immediately pulls it
up to the correct height for each bar. S1 and S2 understood the horizontal
binning (“from 170 to 180 is one size [of students’ length for which chairs are
to be bought]”), but did not know what the height of each bar represents.
Their first attempt was to make all bars as high as the dotplot (Figure 6.5, left).
Next, they used the context: two bars for the chosen chair sizes (Figure 6.5,
middle). S2 plays with the middle bar and raises it all the way up to the
maximum height possible (seven). This movement allowed for a new
perception, as now S1 says: "Oh, maybe you should put as far up ... as there
are people in the box”. Once the histogram is constructed, they discuss the
graph:

Figure 6.5 Several attempts of S1 and S2 to construct a transparent histogram over a
messy dotplot; the right one being correct

S2:  What is this scan? [Figure 6.5, right]

S1: Thisis a histogram.

S2:  Huh, but he [the school principal] could only order two, right?

S1:  Yes, but this may help him, because now he knows.... now he can see that he has
to be in those first three [she means the middle three] then he needs anyway
that one [points to the middle bar] and then he can choose between those other
two [left and right of the middle bar] because he knows how many people are in
there.

S2:  Oh, that’s clever.

In the mini-interview, the teacher-researcher asked: “And is everyone in such a
bar the same height?” Both S1 and S2 pertinently answered no, in line with
H3a. S4 and S5 said the height of each bar represents the number of people in
that bar. S3 worked alone. He first used the context and created a histogram
with two bars: each bar representing the number of chairs to be ordered
(Figure 6.6), but he could not get the bar at the height he wanted (eleven). S3:
"Wait. There are sixteen students [reads the text again] ... and | can specify a
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6.5.4 HLT step 4: Reinventing arithmetic means in histograms

Materials and conjectures HLT step 4: example Task 8
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Chapter 6

button. Then, a line with a blue triangle underneath it appears (Figure 6.7,
left). The triangle can slide horizontally. To reach the task’s aim, students
untick the balance button and alternately add high (10) and low (1) marks
(Figure 6.7, middle and right) and estimate and check means in between.
During estimation, the tool was not visible. The idea of a balance tool is based
on what students spontaneously described when solving similar tasks in our
previous eye-tracking research (Chapter 3). Based on our design guidelines,
we, therefore, introduced this artifact. The conjectures are:

H8a: By adding low and high numbers alternately,
students experience that higher numbers do not contribute more
to the mean than lower numbers.

H8b: By adding lower numbers further away from the
mean and higher numbers closer to the mean, students perceive
that numbers further away from the mean influence the mean
more than numbers closer to the mean.

Figure 6.7 Example stages Task 8. Dotted line: students’ estimation. Blue line: balance.
Checking the estimation (left), adding a new mark (middle, balance tool not ticked),
comparing estimated and actual mean (right). The solid vertical line and the dotted line
are bolded here for clarity

Results HLT step 4
While performing Task 8, S1 and S2 spontaneously formulated three ideas. We
speculate that these were provoked by having students repeatedly estimate
the balance point, write their estimation down, and then check it.
Furthermore, the question “What do you notice about the balance points?”
may have helped to form their ideas:

e If you add a ten and a one the mean stays the same (S1)

e Alternately adding tens and ones moves the mean toward 5.5 (S2)

e Adding a ten increases the mean (which is then around 7) by 0.2 and

adding a one decreases the mean by 0.4. (S1)
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Chapter 6

Figure 6.8 Possible redesign of Task 5 from action-based embodied design perspective
(left: incorrect, as mean is not in the correct position, right: correct, as mean and
heights of bars are at a correct position). The left bar can be moved up and down only;
the right bar is fixed. The triangle (mean) can only be moved horizontally

As an example, we could redesign Task 5—the first task that uses the mean (by
asking for the balancing point in a bimodal histogram). One option is to
introduce the mean through an action-based embodied design (Abrahamson et
al., 2020) by using a motor-control problem. For example, one bar could have
been drawn already (right, black bar, Figure 6.8) and one could have the
students manipulate the height of a second (left, red) bar as well as the
horizontal position of the (blue) triangle (mean) until they hit a correct
combination of both. Students can then be asked to keep the task green while
adjusting the bar and triangle continuously. Furthermore, a green/red frame
(or screen) might be preferable over colored bars, as colored bars in the foveal
view area might hinder the creation of perceptual structures (Bakker, Shvarts,
et al., 2019). Having students fluently solve one or more motor-control
problems regarding the mean, allows them to reinvent the balance artifact
themselves before we introduce it. Therefore, in our example, the horizontal
strip of the balance is removed and only the triangle is kept as a preparation
for future introduction of this balance. Some applications use the horizontal
axis as a balance (e.g., Tl, 2015). As the digital environment we used would
require too much reprogramming, we used a horizontal strip below the axis
instead. It is left for future research to investigate how the placement of the
balance (and triangle) influences students’ conceptualization of the mean.

In retrospect, we note that Task 8 provided an opportunity to further
mathematize by working toward the algorithm for calculating the mean (the
process, Skemp, 1976) through the equilibrium of moments. In a future design
cycle, we could, therefore, have students first estimate and then calculate the
mean, and have them reflect on the algorithm. The benefits of estimating the
mean from a histogram for large datasets might then also become more
evident.
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6.5.5 HLT step 5: Confirming learning—transfer to other contexts and
environments

Materials and conjectures HLT step 5: example Task 18

The aim of step 5 is to create transfer to other contexts and environments. In
Tasks 5, 14, and further, we vary contexts. As histograms are specifically
designed for large datasets, we continued from Task 15 with increasingly large
sets in realistic contexts. Since several studies show each environment creates
other challenges (e.g., Alberto et al., 2022), some tasks were delivered on
paper (Tasks 18-20 and 22). In Task 18, for example, students were asked to
construct a histogram from a frequency table with given bin widths (annual
income classes, see Appendix A of this chapter). Students first needed to draw
a histogram for a given frequency table and then draw lines in it. Context and
conjectures for this task were:

If you have less than 1694 euros per month to spend as a family
with one child, you are officially poor. At 1850 euros you don’t
have much but just enough [...]. Indicate with a blue line in the
histogram where the poverty line lies. For single people, the
poverty line is 1039 euros per month. Indicate this with a red line.

H18a: By drawing a histogram from a frequency table, students perceive how an
interval (e.g., <-10, 0] ) is represented on the continuous horizontal scale
in histograms.

H18b: By drawing a histogram on paper from a frequency table, transfer to
another environment (paper) is established.

H18c: By drawing vertical lines for other values than the mean, students notice
what part of the population is to the left of this line.

Results HLT step 5
Students performed as expected on most of the transfer tasks. The results of
Task 20 (Table 6.3) indicate an improvement compared to Task 1. An exception
is paper Task 18, which has mixed results. In it, all students but S2 (Figure 6.9,
bottom left) correctly constructed a histogram with a continuous scale (ratio
measurement level) along the horizontal axis, suggesting that H18ab is met. S2
asked S1 if annual income must go along the x-axis, and she horizontally
gestured out this axis, in line with the newly built body artifact (here: x-axis)
functional system in Task 2. S2 then gestures a horizontal line while confirming
“annual income at the x-axis” and gestures a vertical line for “number of
households on the y-axis.” This gesturing suggests that they consider variables
as enacted on a coordinate plane, which was what we aimed for in HLT steps 2
and 3.

To our surprise, three students drew horizontal lines for income: S1, 54,
and S5 (Figure 6.9). The other two students corrected their initial horizontal
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lines. S1 looked at the number [1039], then at S2, put her triangle ruler
horizontally, looked at the number again, and drew a horizontal red line [at
1039, the monthly income e.g., Goderis et al., 2019]. She was attracted to the
more similar numbers along the vertical axis (number of households in
thousands) rather than the annual income numbers (in thousands, CBS, 2021)
on the horizontal axis. When finished, S1 and S2 compared graphs, and S2
gestured a vertical line on the paper, first with her index finger and then with
her whole hand, saying “you should indicate it like this.” S1 responded: “but it
is just...” and then paused, with her index finger on the words “X annual
income thousands,” marking the variable along the horizontal axis. She
thought, then said: “Oh uh ha-ha,” and then laughed “Oh, but it indeed needs
to be like this,” and gestured a vertical line. S1 noticed her mistake but did not
change the drawing. Students S4 and S5 also were attracted to the vertical axis
and drew these horizontal lines, most likely also using similarity between
numbers. Again, we see no thinking. One explanation (cf. Kaplan et al., 2014) is
that the magnitude of the numbers (number of households in thousands)
along the vertical axis seemed to better match the magnitude of monthly
income. To avoid this, students should first convert monthly income to annual
income (e.g., by multiplying by 12 or 13). From an embodied perspective, we
interpret this as students’ body-artifacts (numbers) functional systems for
finding similar numbers being so strong that they do not even think about
what axis the number should go on.

Ideas for redesigning HLT step 5

Note that the intervals in the histogram of S2 could indicate that this student
sees the bins as categories instead of a numerical scale. This conjecture could
be tested in a future design cycle by presenting students with an unordered
frequency table or with zero frequencies. Furthermore, to establish a better
transfer of the measured values positioned along the horizontal axis, we
suggest adding reflection questions. Next, in step 4 of the HLT, we could design
some tasks that ask for the position of other values than the mean, with
feedback. Another option is to extend HLT step 2 to paper before introducing
step 3. Furthermore, the problem of monthly and annual income could have
been avoided by providing annual income in all cases. However, for classroom
use, we would prefer to keep the numbers from the original data sources as
students could also encounter these in their daily life. Next, we would have a
classroom discussion on the need to convert some numbers, rather than
avoiding this problem. In addition, when working toward density histograms,
using frequency for the height of bars in histograms might hinder further
conceptualization. Using relative frequencies might solve this problem.
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6.6 Conclusions and discussion

In this study, the central question was: What sequence of tasks designed from
an embodied instrumentation perspective can support students’
understanding of histograms and the underlying key concepts? Our answer is a
5-step hypothetical learning trajectory (HLT). Those steps were designed
according to an embodied instrumentation approach in which learning is seen
as enactment: Step 1 sets up a general goal for learning by having students
experience a lack of understanding; Steps 2—4 aim to fulfill this goal by having
students become aware of the role of the horizontal scales and reinvent the
role of the vertical scales and arithmetic means in histograms. Transfer to
other context and environments in Step 5 was a way for the students—and
researchers—to confirm whether learning occurred. A sequence of 22 tasks
was created to foster these steps. The tasks explicitly asked for goal-oriented
sensorimotor actions that prompt students to perceive the most difficult
aspects of how data, and their distribution, are depicted in histograms.
Affordances of the digital environment allowed for direct exploration of
histograms’ qualities: axes, dots representing cases, histogram bars, and mean
were directly extending students’ hands in their body-artifacts functional
systems, thus allowing for instrumented actions of representing data with
histograms (Shvarts et al., 2021). Furthermore, the students were asked to
search for the task’s solutions, rediscovering several aspects of a histogram
and including them in their emerging functional systems. The process of
searching for the task solution is conceptualized as a productive struggle (e.g.,
Kapur, 2014; Roth, 2019). Productive struggle can be understood as “students
attempting to make sense of something that is not immediately apparent,
working toward reconfiguring their understanding of facts, ideas, or
procedures” (Reitemeyer, 2017, p. ix). An example of this is the unit height for
bars in histograms not being equal to the size of dots (e.g., Task 3), which
invited students to explore the situation and notice this height is equal to the
number of measurements (in the equal bin widths case).

Comparing students’ performances with the conjectures from the
anticipated HLT, our case study shows most conjectures were met. Students
experienced misunderstanding in the first step, had no trouble imagining the
role of the horizontal scale, struggled but reinvented the role of the vertical
scale in histograms, seemed to have an easy task estimating the balance point
of a histogram and stated that its practical relevance is that it is the arithmetic
mean. The final task showed students mostly could transfer the acquired
knowledge to paper, so the functional system formed within a digital
environment could easily re-emerge in a different environment. Students’
gestures indicated using actions from previous tasks to solve current tasks.
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Taken together, the results suggest that embodied experiences with reflection
contributed to overcoming some well-known misinterpretations. Yet, some
difficulties occurred when numbers were given that seemed to better match
the numbers along one of the axes. So, we suggest adding transfer tasks also
after the steps of the HLT that are dedicated to horizontal and vertical actions.
In addition, including other mathematical notions into the emerging functional
systems can be improved, for example, by fostering students’ reinvention of
the algorithm of calculating the mean based on their sensorimotor
estimations. To further develop students’ notions of distribution and
variability, for example, in density histograms, the artifact “area” may need to
be included in the design, and the artifact “interval” may need to be
reinvented by students (Boels & Shvarts, 2023).

A limitation of the study is the small number of students in it and their
varying previous experiences with histograms. Moreover, in most classrooms,
there will not be time to spend 4-5 lessons (3.5 hours) on ‘one’ topic. In
further discussing limitations, “It is important to acknowledge that the
complexity of students’ [...] learning, and of the designed learning
environments, makes it impossible to specify completely everything that
transpires in the course of a design study.” (Cobb et al., 2016, p. 40).

A methodological contribution of our work is our design guidelines. As
the generalization and value of design guidelines come from the iterative
process of letting the guidelines do the actual work (Bakker, 2018), we now
revisit our theory-driven design guidelines based on the empirical tryout. Using
our first design guideline (identify the actions that could have constituted the
target artifact), again during the evaluation of the results, we reconstructed
how we melted artifacts back to the actions that are crystallized in them
(Figure 6.1). It made us aware that we did not pay enough attention to the
binning action that histograms reify. For future research, we call researchers to
question all pre-given aspects of the artifacts they use and to reveal artifacts’
origins.

The second design guideline—to design motor-control or perception
tasks to which these actions are the answer—helped us think about
redesigning HLT step 4 (estimating arithmetic mean). This guideline includes
productive struggle and as we can see from the results, productive struggle can
create aha moments. Moreover, the absence of such moments for crucial
steps in the HLT (e.g., step 2) might underlie difficulties during transfer to
another environment (e.g., positioning lines in Task 18). We, therefore, suggest
using “create productive struggle for crucial steps in the HLT” as a separate,
sixth design guideline. Theoretically, it means that tasks that students’
emerging functional system is solving should be new enough for the learning
process—rather than simple recollection—to happen.
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The third and fourth guidelines—on performing (digital) actions with
feedback and reflecting on them—need no further elaboration. They are solid
guidelines matching previous work on embodied design (Abrahamson et al.,
2020; Alberto et al., 2022). In Task 18, we saw that two students did not
discover their misplacement of poverty lines. This observation makes us
wonder if further learning would have been induced if we had included
feedback here.

The fifth guideline is to create possibilities for transfer of actions by
varying contexts and environments as we did in steps 4 (different context) and
5 (paper). The difficulties students encountered on paper Task 18 stress its
importance. A functional system needs to be flexible and adaptable to various
environments. Therefore, such a transfer is also desirable within each crucial
step and not only at the end of an HLT.

A scientific contribution of our work is that it substantiates the general
ideas of embodied instrumentation by showing how more complicated
artifacts (e.g., histograms) can be reinvented from actions with simpler ones
(e.g., positioning dots on a scale, Figure 6.1). Our HLT can be seen as a further
step from a general theory of embodied instrumentation toward a domain-
specific instructional framework on teaching how data and their distribution
are depicted in univariate graphs such as histograms, dot, box, stem-and-leaf,
and hatplots (Konold, 2007) and histodots (Chapter 2). Unlike other
researchers who work on general principles of enactive pedagogy (e.g.,
Abrahamson et al., 2021), we try to work out a design framework that helps to
design for a specific mathematical domain (e.g., statistics) and topic (e.g.,
histograms).

We now discuss recommendations for future research and design. In
the previous section, possible improvements of the tasks are suggested based
on the results. Further solidification of students’ understandings requires
further enactments with histograms. In line with statistics education literature,
we suggest adding more comparison tasks for dotplots (messy and stacked)
and histograms as comparing data of two groups is core to statistics and
important for developing statistical literacy (e.g., Garfield & Ben-Zvi, 2008a).
Students could first be asked which group is better (cf. Watson & Shaughnessy,
2004) and then which group has a higher mean and which has higher
variability. This task is similar to Tasks 1 and 20 in our HLT, but now with the
same type of representation. Furthermore, we suggest adding graphs with the
same ranges to support students proceeding from informal measures for
variability (range) to more formal ones (e.g., deviation from the mean).
Students can also be asked to produce at least two different datasets for a
given histogram or to collect their own data and depict these in univariate
graphs (e.g., Garfield & Ben-Zvi, 2008a). In future cycles, it is advisable to guide
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students to reinvent other univariate graphs as “in statistics different [...]
representations are used to identify different aspects of the same data
(transnumeration)” (Burrill & Biehler, 2011, p. 64). A future design cycle could
profit from other approaches to embodied designs, such as probability
(Abrahamson et al., 2020), for example, by having students stack paper cards
with measured values into bins.

This leads to several questions for future research and redesign. For
instance, how should our HLT be placed along the curriculum? Little is yet
known about how students in Grades 6-8 interpret histograms (e.g., Bakker,
2004a; Whitaker & Jacobbe, 2017). Are more concrete models, such as the
balance model with blocks and a ruler, suitable for Grades 4-6 (e.g., O’Dell,
2012)? What are the benefits or downsides of starting at an earlier age? Our
HLT guides students in a specific direction. Given our design guidelines to
carefully add reinvented artifacts in successive steps, this seems appropriate
for initial learning. How to proceed? Are all suggested tasks needed in Grades
10-12 or can some tasks be combined? How could—or should—our HLT deal
with students who have already had experience with the target knowledge as
well as with several mathematical and statistical artifacts? Students’
mathematical backgrounds can hinder the development of new forms of
perceptuomotor structures (Shvarts & Van Helden, 2021). Could our HLT
benefit from some flexible adaptation for Grades 10-12 students as well as
tertiary students, as their mathematical backgrounds can be extremely diverse
(e.g., Bor-de Vries & Hoogland, 2020)? In addition, design-based
implementation research (Fishman et al., 2013) recommends that future
design cycles involve more stakeholders and occur in classrooms.

Designing from an embodied instrumentation perspective highlights that
software designers need to think carefully about what kind of actions
(crystallized in artifacts) they outsource to the software and what actions they
transform into tasks for the students. For example, most software can
automatically create histograms but lacks possibilities for students to reinvent
them. Similarly, software designers might include an option for students to
freely drag two graphs to a position suitable for comparing the graphs instead
of presenting graphs in an already comfortable position for comparison. There
is a risk of outsourcing actions to software too early, which hinders students to
notice critical aspects of mathematical practice and artifacts. Our study
exemplifies how designing from an embodied instrumentation perspective can
help detect such actions. We call on software designers to create opportunities
for students to perform these actions themselves during initial learning of
mathematical and statistical concepts.
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Appendix A HLT and example tasks

A.1 Hypothetical Learning Trajectory (HLT) (Simon & Tzur, 2004)
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A.2  Description of selected tasks

Some pseudonymized videos as well as the paper version of the lesson
materials can be found in a data repository (accessible for researchers on
request). The link to all digital tasks used in this research is (in Dutch):
https://app.dwo.nl/embod/?locale=en&profile=108&hash=%23s%3A698275#s
:698275. Below, for each task discussed in the article, as well as some other
tasks, relevant graphs or screen shots are shown to give the reader an
impression of the tasks.

A.2.1 Task 1
Task 1 was a paper-and-pencil task. For this research, this task was projected
on a digital whiteboard in a Word document.

International research shows that some graphs from newspapers and
scientific articles are more difficult to understand than others. The question
below might appear in such an international test. By the end of this series of
tasks, you will find it easier to answer the questions below.

Figure A.1 Graphs used in paper task 1

Both graphs show weights. On the left, you see the weight of packages
delivered by postal worker Julia. On the right, you see the weight of beach
waste collected by different students. Which of the following statements about
these graphs is true?

The average weight is larger in the
e graph on the left,
e graph on the right,
e approximately the same in both graphs.
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The variation in weight is larger in the
e graph on the left,
e graph on the right,
e approximately the same in both graphs.

Explain how you arrived at your answer and why you think this is so.
A.2.2 Task 2

Figure A.2 Start and end screen task 2

Note. After solving the task, students are asked to tick the CheckTask2 box on the
bottom left. The feedback is either a green v (correctly solved) or a red x (incorrectly
solved).

A.2.3 Task 3

Figure A.3 Screens task 3 where students advise a school principle (see, for example,
Eshach & Schwartz, 2002)

Note. In task 3 students make a histogram overlay on the dotplots. Start screen (left),
all sliders pulled down and the first one pulled up (middle) and solved and checked
task (right). The context for the task is given on the left side of the screen.
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A.2.4Task 4

Figure A.4 Task 4 requires moving data points and adjusting the histogram from task 3.
Screen shot of the task after being correctly solved and checked by the students

Note. Ticking boxes for keeping track of what has been done (left side of the screen) is
optional.

A.2.5 Task 5

Figure A.5 Screen shots of task 5

Note. Start screen with the context (left) and no bars, all bars pulled up and balance
tool ticked (middle) and solution (right). Students are asked to first pull the bars up
according to the table, then tick the balancing tool to find the balancing point.

A.2.6 Task 6

Figure A.6 Screen shots of task 6

Note. Start screen (left) with no bars, bars pulled up and vertical line dragged to the
estimated balance point (middle), finding the balancing point (right). In addition to the
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previous task, students are now asked to drag the vertical line to their estimation of
the balancing point.

A.2.7 Task 7

Figure A.7 Screen shots of task 7

Note. the vertical dotted line at students drag to the left to indicate their estimation of
the mean, before they check it with the balance tool.

A.2.8 Task 8

Figure A.8 Screen shots of task 8. Initial histogram (left) and histogram after alternately
adding some 1s and 10s (right)
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A.2.9 Task 9

Figure A.9 Screen shot of task 9. Possible histogram, estimation (vertical dotted line)
and balance tool

A.2.10 Task 10

Figure A.10 Screen shot of example histogram, with estimation (dotted line) and
balance tool
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A.2.11 Task 18

The assignment was: Draw a histogram for the table below (use the attached
grid paper) and then answer the questions. For some of the questions, readers
are referred to the article.

Table A.1

Net annual income in thousands Number of households in thousands

<-10, 0] 36
<0, 10] 299
<10, 20] 1690
<20, 30] 2471
<30, 40] 1822
<40, 50] 845
<50, 60] 327
<60, 70] 134
< 70, 80] 66
< 80, 90] 36
<90, 100] 22

A.2.12 Task 20

Enlarge this task to view it on your screen

Both graphs show weights. On the left, you see the weight of beach waste
collected by different students. On the right, you see the weight of packages
delivered by postal worker Ellen. Which of the following statements about
these graphs is true?

The average weight is larger in the
e graph on the left,
e the graph on the right,
e approximately the same in both graphs.
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The variation in weight is larger in the
e graph on the left,
e graph on the right,
e approximately the same in both graphs.

Explain how you arrived at your answer and why you think this is so.

What is the weight of the packages in the most left bar in the graph on the
right?

Why?

What is the weight of the garbage on the beach in the most left bar in the
graph on the left?
Why?
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Moving toward new tools for research and teaching
statistics: General conclusions, discussion, and implications

“One never notices what has been done; one can only see what remains to be
done.” &
Marie Curie

This chapter is partly based on
Boels, L. (2023). Reflections on gaze data in statistics education. Teaching
Statistics, 1-12. https://doi.org/10.1111/test.12340

61 Marie Curie in a letter to her brother (1894). https://en.wikiquote.org/wiki/Marie_Curie
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Moving toward new tools for research and teaching statistics

7.1 Research aim and answer to main research question

The aim of this research was to contribute to an empirically grounded theory
on how to teach statistical literacy through histograms. As explained in the
introduction, we expected that a review of the literature and a small-scale eye-
tracking study would both have been input for a larger design study (Bakker,
2018). However, the topic of this research turned out to be much tougher than
initially expected, as histograms are used in numerous disciplines, for example,
to present research outcomes. A search for ‘histograms’ in Google Scholar
nowadays will lead to millions of hits. It is impossible to summarize all
literature about how histograms are used in research and education and what
is known about them. Moreover, from the review study (Chapter 2), it became
clear that the few interventions in statistics education that had been reported
were not very successful. Consequently, this provided few starting points for
the design. Therefore, substantially more of what is known as “front-end”
work (McKenney, as cited in Bakker, 2018, p. 142) proved necessary before a
new approach to teaching histograms could be designed. This front-end work
included better understanding students' conceptual difficulties with
histograms through an eye-tracking study (Chapter 3), students’
interpretations of dotplots (Chapter 5) as dotplots can draw students’
attention to the variable being presented along the horizontal axis in both
graphs, and formulating design criteria (Chapter 6).

In addition, what emerged was that students lacked experience with
what and how data are represented in histograms. This suggested that
students had insufficient embodied grounding. Given the successes of this
approach in other mathematical topics, we applied an embodied
instrumentation approach in the intervention for which we conducted the first
cycle only (Chapter 6). In addition, the first eye-tracking study opened up
future possibilities for the automatic identification of student strategies on
histogram tasks (Chapter 4). We explored these opportunities by comparing an
interpretable mathematical model (IMM) for which a machine learning
algorithm (MLA) provided a baseline. Our revised overall research question
was:

RQ: How can pre-university track® students in Grades 10-12 be
supported in understanding histograms?

We mostly concentrated on students with Mathematics A, as these students
have statistics in their curriculum. One part of the answer to this question is
that more attention to the key concept of data is needed, as many difficulties

62 pre-university track is ‘vwo’ in Dutch.
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related to this key concept seem to underlie difficulties with the key concept of
distribution (Chapter 2). This focus includes developing students’
understanding of data in graphs of univariate data such as dotplots, stem-and-
leaf plots, and histograms.

A second part of the answer to the main research question is a
hypothetical learning trajectory (HLT) (Simon, 2020). We presented the first
cycle of a future design study (Chapter 6). We formulated and tested design
criteria that can be used in such a future study. Our HLT can be seen as a
further step toward a domain-specific instructional theory on how to teach
students to understand how data and their distribution are depicted in
univariate graphs such as histograms, dot-, box-, stem-and-leaf, and hatplots
(Konold, 2007) and histodots (Chapter 2).

As a third part of answering the main research question, we
investigated whether it would be possible to identify students’ task-specific
strategies when estimating means from histograms. This could be a first step
toward automatic feedback based on students’ scanpath patterns on only the
graph area of histograms in a future Intelligent Tutoring System. We showed
that automatic identification is quite possible with a machine learning
algorithm and an IMM (Chapter 4).

In the remainder of this chapter, we reflect on the study's scientific
contributions (7.2) and methodological limitations and contributions of our
work (7.3) and describe implications and recommendations for future research
(7.4) and educational practice and design (7.5).

7.2 Scientific contributions

Our studies led to several scientific contributions. The most important ones
concern an emphasis on the key concept of data and task-specific gaze
patterns, a focus on attentional anchors, and an embodied instrumentation
approach leading to a local instruction theory and theoretically and empirically
underpinned task design guidelines. Below, we briefly discuss and elaborate on
these contributions.

7.2.1 Emphasis on the key concept of data

In the review study, we speculated that the persistence of people’s
misinterpretations of histograms is partly due to overlooking the impact of
data-related conceptual difficulties. We thought that this might also result in
underreporting of misinterpretations regarding data-related conceptual
difficulties, as well as misinterpretations regarding shape and center.
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1. The key concept of data
According to literature (Erickson et al., 2019; Garfield & Ben-Zvi, 2004,
Garfield & Ben-Zvi, 2008a; Gehrke et al., 2021; Gould, 2017; Ridgway et al.,
2011), the key concept of data encompasses:
e The context of the data, including:
0 Need for data; why they were collected
0 Data as a representation of real-world phenomena
0 Who collected the data and how
= The different representations of data, including numbers, texts,
pictures, how data representations in computers can vary, and
summaries or aggregated forms of data such as graphs and tables.
e The characteristics of data, including the difference between a
variable (e.g., weight) and data (e.g., numbers representing the
measured weights), what the statistical variables are, and the
measurement level.
e Why altering data is sometimes needed before analysis is possible,
including data wrangling or moves such as:
0 Data cleaning, dealing with missing data or outliers
Merging data(sets)
Constructing new data based on existing data
Selecting or generating variables
Filtering, grouping, or ungrouping data
Aggregating or summarizing data

O o0 Oo0oO0oOo

This is a broader concept of data than that in the GAISE Il guidelines
(Bargagliotti et al., 2020), in which didactical choices have been made. Data
themselves are not an object but represent a phenomenon in the real world.
We cannot think about data without thinking about their representation:
numbers, tables, photos, graphs (cf. Bakker & Hoffmann, 2005; Gal, 1995).
For graphical representations, the concept of data encompasses how data
are represented in, for example, histograms, boxplots, and case-value plots,
including (Chapters 2 and 3):

= How many statistical variables are depicted in the graph

e The measurement level of data (e.g., nominal, ordinal, interval,

ratio)
e Along which axis the variable is presented

Contributing to statistics education research, we have, therefore, placed the
statistical key concept of data (Box 1) more to the forefront in the rest of our
studies. First, we did so by presenting students with several different graphical
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representations of univariate data during our eye-tracking data collection:
histograms, messy dotplots, stacked dotplots, and horizontal histograms ( bars
rotated 90 degrees clockwise). It would be interesting to pay more attention in
future research to students’ conceptual understanding of data, not only for
data that fit the sample-population assumptions but also for contemporary
data or data collected by others.

Second, we brought ‘data’ more to the forefront by contrasting
histograms (univariate data) and case-value plots (bivariate data) during the
eye-tracking data collection and some tasks in the intervention, confronting
students with their confusion about these two types of graphs (e.g., Burrill,
2019; Cooper, 2018; Kaplan et al., 2014). In addition, in the intervention study,
students were given different graphs of univariate data (cf. Bakker, 2004a),
they were asked to interpret other students’ gaze data using diverse strategies
on a single histogram task, and they were asked to sort graphs with bars into
two categories: histograms and ‘other’.

Data and distribution are related. As we suspected that
misinterpretations regarding shape® and center are underreported in
literature, we addressed both in the eye-tracking data collection by providing
histograms and case-value plots with different distributions—hence, also
different shapes—and by asking students to estimate and compare arithmetic
means. According to Gal (1995), asking students to estimate the arithmetic
mean from graphs can reveal their conceptual understanding of the data. The
mean can be regarded as a precursor for variability, as variation is often
assessed compared to a measure of center (e.g., standard deviation is always
calculated from the mean). Moreover, variation is barely taught in Grades 10—
12, while the arithmetical mean is familiar to these students. Finally, we
wanted to be sure that our findings were due to students’ misinterpreting
where and what data are depicted instead of misinterpretations of variability
(part of the statistical concept of distribution, Box 2).

Discussing our contribution, we note that, parallel to our studies,
research attention of the statistics education research community has
shifted—partly driven by the emergence of new forms of data and ‘big data’—
to data literacy. Gould argues that data literacy is statistical literacy with more
focus on being “a critical consumer of data, controlling [ones...] personal data
trial, finding meaning in data, and taking action based on data” (2017, p. 23).
Others regard data literacy as part of evidence literacy (e.g., LaPointe-McEwan
et al., 2017). Evidence literacy includes the ability to “critically evaluate both
the meaning and strength of evidence that are used to support the claims and
arguments of experts and other commentators in the media” (Gal & Geiger,

63 Possibly due to too much focus on the shape of distributions, regardless of the type of data.

280



Moving toward new tools for research and teaching statistics

2022, p. 19). Both data and evidence literacy seem to be encompassed by the
critical stance in statistical literacy and focus on specific aspects of it. We
embrace the recent awareness of the importance of new forms of data—as
encompassed in data literacy—and suggest extending it to all existing forms of
data given students’ difficulties with the key concept of data.

2 The key concept of distribution

Distribution is a lens through which statisticians look at variations in data,
setting aside individual cases (Wild, 2006). Wild describes that
distributions can reveal patterns in the data (explained variation) ignoring
random variation (unexplained variation called noise).

The key concept (big idea) of distribution of quantitative data
encompasses center, variability, gaps, clusters, shape, and outliers (e.g.,
Garfield & Ben-Zvi, 2004), density, spread, and skewness (e.g., Bakker &
Gravemeijer, 2004), relative frequency, probability, proportionality, and
causality (e.g., Reading & Canada, 2011) but also the difference between
an empirical versus a theoretical distribution and between a distribution
of a sample, a population, and a sampling distribution (e.g., Reading &
Canada, 2011; Wild, 2006). Variability includes pattern, variation,
randomness, deviation, signal, noise, and range (e.g., Engel et al., 2008).

In addition, statistical confidence and significance depend on this
concept of distribution (Reading & Canada, 2011). Theoretical
distributions come with “considerations of ‘robustness’ and ‘goodness of
fit’ [of] the data” (Wild, 2006, p. 13). Drawing graphs is important for
considering variation (Pfannkuch & Reading, 2006). Distribution is an
organizing conceptual entity to grasp the overall aggregate (Bakker &
Gravemeijer, 2004).

7.2.2 Task-specific gaze patterns on statistical graph tasks

A substantial part of the research described in this dissertation involves eye-
tracking (Chapters 3-5). A major advantage of eye-tracking is that it can make
students' strategies visible at a much greater level of detail compared to, for
example, thinking aloud (e.g., Kaakinen, 2021). In addition, it can make
strategies visible that participants are unaware of or are unable to articulate.
However, there is not a simple relation between gaze patterns in general and
students’ strategies for specific topics (e.g., Kok & Jarodzka, 2017). Moreover,
not every gaze is part of a student’s strategy (e.g., Schindler & Lilienthal, 2019).
Therefore, research is needed to reveal how gaze patterns relate to students’
task-specific strategies (e.g., Schindler et al., 2021). Therefore, a form of
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triangulation, for example through cued recall, will be needed until clear
patterns have been found for specific tasks and topics and in different
communities.

Contributing to statistics education research, we revealed that specific
perceptual forms of students’ gaze patterns are related to specific strategies
for estimating and comparing means from histograms and case-value plots for
university students (Boels et al., 2018), teachers (Boels et al., 2019b), and high
school students (Chapter 3) in the Netherlands. For example, in estimating
means from single histograms (and case-value plots), a horizontal gaze pattern
indicates a strategy for interpreting the graph at hand as if it were a case-value
plot.

7.2.3 Interpreting gaze patterns as attentional anchors

Our contribution is that we theoretically interpreted the perceptual form of
students’ gaze patterns on the graph area (horizontal or vertical lines) of
statistical graphs of univariate data as attentional anchors. As such, we
elaborated and applied the notion of attentional anchors for the case of
histograms and case-value plots. For this interpretation, we draw on insights
from theories of enactivism and embodied cognition that suggest that
cognition emerges from interaction with the environment (e.g., Davis et al.,
1996; Rowlands, 2010). The focus of an actor’s interaction with this
environment is called an attentional anchor (Hutto et al., 2015; Hutto &
Sanchez-Garcia, 2015). An attentional anchor is “a real or imagined object,
area, or other aspect or behavior [...] that emerges to facilitate motor-action
coordination” (Abrahamson & Sdnchez-Garcia, 2016, p. 203). The ones we
found in our research facilitated students’ imagined actions (strategies for
finding the mean)—regardless of whether these strategies were correct. For
students, these attentional anchors were like imaginary lines. For example,
they referred to these imaginary lines as “making all bars equal” and their eyes
moved horizontally on the graph area. Other students showed vertical gazes
and referred to a point on the horizontal axis “where the graph is in balance.”

7.2.4 Application of embodied instrumentation in statistics education

Our research contributes to the theory of embodied instrumentation by
showing how more complicated artifacts (e.g., histograms) can be reinvented
from actions with simpler ones (e.g., positioning dots on a scale). Specifically
new is the explicit attention during the design phase for building on artifacts
that students are already familiar with (e.g., horizontal scale coming from
previous experiences with the number scale and the cartesian grid) and that
once constituted the actions that are nowadays consolidated in the to-be-
acquired artifact (e.g., a histogram). Using these already familiar artifacts,
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students reinvent artifacts that are new to them or that they did not fully grasp
yet in previous schooling (e.g., a histogram, estimating the mean from a
graph).

Our motivation for applying an embodied instrumentation perspective
arose from previous research that demonstrated that several students still
misinterpreted histograms even when they were talked “through the data
creation process” and had been prepared through dotplots (Bakker, 20044, p.
272). The literature (Chapter 2) offered little clue to appropriate interventions
and, foremost, revealed persistent misinterpretations. Previous studies gave us
the impression that students lacked experience with dotplots and sufficient
attention to how artifacts—histograms, dotplots—become tools in statistical
reasoning. We suspected that students’ education might have lacked an
embodied grounding of how histograms are constructed. Therefore, using an
embodied instrumentation approach (Drijvers, 2019) as a theoretical lens, we
designed a learning trajectory with students reinventing the role of the axes in
dotplots and histograms through specific tasks and constraints in the software,
as described in the intervention study in Chapter 6.

Discussing the contribution of that study, we note that tasks designed
from an embodied instrumentation perspective are still rare. To the best of our
knowledge, our study is the first within statistics education. Two types of task
designs from an embodied cognition approach are currently described in the
literature: an action-based design (for an overview of recent examples in
mathematics education, see Alberto et al., 2022) and a perception-based
design (e.g., Abrahamson, 2009). In an action-based design, students are
confronted with a motor-control problem such as keeping a screen green while
moving one or two points or bars with their hands. Through solving this motor-
control problem, students develop new ways of moving that help them to
understand a mathematical concept. In perception-based designs, students
solve a perceptual problem. A new type of task is currently being developed:
incorporation-based tasks.

For an incorporation-based task, students are first invited to solve a
sensorimotor task with feedback from some artifacts (e.g., an action-based
task) or observe perceptual qualities enabled by an artifact (e.g., a perception-
based task), and are then invited to perform the same task without the
artifact, just with their body (Bos et al., 2021, p. 4).

Our design is not an action-based design, as none of the tasks require
motor-control problems to be solved. Students also do not use their bodies to
solve the tasks and feedback was not imagined, therefore, we do not consider
it an incorporation-based design, either. Whether it can be considered a
perception-based design or a new design genre is currently under debate.

Although, in embodied designs, attentional anchors are usually
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introduced as artifacts in tasks as a consolidation of students’ actions, in
hindsight, we might have done this too early for estimating the mean from a
histogram. We infer that this introduction was too early for students as they
did not have any struggle with finding the balance point for a histogram and
linking this point to the mean. Note that in Dutch education, the mean as a
balance point is absent from the mathematics curriculum for elementary and
secondary education.

7.2.5 Task design guidelines from an embodied instrumentation
perspective

We worked out a design framework that helps when designing specific
mathematical and statistical topics. The generalization and value of design
guidelines lie in the iterative process of letting the guidelines do the actual
work (Bakker, 2018). Based on the empirical tryout (Chapter 6), we
reformulated our theory-driven design guidelines:

* Find the actions—through a logical-historical reconstruction—that

could have constituted the target artifact
e Design motor-control or perception tasks to which these actions are
the answer

e Create productive struggle for crucial steps in the HLT

e Have students perform the (digital) actions with feedback

= Have students reflect on their actions

e Create possibilities for transfer by varying contexts and environments.
The guideline to create productive struggle was added as a separate guideline
during the revision. Theoretically, this guideline means that the tasks that the
students’ emerging functional systems are solving (Shvarts et al., 2021) should
be new enough for the learning process—rather than simple recollection—to
happen. In addition, a functional system needs to be flexible and adaptable to
various environments. Therefore, transfer is also desirable within each crucial
step and not only at the end of learning. Unlike other researchers who work on
general principles of enactive pedagogy (e.g., Abrahamson et al., 2021), our
design guidelines are for specific topics.

7.2.6 Contributing to a local instruction theory on teaching and
learning of histograms

Our HLT can be seen as a further step from a general theory of embodied
instrumentation toward a domain-specific instructional framework on teaching
how data and their distribution are depicted in univariate graphs such as
histograms, dot, box, stem-and-leaf, as well as hatplots (Konold, 2007) and
histodots (Chapters 2, 6). A hypothetical learning trajectory “consists of three
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components, a learning goal, a set of learning tasks, and a hypothesized
learning process” (Simon, 2020, p. 355). Besides the need for more design
cycles to test and revise our HLT in practice, an HLT must always be adjusted to
local circumstances (e.g., Barab & Kirshner, 2001).

From our proposed learning trajectory (Chapter 6), we would like to
discuss two things. First, the importance of reflection during and after task
completion, which is in line with insights from recent literature on embodied
designs (Abrahamson et al., 2021; Alberto et al., 2022; Shvarts et al., 2021).
The results of our eye movement research also seem to underline this
importance, as we suspect that a part of the learners gained insights about a
correct strategy as a result of reflection during the cued recall in which they
explained which strategy they used (Chapter 5). Second, the “balance [model]
is a critical mathematical characteristic of the mean” (Mokros & Russell, 1995,
p. 33) and can be linked to the algorithm for finding the equilibrium (mean) of
moments (forces times distance) in physics. Some students started to reason
about the heights of the bars being somehow proportional to the distance to
the mean. This was not foreseen. The literature suggests having students
explore the characteristics of the mean and how it is affected by different
types of datasets and distributions (Garfield & Ben-Zvi, 2008a). Garfield and
Ben-Zvi suggest bringing students from seeing the mean as a process (a
computation, algorithm) to an object, a signal in a noisy process. In this sense,
the mean can be regarded as a precursor for assessing variability in the data
(e.g., the standard deviation is compared to the arithmetic mean), and further
study is needed to develop students’ notions on this key concept as part of the
key concept of distribution.

The introduction (Chapter 1) pointed out that descriptive statistics,
such as the mean, provide limited information—for example, when comparing
groups—due to several factors, including variability in the data. This is one of
the reasons why it is important to jointly examine measures of center and
variability (cf. Shaughnessy, 2007; Bargagliotti et al., 2020). Variability or
“spread are connected to ‘spread around what’—[with the what being] some
value indicating a measure of center” (Burrill, 2019, p. 133). Nevertheless, we
focused in most of our studies on measures of center only. One reason for this
is captured in the above statement that variability is always a variation relative
to something, often being the mean. If students do not understand how to
estimate the mean from a histogram, it is likely that they cannot assess
variability either. Another reason is that variability is not part of the Dutch
curriculum, except for some technical skills such as using a calculator to
calculate a standard deviation.
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Although our HLT also provided opportunities to work toward the
algorithm for the mean (Chapter 6), such a route does not seem desirable for
most students (e.g., with Mathematics A or C). Connecting the algorithm to a
histogram is an example that is likely to fall under what Ridgway and Nicholson
describe as a practice that "harks back to the days when calculations had to be
done by hand with the result that students are required to learn techniques
that are always automated in professional work" (2019, p. 2). In addition, such
a route might even hinder the development of students understanding of the
concept of center (mean) (cf. Tall & Vinner, 1981).

7.3 Methodological contributions

We applied three methods that are relatively new in statistics education
research: eye-tracking, a transparent interpretable model, and MLAs.
Contributing to eye-tracking research, we show how spatial eye-tracking
measures can reveal task-specific strategies. Contributing to statistics
education research, we discuss how several visualizations of gaze data, spatial
eye-tracking measures, and application of MLAs and an interpretable model
can be used for analyzing and classifying students’ task-specific strategies.
Contributing to the discipline of software design, we discuss insights gained by
applying an embodied instrumentation approach. We finish with
methodological limitations.

7.3.1 Spatial eye-tracking measures as a means to reveal task-specific
strategies

A methodological contribution is that spatial measures can reveal task-specific
strategies. After watching videos of students’ gaze behaviors in more than 600
trials (with histograms or case-value plots)—combined with students’ cued
recall data—we discovered, in a qualitative study, (Chapter 3) that the
perceptual form of students’ gaze patterns within one AOl—the graph area—
was relevant for students’ task-specific strategies on these items. In later
chapters, we used saccadic magnitude and direction (vectors) for this aim
(Chapters 4 and 5), ignoring the also necessary alignment. Although vectors
have been used for some time (e.g., Holmqvist et al., 2011), their use in
education is rare. In addition, we applied them in a new way. When we
conducted our study in 2018, we knew of only one other empirical study that
also used vectors for educational purposes (Dewhurst et al., 2012). However,
in that study, scanpath similarities are compared and related to task difficulty
instead of inferring students’ strategies from scanpaths as we did. For other
research questions, for example, on general task performance, the 2012 study
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used time measures. In contrast to Dewhurst et al., we did not use the position
of the vector on the screen.

Discussing this contribution, we note that, although eye-tracking has
been around for some time, its use in statistics education is still in its infancy.
Most recent eye-tracking studies, also in statistics education, use quantitative
gaze measures such as total time spent on an area of interest (AOl) (e.g.,
Cohen & Staub, 2015; Fleig et al., 2017) or number of fixations within an AOI
(Schreiter & Vogel, 2023), although the latter also used vectors. Fixations are
the positions on the screen that students looked at. Quantitative measures are
used in cognitive sciences that usually aim for more general strategies such as
self-regulated learning. These measures are temporal (e.g., total fixation
duration or dwell time®, reaction times, time to first fixation, total reading
time), counts (fixation count, number of saccades between relevant or
irrelevant parts of the stimuli; Godau et al., 2014), or both (e.g., Kaakinen,
2021; King et al., 2019; Lai et al., 2013). The advantage of these measures is
that they can be computed easily. However, quantitative measures can hide
visual scanning patterns (Goldberg & Helfman, 2010).

Spatial measures (e.g., scanpath, fixation position) can disclose the kind
of detailed information Kaakinen (2021) refers to. Spatial measures seem
better suited for providing detailed information about students’ thinking
processes (Hyona, 2010; Schreiter & Vogel, 2023). However, spatial measures
are still quite uncommon in eye-tracking research:

Parallel to the findings of Lai et al.’s (2013) study, spatial
measurements were the least common measure in the reviewed
studies. Spatial scale comprises fixation positions, fixation
sequence, and scan path patterns (Lai et al., 2013). It requires
mostly a qualitative analysis of the scan paths to obtain these
measurements. Although the scan path analyses reveal how
learning occurs from moment to moment (Hyona, 2010), few
studies investigate them in detail (Krejtz, Duchowski, Krejtz,
Kopacz, & Chrzgstowski-Wachtel, 2016). This could be due to the
difficulty in qualitative analysis and synthesis of the scan paths
obtained from different participants. (Alemdag & Cagiltay, 2018,
p. 419)

Moreover, when people refer to scanpaths, they usually mean a sequence of
or transitions between AOIs (e.g., Garcia Moreno-Esteva et al., 2018, 2020;

64 Orquin and Holmaquvist (2017) suggest no longer using dwell time—total fixation duration—as
other measures may be more suitable for measuring the different constructs underlying dwell
time.
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Krejtz et al., 2016). For students’ solution strategies, both from the qualitative
study (Chapter 3) and the quantitative machine learning analysis (Chapter 4), it
appeared not to be relevant when the horizontal gaze pattern we found was a
bit higher or lower on the graph area, if a student looked from left to right or
vice versa, or if there was a slight slope in this gaze pattern or not, as long as
the pattern was mainly horizontal. The irrelevance of such specific order and
position on the screen has a potential advantage for future webcam usage.
Webcams are still imprecise in their calibration. If a horizontal or vertical shift
of a horizontal gaze pattern still results in a horizontal gaze pattern on the
graph area, this might still be recognized by an MLA or interpretable model.

Schreiter and Vogel (2023) may seem to have used the same features
in the same way as we did: vectors (saccadic magnitude and directions) within
two AOIs for comparing graphs (they used one AOI for each dotplot including
the axis; transitions between AOIs were excluded). However, they used the
magnitude of saccades to distinguish between short (local) and long (global)
viewing, and similarly used saccadic direction (horizontal for global; vertical for
local). We used these same features for distinguishing students’ task-specific
strategies (e.g., a histogram interpretation strategy). For our single and double
graph items, our approach reveals students’ strategies and whether they
interpreted the graphs correctly or incorrectly. In the approach of Schreiter
and Vogel, a correct and incorrect strategy could both be classified as local. In
addition, for our single items, interpreting vertical saccades as indicative of a
local view would not make sense as that would be a correct (global) strategy
when estimating a mean from a histogram.

7.3.2 Tools for analyzing eye-tracking data: heatmap, raw data,
videos, and static gazeplots

Contributing to statistics education research, in the studies in this dissertation,
we showed how raw gaze data (Chapters 4 and 5) and videos and—to a lesser
extent--static gazeplots (Chapter 3) can be used for analyzing gaze data to
reveal students’ strategies. In addition, in a pilot study, we used heatmaps
(Boels et al., 2018). Here, we reflect on our contribution and provide some
guidance for methodological choices in future research.

In our studies, we analyzed the collected gaze data in two ways: a
qualitative analysis of the videos of the gazes on fifteen tasks (see Chapters 3,
4, and 5) and quantitative analyses using the raw data of, in total, seven of
these tasks (five single histogram tasks and two double histograms tasks,
Chapters 4 and 5). For these analyses, we used two types of data obtained
through data moves (Erikson et al., 2019) either from the Tobii Studio software
(n.d.-a) or by us. In the quantitative studies, we used ‘raw’ data that consist of
x- and y-coordinates of the gazes on the graph area only (sampled with 60 Hz,
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Figure 7.1 left); fixations are indicated by short lines in a star-like form. For the
qualitative analysis, we found videos of the gazes to be the best approach
(Figure 7.1 middle left; also called ‘dynamic gaze visualizations’ e.g., Kok et al.,
2017). In this way, we could see the order of the gazes and what students paid
attention to. As previously discussed, our attention was mostly on the
saccades—the thin, long lines between fixations (the latter indicated by circles
in the gazeplots).

Other possible data moves (all created with the Tobii software) are
heatmaps (Figure 7.1, middle) and a static gazeplot (middle right and right).
Changing representations of gaze data is part of transnumeration (Wild &
Pfannkuch, 1999) and can help with understanding what gaze data can tell.

Figure 7.1 Examples of different ways to visualize and use gaze data

Note. Raw scanpath (left), video still of smoothed gaze pattern (middle left), heat map
(middle), gaze plot (middle right), and scanpath in gaze plot (right) indicating an
imaginary horizontal line (here superimposed for the reader).

Heatmaps have the advantage that they aggregate the gaze data and draw
attention to the fixations (for example, Schindler et al., 2021) but have the
disadvantage that time and spatial information gets lost (e.g., the order of the
fixations or saccades). Fixations on locations where the student spent little
time are green, and coloring goes to yellow and then red when more time is
spent in total.

Static gazeplots (Figure 7.1, middle right) have the advantage that both
fixations and saccades are shown but the pattern and item can get hidden
behind the fixations. The most relevant part of the pattern can be isolated
(Figure 7.1, right) but requires days of manual work as this needs to be done
for every student for every item separately and requires the judgment of what
belongs to this pattern and what not. Future research is needed to find out if it
is possible to infer our students’ strategies from heatmaps or static gazeplots
in qualitative and quantitative analysis (e.g., through MLAs, Schindler et al.,
2021).

7.3.3 Machine learning algorithms application in statistics education

We used our gaze data in combination with machine learning algorithms
(MLAs) in Chapters 4 and 5. Contributing to the application of data sciences
tools in statistics education, we showed how gaze data can be used for task-
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specific strategy identification (classification) on tasks with statistical graphs
(Chapter 4) and for finding strategy-relevant differences in gaze data between
two similar tasks (Chapter 5). Moreover, we showed that despite the
idiosyncrasy of gaze patterns, general gaze patterns on tasks can emerge that
are relevant for teaching specific content or a topic. We showed that
qualitatively found patterns (Chapter 3) can be captured by MLAs and used for
identification of similar patterns in gazes of new students, and on new, similar
tasks (Chapters 4, 5). Similarly, we showed that an interpretable mathematical
model (IMM, Chapter 4) can be used that is transparent on how it came to its
decision for an individual student. Furthermore, we showed the importance of
using expert (teacher, researchers) information—together with students’ cued
verbal reports—on what part of the gaze pattern is relevant for students’ task-
specific strategies (namely, the pattern on the graph area).

Discussing the MLA application, we note that when applying a machine
learning algorithm (MLA) in an educational context, the focus can be either on
the educational application (Chapter 4) or on tailoring the MLA to the
educational context (Chapter 5).

7.3.4 Software for developing statistical literacy—an embodied
instrumentation perspective

Teachers can choose the software they use in their classrooms. Often, a
distinction is made between software for doing statistics (InZight®®, Minitab®®,
SPSS®7, R and RStudio®®), and software for learning to reason in statistics
education (Fathom®, CODAP°, TinkerPlots”*, VUStat’?). From an embodied
instrumentation perspective, we want to add software for initial learning.

Software designed from embodied instrumentation design principles

A contribution of our study is that it makes it plausible that software designers
need to think carefully about what kind of actions (crystallized in artifacts) they
outsource to the software for initial learning. For example, most software can
create histograms but lacks possibilities for students to reinvent them.
Moreover, the way graphs are presented provokes different comparisons.
Side-by-side comparison elicits the (un)equal heights of bars or dotplots (and
seems nonsensical for horizontal boxplots), whereas displaying graphs above

65 https://www.stat.auckland.ac.nz/~wild/iNZight/
66 https://www.minitab.com/en-us/

67 https://www.ibm.com/products/spss-statistics
68 https://posit.co/products/open-source/rstudio/
69 https://Fathom.concord.org/

70 https://CODAP.concord.org/

71 http://tinkerplots.com/

72 https://www.vustat.eu/apps/
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each other elicits the comparison of the positions of the data along the
horizontal axis (which seems more relevant for dotplots, horizontal boxplots,
and histograms). Software designers often have already chosen the position of
the graphs. Perhaps they might include an option for students to drag two
graphs to a position that students find suitable for comparing the graphs. This
is not to say that such an option is better than given positions, but only that
when actions are outsourced to the software too early, students might never
become aware of their relevance until they fail in practice. Moreover, passive
tasks should be avoided as then “students need just [to] gaze at technological
elements (no coordination required)” (Alberto et al., 2022, p. 18). This includes
“readymade examples (students will just imitate them)” (p.18). In addition,
when “elements of problem solving [are outsourced] to the technology [...]
students will ignore them” (p. 18).

Furthermore, as tasks designed from an embodied instrumentation
perspective have students reinvent artifacts before these are incorporated into
the system in a later stage, this seems to require route-type software tools
(Bakker, 2002) that are designed for a particular learning trajectory. Therefore,
we conjecture that for initial learning, route-type software will prevail over
landscape-type software. A counterargument may be that learning is not linear
and that routes will differ for various students. In such cases, a tree structure
with branches for some routes might be more appropriate. In addition, from
our experience, it is easier for teachers and students who are not so familiar
with the software to use software with limited possibilities, as there usually is
little time in classrooms to learn the software (cf. Bakker, 2004a; Van Dijke-
Droogers, 2021). An online tool that has been built as a landscape tool, but
with the advantage of limited possibilities in each part, is VUstat, as this has
different apps to fulfill different teaching aims. We hope that the insights from
the present research will inspire software developers to think about
incorporating ideas from our learning trajectory as well as from other
embodied designs.

Discussing these insights, in the section that follows, we describe some
important characteristics of software tools from an embodied design
perspective. We neither review all software (e.g., Abbasnasab Sardareh et al.,
2021; Biehler et al., 2013; Chance et al., 2007; McNamara, 2016, 2018) nor
compare in-depth Fathom, CODAP, and TinkerPlots (Frischemeier et al., 2023).
Instead, we compare our design with that of others on who does the statistical
thinking, in line with our fourth design guideline for embodied instrumentation
design: Have students perform the (digital) actions with feedback. The purpose
of this comparison is to provide the reader with an understanding of some
differences between tools designed from an embodied instrumentation
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perspective and those designed from a static and dynamic visualization
perspective. We concentrate on graph construction and interpretation.

Static and dynamic visualization tools

In static visualization tools, students press a button and then observe the
result of a hidden, statistical action. Minitools (Bakker, 2004a), InZight, and
Minitab are examples of such tools for doing statistics “where the computer
package is treated as a black box. After parameters have been entered, the
outcomes are immediately shown, leaving the user [for example] to imagine
the process of building the sampling distribution” (Meletiou-Mavrotheris,
2003, p. 269).

In much software literature, the term ‘dynamic’ actually means
coupled (e.g., Frischemeier et al., 2023): changing data in one visualization
(e.g., data card) affects other representations in real time (e.g., dotplot). We
use a slightly different meaning of dynamic here: when a student manipulates
something in a representation (clicks an option, moves a slider, drags a point),
the student sees something happening—such as the transition to another
representation—or a trace of the changes, for example, in the average (see
also Wei et al., 2022). In CODAP, for example, students see the dots move after
they dragged a variable (attribute) to the horizontal axis. Both in statistic and
dynamic visualization tools, students see the consequences (results) of their
actions, in line with the “action/consequence principle” (Burrill, 2019, p. 128).
In dynamic visualization tools the process toward the consequence is visible, in
static tools it is not.

TinkerPlots, Fathom, CODAP, and GeoGebra’® are examples of dynamic
software tools that mostly are (or can be) dynamic in this sense. Some
statistical processes are still hidden actions, similar to those in statistic
visualization tools, (e.g., calculation of the mean in CODAP), but the overall
design principles are based on our definition of dynamic, although the
developers use the word ‘dynamic’ also in the sense of ‘coupled’ (e.g., Finzer,
2006). There is also software that has a mixture of static and dynamic features.
VUstat consists of several educational web-based apps that contain static (e.g.,
data analysis) or dynamic visualizations (e.g., sampling distribution). Similar to
the minitools design, VUstat has the possibility to have a histogram overlay the
dotplot in the data analysis tool (a variant of a histodot, see Chapter 2) as well
as a boxplot.

Dynamic visualizations once were a major step forward. However, in
contrast to embodied designs, students’ actions in dynamic visualization
software are (most often) not directly coupled with statistical actions, which

73 https://www.geogebra.org/
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might hinder statistical thinking and conceptualization. For example, sliding a
dot to the right side of the screen (in TinkerPlots to make more bins) is not an
action that places this dot on its correct value on the horizontal scale. The
software does this for you for all dots. The same holds true for the binning in
histograms. Although students can slide the border of a bin in a histogram, the
adjustments (for all other bins as well as the height of the bars) are done (and
shown) by the software. This is not to say that dynamic visualizations lack
value for education. However, for persistent problems, such as students'
conceptual difficulties with histograms, it is worth looking at who is doing the
statistics: the student or the software. In embodied instrumentation design,
students are doing the statistics.

7.3.5 Methodological limitations

A limitation of our review study is that a geographical selection bias seems to
exist, as many studies were conducted in the United States and Europe. This
might partly be due to the language (English) and the absence of or only recent
attention to statistics in many countries (e.g., Burrill & Ben-Zvi, 2019). We
expect that the misinterpretations we found will also hold for Asian, African,
Latin-American, and Oceanic peoples. For example, Malaysian 7th and 10th
graders had similar difficulties (Ismail & Chan, 2015; Lim et al., 2022; Saidi &
Siew, 2019).

A limitation of our eye-tracking data collection is the sample size of 50
students. Although this is considered quite large for an eye-tracking study, for
applying statistical tests (Chapter 5), it is considered relatively small. Limiting
the generalizability of our findings about strategies (Chapter 3) is also that we
mainly tracked the gazes of 10-12 graders—although similar scanpath patterns
were found for university students (Boels et al., 2018) and STEM teachers
(Boels et al., 2019b)—and that our sample consisted of Dutch students from
only one school.

For the MLA application, we showed that both an ‘off the shelf’ tool
(random forest implemented in the Mathematica Classify Function, Chapter 4)
and a tailored MLA (random forest, Chapter 5) worked in classifying which
students used what strategy (Chapter 4) and whether differences in gaze data
occurred on histogram items after solving a series of dotplots items (Chapter
5). A limitation is that we mainly used only single histogram items for this aim
(Chapter 4), although we used one pair of double histogram items in the
second study that used an MLA (Chapter 5). A study using double histogram
items in a similar way to the single histogram items with an MLA is foreseen.
We consider our three eye-tracking studies as first steps toward uncovering
students’ task-specific scanpath patterns (Chapter 3), the possible application
of gaze data in a future intelligent tutoring system in statistics education
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(Chapters 4 and 5), and revealing micro-level changes in students’ strategies
that could point at learning—depending on how learning is defined—during
homework or assessment (Chapter 5).

As described (Chapter 6), our lesson materials were tried out in a first
cycle of design, implementation, and evaluation as a first step toward a design
study. As this first cycle was tried out in a multiple case study, the small
number of students in this multiple case study and their varying previous
experiences with histograms is a limiting factor. Moreover, in most classrooms,
there will not be time for spending 4-5 lessons (3.5 hours) on ‘one’ topic. On
the one hand, a reduction in time for a next cycle of the HLT can be achieved
by taking out problems that did not work yet, and, therefore, consumed
relatively much of the teaching time (e.g., about 20 minutes for one task).
Moreover, when applied in practice, the pretest will most likely be left out. On
the other hand, when applied in schools, more time will be needed as starting
and closing lessons consumes time. In addition, our mini-interviews might have
made students reflect on their work, which could have speeded up subsequent
tasks. Future design cycles need not only concentrate on how to further
develop students’ interpretation of data and distribution in histograms but also
on what is minimally necessary for such development.

7.4 Implications and recommendations for future research

In the next sections, we offer implications and recommendations for statistics
education research on the need for interventions and design research, how
gaze data could be used, and on how an IMM, MLAs, and an embodied
instrumentation approach could be applied. We end with some implications
for eye-tracking research regarding the application of quantitative and spatial
eye-tracking measures.

7.4.1 Need for interventions and design research instead of mostly
surveys

An implication of our work is that more research discussing interventions is
needed. When conducting our literature review (Chapter 2), we noticed that
only a few studies reported interventions and even fewer of them explicitly
discussed what such interventions should look like. This finding still stands
since we completed our review study (e.g., Amaro & Sanchez, 2019; Burrill,
2019; Rodriguez-Muiiz et al., 2022). Most recent publications assessed
students’ conceptions (e.g., Cooper, 2018; Reinhart et al., 2022; Setiawan &
Sukoco, 2021) or reviewed the literature on ensemble perception,
visualizations, and statistics education with histograms as an example (Cui &
Liu, 2021). One study only described a possible intervention without applying it
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(Delport, 2020). However, intervention studies got more attention: “As seen in
this volume [...], research has now moved to trying different strategies and
inventions that can help address these misconceptions. The hope is that these
potential strategies will be further researched in different contexts and other
countries” (Franklin, 2019, p. v).

Our proposed learning trajectory can be considered an answer to this
call. Furthermore, the trajectory can help researchers to understand, for
example, why “students mistake the bar heights in a histogram as the
observed values in a dataset, and the number of bars as the number of
observations” (Reinhart et al., 2022, p. 107).

Research on students’ histogram misinterpretations is hard to find and
spread across several disciplines. Our overview may assist researchers during
the design stage of interventions to anticipate students’ interpretations. In
addition, it may assist them in developing new teaching materials that address
misinterpretations more broadly—as different manifestations of the same
underlying conceptual problem—rather than treating or remedying them one
at a time.

7.4.2 Gaze data, an interpretable model, and MLAs as research tools
in statistics education

Eye-tracking: lessons learned and warning
We are quite excited about what gaze data can tell. However, before
continuing to possible future applications in the next sections, we would like to
highlight two points of attention for those who want to start with eye-tracking
research. First, the substantial time investment it takes to initiate such
research as an early researcher—in our case, roughly nine months full-time for
preparation and data collection and then over half a year for qualitative data
analysis. Second, the already mentioned necessity to combine data, preferably
through a cued retrospective think-aloud protocol (own perspective, Mclntyre
et al., 2022; Van Gog et al., 2005) as time on task and eye movements can be
influenced by concurrent thinking aloud (Van Gog & Jarodzka, 2013).
Researchers often want to know what students are paying attention to. Posing
guestions during an intervention or experiment can shift students’ attention
from where they were at that moment to what they think the researcher is
asking for. Viewing patterns can potentially provide similar insight into what
students pay attention to without disrupting students’ thought processes.
Other lessons from reviews of eye-tracking studies in other fields (e.g.,
finance, communication) provided several insights relevant to eye-tracking
research in statistics education. First, research on task-specific strategies is
rare, as most studies in education contribute to general theories such as on
information processing or multimedia learning (e.g., Beach & McConnel, 2019;
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King et al., 2019). Second, eye-tracking can be used for observing changes in
students’ strategies that may point at learning as changes in gaze behavior
occur during learning (e.g., Ashraf et al., 2018). More lessons for newcomers to
eye-tracking research are provided in Appendix A of Chapter 3.

Students’ gaze patterns on other graphs or tasks

An implication of our research is that scanpaths can potentially shed new light
on tenacious didactical problems in mathematics teaching for other
misinterpreted graphs, including boxplots (Lem et al., 2013b, 2014a), density
curves (Batanero et al., 2004), stacked dotplots (Lyford, 2017), function graphs
(Leinhardt et al., 1990), interpreting the slope or direction field when learning
to solve differential equations (for an example in physics education, Klein et
al., 2018), scatterplots (Estepa & Batanero, 1996), and violin plots (a kind of
density plots), but also for other topics where scanpaths may play an
important role: increase diagrams, frequency polygons, network topologies,
line and point symmetry in functions, and the relation between a straight line,
functions, and axis scales (logarithmic, linear, normally distributed). In
addition, this could also hold for other mathematical topics, including the
congruency of triangles, and maybe even the representation of a cube and
hexagon.

Future research is needed to find out if the scanpath patterns we found
for estimating and comparing means from histograms and case-value plots are
similar in different cultural settings and educational systems around the world.
Also left for future research is the analysis of some of the other tasks on which
we collected data. As data were collected on 25 tasks, there are still ten tasks
left that could be analyzed qualitatively and if successful, analyzed through an
IMM and MLAs as done in Chapter 4: six messy dotplot tasks, two stacked
dotplot tasks, and two horizontal histogram tasks. From students” answers, we
suspect that students had no difficulties with single dotplots (Boels & Van
Dooren, 2023) but that comparing arithmetic means from two dotplots was
more difficult. When looking at students’ gaze data during the assessment, we
got the impression that some students used the heights of the stacks in
stacked dotplots. We also got the impression that at least one student used
the height of the ‘bump’ in a messy dotplot to estimate the arithmetic mean.
Future research is needed to investigate students’ strategies for solving the
dotplot tasks. For example, is the gaze pattern on dotplots similar to the gaze
patterns found for histograms and case-value plots? In hindsight, our messy
dotplots might not be high enough to induce large vertical eye movements,
which are typical for one correct strategy for estimating the mean from
histograms. For future research, it is advised to make sure that the highest
point in the graph is at least 200 (4.1°), preferably 250 (5.1°) pixels away from
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the horizontal axis. Students’ gaze data when solving dotplot tasks could
possibly shed further light on why the research with dotplots had mixed results
(e.g., Bakker, 2004a; delMas & Liu, 2005; Lem et al., 2013a; Lyford, 2017) and
on how dotplots could be used in educational designs so that students benefit
from their use. In addition, training an MLA with double histogram tasks is left
for future research.

Revealing productive strategies

An implication of our research is that gaze data can potentially reveal correct
reasoning. Many studies infer students’ reasoning toward their answers from
students’ answers (e.g., Bolch & Jacobbe, 2019; Lovett & Lee, 2019). However,
students could be using a productive strategy for solving the task at hand and
still answer incorrectly, or vice versa. As correct reasoning is valued in statistics
education, this could provide researchers with a new tool to discover such
correct reasoning. From our experience, it can sometimes even be possible to
infer from gaze data that a student started with a correct or incorrect strategy
that was abandoned for some reason.

A future line of research could be to see how gaze patterns change
within and over tasks, for example, when students develop a sense of a topic
(e.g., Schindler & Lilienthal, 2020). Research suggests that a combination of
students’ actions, perceptions, and reflections results in a change in gaze
patterns (Abrahamson et al., 2015; Alberto et al., 2022). A delay between a
change in gaze pattern and students’ verbal reflections can also indicate
readiness for learning (Church & Goldin-Meadow, 1986). Vygotsky associated
specific eye movements with thinking processes (1926/1997). Incongruencies
between gaze and verbal data may be an indication of approaching or getting
into the zone of proximal development (see also Chapters 3 and 5) where
collaboration with a more knowledgeable person leads to joint actions and
mutual understanding (e.g., Shvarts & Abrahamson, 2019). In one study, we
also found indications of changes in gaze patterns that, combined with other
data, suggested changes in strategies that could point at a learning effect of
solving dotplot tasks (Chapter 5). A related future line of research is
mismatches between gazes, gestures (e.g., students’ hand movements on a
screen or in a discussion), and speech. In addition, differences in gaze patterns
between novices and experts could be studied (cf. Brunyé et al., 2019; Khalil,
2005; Van Marlen et al., 2022). Although we collected some data from experts
for our tasks, we need to collect more data to investigate differences and
guarantee anonymity. In addition, the gazes of students, teachers, and experts
could be combined both in a qualitative study and in a machine learning
analysis. Along with supervised MLAs, unsupervised MLAs can be considered,
such as clustering or a combination of both. Furthermore, results from
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machine learning analysis could be used to validate qualitative eye-tracking
studies.

Further possible research directions
A future line of research could be to find out if students can be grouped
meaningfully purely based on their scanpaths on the graph area through
unsupervised clustering (an MLA) or latent class or profile analysis (e.g.,
Hickendorff et al., 2018). Another possible line of research could be the joint
attention of teacher-student or student-student pairs (Chisari et al., 2020;
Shvarts & Abrahamson, 2019). Gaze data from such pairs wearing glasses can
show whether the gazes of a pair have a joint focus (e.g., Shvarts, 2018).
Future research could also be to investigate how the process of
interpreting their own or other students’ gaze data can help students’
reasoning with data, data representations, center, variability, and so on (see
Figure 7.2 for green fixations of a student interpreting the red fixations and
saccades of another student who incorrectly estimated the mean weight from
a histogram).

Figure 7.2 Video stills of one student’s gazes (using glasses; green dots) looking at
another student’s gazes (red dots)

7.4.3 An embodied instrumentation approach in statistics education
research

An implication of our research is that it is a first step toward a domain-specific
instructional framework as described in section 7.2.6. We showed how an
embodied instrumentation approach can be used to design tasks and develop
an HLT which was evaluated in a first cycle of a design study (Bakker, 2018;
McKenney & Reeves, 2012). An implication is also that we call researchers to
question all pre-given aspects of the artifacts they use (e.g., height in
histograms) and to reveal artifacts’ origins (see Chapter 6).

Left for future research are follow-up cycles of scaling up in size
(number of students, teachers, schools involved) and (re)design,
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implementation, and evaluation. Some suggestions for redesign can be found
in Chapter 6. A new cycle could work toward understanding variability from
univariate graphs or toward the algorithm for finding the arithmetic mean
from histograms. These are probably two different routes between which a
similar tension may exist as between an uncertainty-based approach within
statistics and a deterministic approach in mathematics (delMas, 2004;
Meletiou-Mavrotheris & Stylianou, 2004; Ridgway & Nicholson, 2019). Since
most students will become consumers of data and statistical models—
including graphs—the first route seems to fit them better.

7.4.4 Quantitative and spatial measures in eye-tracking research

An implication of our research is that spatial measures (saccadic magnitude,
direction, and for some strategies also alignment) do seem to provide task-
specific guidance for developing a local instruction theory for learning or
teaching a specific topic. Other successful attempts with sequences of AOls
within statistics and biology education show that compressed scanpaths are
meaningful to researchers (Garcia Moreno-Esteva et al., 2018, 2020; see also
our IMM in Chapter 4), and might, therefore, be more informative for
educational aims than each single student’s scanpath. A possible implication of
our work is that a specific—uncompressed—order of AOIs and scanpath
similarity or idiosyncrasy may be less important for uncovering task-specific
solution strategies. The decision on how, when, and what spatial measures are
relevant for task-specific strategies in statistics education is also left for future
research.

Another implication for eye-tracking research is that, so far,
gquantitative measures in eye-tracking research do not seem to provide task-
specific guidance for the teaching of a specific statistics education topic. Left
for future research is the question of which of the quantitative metrics (if
any)—including temporal metrics and counts—are relevant for statistics
education research.

Scanpaths are idiosyncratic (Noton & Stark, 1971) and several studies
found that “an individual’s scanpath was [...] more similar within an individual
than between individuals” (Anderson et al., 2015, p. 1378). At first glance, our
research seems to contradict this, as we look at similarities between
individuals. Let us state up front that we do not dispute that scanpaths are
idiosyncratic. However, there are several reasons why this idiosyncrasy can be
ignored (or compressed, Garcia Moreno-Esteva et al., 2020). First, for students’
solution strategies, we are not interested in differences that are irrelevant to
those strategies, such as, for example, whether a student first looked at the
graph title, and then at the graph area or vice versa. Second, for students’
solution strategies, our qualitative study revealed that only the gaze pattern on
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the graph area is relevant. Third, our students were not just looking at a scene
but were looking to find an answer to the question posed. This is different
from most studies in, for example, the review of Anderson et al. Although
scene viewing can also be guided by the question to later describe the picture
from memory (e.g., Johansson et al., 2006), such a question usually is more
general than our question to estimate or compare means from the graphs.
Fourth, if there were no similarities in students’ scanpath patterns, it would
not have been possible to train an MLA or make an IMM to find such
similarities. We proved that this was possible with relatively high accuracy for
single histograms.

In addition, an implication of our work could be that reading axes and
graph titles is less important for students’ task-specific strategies than we
thought. A first indication stems from our first attempts with machine learning
algorithms (MLAs)—not further reported in Chapters 4 and 5. Adding gaze data
on graph and axes titles seemed to add noise and reduce MLA accuracy.
Second, we saw in the videos of the gazes that students sometimes explicitly
checked the axes titles and then still misinterpreted the graph. More research
is needed to figure out whether—and if so, how—Ilooking at axes titles is
related to students’ task-specific strategies.

7.5 Implications and recommendations for educational
practice and design

In the next sections, we offer implications and recommendations for the role
of histograms in the statistics education curriculum for teacher professional
development and for future applications of eye-tracking in statistics education.
In line with the quote of Marie Curie at the beginning of this chapter, we
notice only what remains to be done.

7.5.1 Histograms in the statistics education curriculum

Dutch teachers in Grades 4 and 8 are the most frequent users of textbooks
according to a Trends in International Mathematics and Science Study (TIMSS)
(Foxman, 1999). In the Netherlands, similarly to many other countries,
“textbooks [...] are the supporting backbone for most teachers (whether or not
one believes this should be the case)” (Leinhardt et al., 1990, p. 47). Therefore,
in the following sections, we provide implications and recommendations for
teachers, textbook authors, and curriculum designers.

Histograms are needed for learning key concepts

We recommend a central role for histograms in a curriculum that also includes
other graphs of univariate data (e.g., dot-, stem-and-leaf, and boxplots).
Histograms may play a pivotal role in learning statistical key concepts such as
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data, distribution, variability or variation, and central tendency (Garfield &
Ben-Zvi, 2008a). Histograms prepare for other key concepts such as probability
distribution and density in probability theory (Batanero et al., 2004). Each key
concept relies on other concepts (e.g., distribution relies on center, density,
skewness, relative frequency, Bakker & Gravemeijer, 2004). Therefore, a
histogram can be regarded as a spider in a web of knowledge (Chapter 1), see
the network of statistical concepts relevant to interpreting histograms
(Chapter 2). Unfortunately, we cannot learn those key concepts without signs
(e.g., histograms), as the representation of data as well as how their
distribution manifests itself (through its shape) strongly depends on the
specific type of graph (Chapters 1, 2). The underlying conceptual difficulties
become manifest when students interpret histograms, making histograms a
good diagnostic instrument for teachers and researchers.

Given students’ persistent difficulties with histograms, one might
wonder whether we can do without them in research and education. We think
we cannot. First, histograms are suitable for large amounts of data because
they aggregate them, and as such, they can reveal aspects of distributions that
most other graphs often do not (e.g., Pastore et al., 2017). Second, histograms
are omnipresent in research and society, and should, therefore, be learned.
Third, students also exhibit comparable misinterpretations of alternatives such
as boxplots and stacked dotplots (Bakker et al., 2004; Lem et al., 2013a, 2013b,
2014a; Lyford, 2017). Fourth, it is the key concepts underlying histograms that
are hard to grasp.

Focus on key concepts and bring data more upfront

An implication of our research is that within the key concepts it is plausible
that data need to be put more to the forefront in Dutch secondary statistics
education, and most likely also in other countries (Chapter 2). This plea for
more emphasis on the key concept of data is in line with developments in data
science and statistics. These developments required “Re-thinking learners’
reasoning with non-traditional data," which was the theme of an international
conference (SRTL-12) on statistics education that was co-organized by Ben-2vi,
Boels, Makar, and Van Dijke-Droogers. In addition, recent statistics education
research argues for adding data literacy to statistical literacy. Gould considers
data literacy to be statistical literacy with more focus on being “a critical
consumer of data, controlling [ones...] personal data trial, finding meaning in
data, and taking action based on data” (2017, p. 23). Furthermore, analysis of
media items during the pandemic brought to light that our students need to
understand that statistics and predictions are tentative and that data,
analyses, and results can be debatable or may need revision (Gal & Geiger,
2022). This might challenge the view that scientific findings or statistics are the
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truth. They suggest adding evidence literacy to the statistics curriculum as part
of critical thinking (see section 7.21). Teaching examples for incorporating
critical interpretation of data presented in statistical graphs can be found on
the website’ What’s Going On in This Graph?

The review study made us change our focus from how to interpret the
sign or artifact (histogram) to key concepts in statistics. However, several
educational systems are still dealing with a previous change from teaching
students how to construct histograms to how to interpret histograms:
“didactical research suggests that the emphasis of teaching is often put on the
construction of such graphs, with little attention to their interpretation”
(Gonzélez et al., 2011, p. 188). Since then, little has changed (e.g., Burrill,
2020). For example, in United Kingdom assessments “there is very little
emphasis on statistical skills such as interpreting data and drawing conclusions,
and a great deal of emphasis on technical skills” (Ridgway & Nicholson, 2019,
p. 1). The choice of software for classroom use can either support or hinder
refocusing on key concepts (see the methodological contributions section). The
Netherlands unfortunately is no exception to this international tendency for
teaching practice to focus primarily on how, for example, to draw a histogram
from a frequency table or calculate measures of centers (Chapter 1) rather
than interpreting graphs and developing an understanding of key concepts
through histograms. This stresses the importance of supporting teachers and
authors of textbooks in such a refocusing, as textbooks may have a cumulative
impact on students’ achievement (Van den Ham & Heinze, 2018).

An implication of our research is also that it confirmed that estimating
means from graphs can demonstrate students’ conceptual knowledge (e.g.,
Gal, 1995). In addition, our eye-tracking studies showed that students used
correct strategies for estimating means from case-value plots (Chapter 3) and
most non-stacked dotplots (Boels & Van Dooren, 2023). Therefore, it is most
likely not the estimation of means from graphs itself that is causing students’
difficulties with histograms. Instead, it is how the data are presented in
histograms (Chapter 2). We consider estimating and comparing means of data
in graphs as a first step toward assessing and comparing variability, as
variability is assessed against some measure, often the mean. For example, the
standard deviation is a (non-linear) deviation from the arithmetic mean.
Variability is part of the key concept of distribution. A next step could,
therefore, be to develop students' knowledge about distribution.

74 https://www.nytimes.com/2020/06/10/learning/over-60-new-york-times-graphs-for-
students-to-analyze.html
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Histograms in the investigative cycle

Research recommends having graphs play a central role in innovative curricula
(Garfield & Ben-Zvi, 2008a) and in initial data analyses. This is in line with the
advice to always graph data first before applying any statistical test (e.g.,
Anscombe, 1973; Matejka & Fitzmaurice, 2017; Pastore et al., 2017). In
innovative curricula, the investigative cycle (Figure 7.3) plays an important
role”. In this cycle, histograms may assist during planning, data collection and
cleaning (e.g., finding outliers), and analysis (e.g., exploration, hypothesis
generation). So far, we have not found any dataset being used in Dutch Grades
7-12 textbooks that needs, for example, data cleaning. In addition, histograms
could be used during inferential reasoning such as testing a hypothesis and
drawing conclusions (e.g., interpretations, generating new ideas). Garfield and
Ben-Zvi (2008a) state:

Today’s more innovative curriculum and courses have students
constantly revisit and discuss graphical representations of data,
before any data analysis [e.g., calculating means and standard
deviations] or inferential procedure [occurs]. In a similar vein, the
ideas of distributions having characteristics of [...] center, and
spread can be revisited when students encounter theoretical
distributions and sampling distributions later [on]. (p. 168,
emphasis added)

Discussing these recommendations, we note that histograms are part of what
is often called descriptive statistics. This classification belittles the role of
histograms in inferential reasoning. For inferential reasoning, research
suggests starting with qualitative inferences (Van Dijke-Droogers, 2021)
instead of computations. An example is asking students to estimate center
(e.g., arithmetic mean) and variation from a graph (Gal, 1995) instead of
calculating mean and standard deviation from a graph or frequency table.

It is plausible that the investigative cycle and statistical key concepts, up to
now, received little attention in Dutch statistics education. For example, if
teachers follow mathematics textbooks, students will rarely collect data
themselves. Instead, they will work either with representations of these data
(e.g., tables, graphs) or with given datasets. As the choice of graphs depends
on what data are collected (number of variables, measurement level),
students’ experiences with it are important. However, as it can be time-
consuming, talking students through the data creation process can be an
alternative:

7> Recently, attempts have been made to incorporate insights from data science (IDSSP, 2019;
Fry & Makar, 2021).
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[Several researchers] stress the importance of talking through the
process of data creation as necessary preparation to seeing data
as numbers in context. [It can also] address the measurement and
sampling issues: what variable exactly is measured and how?
However, such guided discussions alone may not suffice; in our
view, students should also experience a whole investigative cycle.
(Bakker, 2004a, pp. 256-257)

Figure 7.3 Investigative cycle (redrawn from Wild & Pfannkuch, 1999)

Note. Some research adapted this cycle to include data exploration with “data from
disparate sources, some of which may not have been mindfully collected or may have
been collected for a purpose different from the current application” (Gould, 2021, S21;
see also Wise, 2020). Based on key practices of data scientists, Lee et al. (2022), use
“consider and gather data” instead of data collection and separate this step from the
processing of the data (e.g., data management and cleaning) (p. 11). For image-based
data, Kazak et al. (2022) developed a version of the investigative cycle that starts with
“data familiarization” and includes an “Identification/Generation of Variables” step

(p. 5).

In our quick scan of textbooks (e.g., Moderne Wiskunde, 2015), we did not find
examples of talking through this data collection process. Although, in recent
textbooks, it seems that some improvements have been made, such as
including a task in which students collect data themselves (e.g., Moderne
Wiskunde, 2019), the full ‘talking through the data creation process’ for the
many datasets given in the textbooks does not seem to occur. McClain and
Cobb (2001) provide an example of how this could look for the braking
distance of cars. This process then includes “what data would be needed to
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make a good decision or how that data could be generated [...]. How one might
test the effectiveness of a car’s brakes or how that data could be gathered”
(2001, p. 113). Given the vast amount of data that are nowadays collected by
others, emphasis on how, why and by whom data are collected becomes more
and more important for statistical literacy and critical citizenship (Fry, 2019;
Gal & Geiger, 2022).

Postponing the introduction of histograms

Based on our research we suggest postponing the introduction of histograms
to Grades 9 or 10 as we think that the introduction of histograms comes too
early in curricula. Many students’ difficulties with histograms continue to exist
up to tertiary education and in fact, even some teachers have difficulties with
histograms (e.g., Lovett & Lee, 2019). Bakker (2004a) already advised “against
introducing histograms in early middle school grades” as students in Grades 7—
8 needed a lot of time to understand center and spread in dotplots; spending
time on histograms (or boxplots) would take time away from developing these
notions (p. 261). Currently, the Common Core State Standards for Mathematics
(CCSSM) introduce histograms (together with dotplots and boxplots) in Grade
6, and the Pre-K—12 Guidelines for Assessment and Instruction in Statistics
Education Il (GAISE 1l) gives examples of histogram test items for level A and B
(“roughly equivalent to elementary, [and] middle [...] school “(Bargagliotti et
al., 2020, p. 2; more assessment examples in Chance et al., 2018; Tintle &
Vander Stoep, 2018). We think that non-stacked (‘messy’) dotplots (Chapter 6),
and hatplots (e.g., Allmond & Makar, 2014; Konold, 2002) are preferred for
Grades 6-9 (cf. Bakker, 2004a; Fielding-Wells & Hillman, 2018). In addition, we
expect that histodots (Chapter 2) and stem-and-leaf plots can be introduced in
Grades 8 or 9 as preparation for histograms. These univariate graphs have in
common that they prepare for proportion-based reasoning (Frischemeier,
2019). Non-stacked dotplots and hatplots can also be used to build students’
intuitions for boxplots (cf. Makar & Confrey, 2003) and prepare for quartile-
based reasoning (Frischemeier, 2019). Boxplots share with histograms that
they depict univariate data and that many misinterpretations occur (e.g.,
Bakker et al., 2004; Lem et al., 2013a, 2013b, 2014a). Therefore, boxplots need
to be carefully introduced; we speculate in Grades 10 or 11, and after
introducing histograms.

There are hidden conventions and conceptual elements in
histograms and boxplots: in histograms, the area of the bars is
relative to the number of values it signifies, and in boxplots
conceptual elements such as median and quartiles are depicted.
(Bakker, 20044, p. 13)
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Another implication of our eye-tracking study (Chapter 3) is that just telling
students to carefully read the axes and graph titles will probably not be
enough (see also 7.4.4). An implication of testing our initial HLT is that pre-
university track (vwo) students in Grades 10—12 seem to be capable of
correctly estimating means from histograms when this is carefully prepared in
targeted tasks. We expect students will also be able to compare means from
histograms and dotplots when properly prepared. We consider such tasks as
preparation for qualitative assessing and comparing variability from dotplots,
histodots, and histograms.

Use different names for different types of graphs with bars

We recommend using different names for different types of graphs with bars.
As pointed out in the introduction, in English, different names are used for
different types of graphs (e.g., Cooper, 2018). When correctly applied, these
different names can help students to distinguish different types of graphs with
bars from each other. Unfortunately, our native language—Dutch—only
distinguishes histograms and bar charts, and some Dutch textbooks do not use
the word histogram at all (e.g., Moderne Wiskunde, 2015, 2019). Therefore,
Dutch words were introduced (Boels, 2019) for case-value plots (casus-
staafdiagrammen), distribution bar charts (verdelings-staafdiagrammen), and
time-plots (tijd-diagrammen). We beg textbook authors worldwide, and in the
Netherlands specifically, to start using them correctly and avoid ambiguous
words such as bar graphs or bar charts (in Dutch: ‘staafgrafieken’ or
‘staafdiagrammen’)’®.

7.5.2 Professional development of mathematics teachers and
textbook authors

Provide teachers with professional development opportunities
In discussing the implications of our work, we note that a change in the
curriculum implemented in textbooks is not enough to incorporate insights
from research. Making teachers aware of key concepts in statistics, students’
misinterpretations related to these key concepts, their own misinterpretations,
and effective teaching strategies to prevent such misinterpretations is
necessary (cf. Pareja Roblin et al., 2018). For current teachers and future
statistics education curriculum reform, we, therefore, recommend
implementing it in teacher training.

First, teachers are the ones who deliver the curriculum. Therefore, it is
important to not only look at how insights from research could be

76 The distinction is important because they need to be analyzed and interpreted differently.
Similar to a triangle and a square which are both polygons, but importantly different for
reasoning.
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implemented in the curriculum in, for example, mathematics textbooks as we
did in the previous section, but also how teachers can be supported to enact
the intended curriculum. Teaching statistics is “less popular among many
mathematics teachers [... and several of those] in the early years of secondary
education are inexperienced and not trained to teach inferential statistics”
(Van Dijke-Droogers, 2021, p. 171). The same seems to apply to those teaching
statistics in upper grades in the Netherlands. As we will argue below, we think
this is partly due to a lack of training, not providing topic-specific support and
overviews for teachers, and a lack of possibilities for many teachers to cross
boundaries between research and teaching.

Second, in the Netherlands, as in many other countries, statistics in
middle and high school is often taught by mathematics teachers. The
deterministic approach in the mathematics curriculum and the inherent
uncertainty that exists within statistics do not always align (e.g., Groth, 2015).
Moreover, “many mathematics and science teachers in the USA have not
benefitted from the sufficient opportunity to learn statistics in a sense-making
manner” (Burrill & Ben-Zvi, 2019, p. xiv). The same holds true for several other
countries, including the Netherlands (Van Dijke-Droogers, 2021). Although
probability has been part of mathematics education for several decades now,
statistics was first introduced as a topic in the elective part of the mathematics
curriculum in 1985 (e.g., Wijers & De Haan, 2020). From 2007 on, a new
curriculum reform resulted, on the one hand, in statistics playing a larger role
for students who chose humanities and social studies as a continuation. On the
other hand, for future science students, statistics became part of an elective
subject (Mathematics D) that was chosen by only a limited proportion of them.
Many future mathematics teachers are, therefore, still only introduced to
statistics for the first time during their training as teachers. It is unclear to what
extent knowledge about key concepts in statistics is covered, or whether this
training focuses mainly on procedural or instrumental knowledge, including for
example, how to find the median by hand or by using a calculator.

Third, despite in-service teacher training provided during the first years
of the last reform in 2007, STEM teachers still hold several misinterpretations
related to key concepts of statistics (e.g., for estimating and comparing means
from histograms and case-value plots, Boels et al., 2019b). This situation is not
unique to the Netherlands. High school mathematics teachers with at least five
years of experience had similar misinterpretations to students about the key
concept of variability (Vermette & Savard, 2019). Middle- and high-school
teachers found it difficult to coordinate graphs with calculation procedures,
such as absolute deviation for the mean (Peters & Stokes-Levine, 2019)—a
measure that is not part of the Dutch statistics curriculum for secondary
education.
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Fourth, design research is needed on how best to organize such
training in the Netherlands and internationally. That this is not an easy job is
illustrated by research involving preservice teachers who compared data of
groups (e.g., monthly income for males and females). After attending a course
on “developing statistical thinking and reasoning with TinkerPlots”
(Frischemeier, 2019, p. 292), teachers concentrated “on the production of
displays and the calculation of summary statistics but [they] do not interpret
their findings” (p. 301).

Fifth, given teachers’ dependency on mathematics textbooks, we
speculate that reforming textbooks might be another effective route to
increasing the level of knowledge of both teachers and students.

Supporting teachers in implementing curriculum reform

Given that teaching statistics does not seem very popular for (Dutch)
mathematics teachers, we recommend supporting teachers in implementing
the statistics curriculum after each reform. Currently, we do not know how
well the implemented statistics curriculum for Dutch secondary schools
matches the intended curriculum (see also Verschut & Bakker, 2010), although
there is some analysis of mathematics textbooks (e.g., Huang, 2022; Rodriguez-
Muiiiz et al., 2018). As many teachers rely on textbooks, research is needed on
how the intended statistics education curriculum is implemented in textbooks
and in teaching practice. Providing teachers with information about the
matches and gaps between the intended and implemented statistics education
curriculum in textbooks could help with closing knowledge gaps:

Providing support for teachers as they form the intended
curriculum and enact it could help ensure that the intended spirit
of the curriculum materials [...] is not lost. Additionally, as
curriculum writers interact with teachers, they may find that some
adaptations teachers make to the written curriculum help to
improve it. (Groth, 2015, p. 14)

Providing teachers with exemplary teaching materials (cf. cTWO, 2007) during
curriculum reform most likely needs to be part of that but will probably not be
enough. What teachers also need is to know “the intentions of the authors of
exemplary teaching materials [...] Suggestions in the materials for classroom
activities that stimulate coherent knowledge and make efficient use of time”
(Verschut & Bakker, 2011, pp. 921-922), explication of the structure of
exemplary materials, and their connection to the curriculum. We, therefore,
recommend that the intentions of the materials (e.g., which key concepts and
misinterpretations they aim to address) and suggestions for classroom
activities be part of it. Left for future research is also how to best provide
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teachers with supporting materials during and after reforming the statistics
education curriculum.

Crossing boundaries between research and teaching and provide teachers
with overviews of students’ conceptual difficulties

We recommend developing supporting materials for teachers teaching
statistics (cf. cTWO, 2007) as these materials could help cross boundaries.
Crossing boundaries—here from teaching to research and back—can be
difficult (Akkerman & Bakker, 2011). Before we started this study, many
teachers and textbook authors were not aware of students’ difficulties with
interpreting histograms (Reinhart et al., 2021). In addition, research insights
are not always used in teaching practice, not only in the Netherlands but in
many countries (Bakker et al., 2021). We speculate this is partly due to
inaccessible jargon, a fragmented landscape with detailed studies on specific
topics, secondary school teachers who instead teach a broad curriculum, and
the limited time available to teachers to explore topics in depth. Research is
needed to find out what teachers’ support should look like. One effective way
to improve teaching practice could be to provide teachers with (replace
science with statistics):

...extensive lesson directions and [...] activities [that] were
designed to elicit students’ ideas and many possible
misconceptions [...] questions were provided and teachers were
given suggestions on how to help [...]. The curriculum consists of
instructional materials for both students and teachers. The suite
of teacher support materials helps to deepen teachers’ knowledge
of science content and practices related to the unit. These
materials include (among other supports) Background Content
Knowledge, which provides teachers with more advanced
information on the science content, important observations
students should make, and any observations teachers might
emphasize/deemphasize. (Pareja Roblin et al., 2018, p. 276,
emphasis in original)

7.5.3 Future applications of eye-tracking in statistics education

Before continuing to possible future applications of eye-tracking research in
statistics education, in the next section, we first would like to highlight an
ethical point of attention regarding the usage of students’ gaze data.

Ethical considerations

Although data collection can have advantages, such as music websites offering
music that you might like based on your previous choices, it has a downside,
too. Fry (2019) provides several examples of improper use of data to train
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machine learning algorithms that decide who is to be invited for a job
interview or who is turned down for a loan. Therefore, an ethical discussion
needs to be started about gaze data.

Today, gaze data are already being used in the gaming community (e.g.
EyewareBeam”’) and its introduction into education will probably only be a
matter of time. Currently, it seems impossible to retrace gaze data to a specific
person, as for most software, only the gaze position on the screen is registered
(e.g., Gorilla.sc, n.d.), although some webcam eye trackers do store videos with
faces on servers as well. In addition, no general relationship seems to exist
between eye movements and thought processes; this relation needs to be
established for each situation. However, it is conceivable that in the future,
faster methods will become available for analyzing data and that the
idiosyncrasy of gazes could make them retraceable to specific persons.

It is, therefore, important that an ethical discussion be held now about
who may collect and use students' eye movement data. Are we going to hand
this over to large tech companies—just as we did with earlier data—or will this
remain reserved for non-commercial parties only? Can students—and
teachers—refuse to make their data available, something that currently seems
impossible when using, for example, Google Classroom? We strongly
recommend thinking about such questions now.

Gaze data in a feedback or information tool

We discuss several implications for how gaze data can be used as part of a
feedback or information tool in education. A first possibility is to provide
students with their own gaze data after solving one or more tasks and ask
them to describe the strategy they used. Our research and analysis (Chapters 3
and 5) suggest this may also help students reflect on their chosen strategy. Our
students seemed to have no difficulties interpreting their own gaze data during
cued recall. Students’ gazes were shown by illuminating the location where
students looked—through a kind of spotlight—while making the rest of the
graph darker. However, this way of having students individually look back at
their eye movements is time-consuming and not (yet) feasible for regular use
in classrooms.

A second possibility is to provide students with other students’ gaze
data. We have done this with two students in our intervention study, but do
not report on that in Chapter 6. We have not yet analyzed these data. Both
possibilities required a time delay between data collection and replay.

A third possibility is to provide students with immediate, personalized
feedback based on their gaze data (e.g., Krél & Krél, 2019). Such automatic

77 https://beam.eyeware.tech/games/
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feedback could become possible if a number of conditions are fulfilled. First,
there need to be distinctive eye movement patterns that can be linked to
specific strategies (Chapter 3). Second, after developing an IMM or training an
MLA, such tools need to be able to extract these patterns from the gaze data
of new students. This condition was met for single histogram tasks (Chapter 4).
Third, inexpensive equipment is needed to measure eye movements. Further
research is needed to investigate if webcams could be used (e.g., Knoop-Van
Campen et al., 2021) as these have less accuracy. Only if sufficient accurate
eye-tracking becomes inexpensive, can large-scale applications for gaze-based
personalized feedback become feasible in classrooms, during homework or
distance learning, and in MOOCs. For all three possibilities mentioned above,
the question remains in what way feedback should be given: should students
see their own or others’ eye movements (e.g., Krél & Krdl, 2019), or is another
form of feedback needed (cf. Tacoma et al., 2019)?

A fourth possibility is to provide teachers with information based on
students’ gaze data. Several questions still remain open in that case. Is it better
if such a system reports back which students are using a correct strategy,
which students are not, and for which students the strategy is unclear so that
the teacher can intervene in a targeted way? Is it useful or necessary to then
provide the teacher with a record of students' eye movements, and if so, in
what form? This also raises the question of whether teachers can identify
students' strategies—from students’ gaze data—when students are
interpreting a statistical graph. Do they need an instruction for that and if so,
what should such an instruction look like? Teachers could not only be asked
whether they think a student had performed a correct strategy—or what
strategy they think the student used—but also, if the strategy was
inappropriate, what kind of intervention they would do. This is what bachelor
students did—(re)using students’ gaze data of the study described in Chapter 3
for single histograms and case-value plots (Benson et al., 2020). To the best of
our knowledge, this is one of the first studies that provided secondary school
teachers with the opportunity to interpret and thus reason with this ‘non-
traditional’ data. As this data collection was relatively small and hindered by
the COVID-19 pandemic, further investigation is needed.

Gaze data in tertiary education courses

We suggest developing tertiary education courses that focus on task-specific
strategies in mathematics and statistics education inferred from gaze data. In
these courses, students (and teachers) will then collect and analyze gaze data
themselves. There are already courses on eye-tracking, often taught in
neurosciences or psychology departments. Students collecting data in these
courses are, for example, interested in memory and cognitive load theory, self-
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regulated learning, anomalous viewing patterns related to certain health
problems, or metacognitive skills. In marketing, gaze data are used for inferring
decision behavior. Currently, courses that focus on the kind of task-specific
strategies found in our research seem to be rare.

Gaze data to revise instructional design

Future research can also use gaze data to revise the instructional design.
Examples of using multimodal data for revising the design can be found in
several studies (Alberto et al., 2022), such as on proportions (Shayan et al.,
2017) and trigonometry (Shvarts et al., 2021).
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“Insanity is doing the same thing over and over again and expecting different
results.” 78

Rita Mae Brown

78 This quote is often misattributed to Einstein. Instead, this version was from Rita Mae Brown in
Sudden Death, 1983, in which she rephrased a quote from Narcotics Anonymous, 1981. In Van
Wayenburg, B. (2015). Vijf quotes die Einstein nooit heeft uitgesproken [Five quotes Einstein
never spoke]. Kijk. https://www.kijkmagazine.nl/artikel/vijf-quotes-die-einstein-nooit-heeft-
uitgesproken/
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8.1 Reflections on conducting design research

As described in the introduction, when | started this research, | intended to
conduct a design study with input from literature and from an eye-tracking
study. However, from the literature review it became clear that, in 2016, there
was not yet an effective intervention for secondary education waiting to be
tested and tailored to Dutch education. In addition, although eye-tracking had
been around for several decades, its application in the field of statistics
education was and is still in its infancy (e.g., Strohmaier et al., 2020). At the
start of our pilot eye-tracking study, we, therefore, had no idea what to expect.
| remember very well that | was concerned that we would not find anything at
all as we constructed graphs (histograms and case-value plots) that contained
a clear context (weights of packages and garbage) excluding any of the known
confusing contexts; we used ‘easy’ numbers (below 20), we used axes scales
and titles, and we explicitly indicated graph titles. It came as a small surprise
that even master students teaching statistics were sometimes misinterpreting
histograms, or were overgeneralizing histograms to case-value plots, and that
clear solution patterns seemed to emerge for single graphs (Boels et al., 2018).

Conducting a proper eye-tracking study is a lot of work and required
me to also dive into the literature of that discipline. We benefitted most from
the data collection by adding extra tasks to the first twelve tasks intended for
uncovering students’ solutions processes—strategies—for histograms and
their look-alikes (case-value plots). These rich data formed the basis of three
studies included in this dissertation and opened up opportunities for taking a
step toward automatic feedback based on students’ gazes (Chapter 4).
Although Enrique Moreno-Esteva and Alex Lyford—whom | met at
international conferences—executed the machine learning analysis, writing up
the work we did required that | acquired at least some basic knowledge on yet
another discipline, namely how machine learning algorithms (MLAs) function.
Getting that work published was not an easy task either, as it is—again—on an
intersection of disciplines: eye-tracking research related to cognitive sciences,
artificial intelligence, and statistics education. Since educational research
journals usually lack specific knowledge about MLAs, a specialist reviewer is
frequently called in for this purpose. These reviewers often focus on tailoring
an MLA to the situation, which originates from the discipline of artificial
intelligence. However, our approach described in Chapter 4 used black-box
software with an MLA as a tool, as we focused on the educational application.
It is important to keep boundaries between disciplines permeable, as the
dialogue between different disciplines can be fruitful for all:
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Sustained boundary interactions [here: between statistics and
mathematics education] are vital to preventing insularity from
contributing to the stagnation of interrelated communities of
practice (Wenger, 2000). When boundary interactions occur,
borders between disciplines can become exciting sites for learning
rather than prohibitive barriers. (Groth, 2015, p. 5)

By crossing boundaries, practices from different disciplines can be combined
and lead to new tools, concepts, models and new practices (Akkerman &
Bakker, 2011). The disadvantage of working at boundaries is that results are
reported in so many different journals and platforms that this can hinder
further development (Groth, 2015).

Although the main contribution of this dissertation lies in the important
“front-end work” (e.g., McKenney in Bakker, 2018, p. 142), as a teacher | could
not live with this front-end work only. Therefore, | ended this dissertation with
a first cycle of a design study, using an approach that was rather new in the
field of statistics education—embodied cognition and instrumentation—
requiring again getting acquainted with a new body of literature. | am very
proud that we were able to introduce so many new tools and approaches (e.g.,
eye-tracking, task-specific gaze patterns, machine learning analysis of gaze
data using vectors, embodied instrumentation design) into the field of
statistics education.

8.2 Personal reflections as a teacher-researcher

| conclude with some personal reflections on the combination of being a
teacher and a researcher. When | started this research, | dropped several tasks
at school, including being a ‘technator’ (coordinator) at the Technasium’.
Although this allowed me to focus on my teaching, it also meant that | had
fewer connections with colleagues, a process that intensified during the
COVID-19 pandemic. At the same time, compared to full-time PhD-students, it
is a luxury to have your own classes for piloting. For example, from this
experimenting, | learned that even the best-performing pre-university track
students (‘vwo’, Mathematics D, Grade 11) found it difficult to indicate which
and how many variables were along the axes for graphs with bars, as well as
the measurement level of the variables’ attributes. | kept it as a suitable task to
utilize in professional development courses with high school teachers.

79 |n a Technasium, students in Grades 6—12 undertake projects in which they conduct STEM
research or design STEM products. External companies act as principals and bring in existing
scientific or technological problems from their own practice for students to solve.
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| have always experimented in my classes, but now | was increasingly
inspired by specific research. Based on embodied designs for trigonometry
(Alberto et al., 2019)%, | created a paper task—due to the lack of computers
with touchscreens in this class—to review the subject in a Grade 12 (6 ‘vwo’)
Mathematics A class (Boels, 2022a, 2022b). The same research helped me
choose simulations of the relationship between unit circle and sine more
carefully (Boels, 2022a). In Grade 10 (4 ‘havo’®?), | had students discover the
relationship between the unit circle and sine graph through embodied tasks
(cf. Alberto et al., 2019). In the absence of touchscreens, | placed one student
at a time behind my own touchscreen laptop connected via an online meeting
environment via the desktop computer to the digital board—digital skills |
learned during the COVID-19 pandemic. | asked the class to discover the
hidden rule, and if they knew it, not to tell but to demonstrate it on the
computer. My impression after the test was that these students understood
this topic better than other students.

As an early researcher, | wondered about a number of things as well.
First, why are mathematics teachers almost absent at conferences on research
in mathematics and statistics education? Such conferences (e.g., ICME-13)
opened up a new world to me, as so many problems were discussed that |
regularly encountered in my classroom. One answer is that the amount of
travel, lodging, and participation fees for such conferences largely exceeds a
teacher's annual training budget, a budget | tended to almost fully spend on
visiting the national conference for mathematics teachers (NWD?®2). In
addition, most schools do not allow teachers to be away for five days or more
for a conference. | am very grateful that my school did, several times. | wish
that every mathematics teacher could go—at least once every two years—to
an international conference on mathematics or statistics education. Here are a
few that seem appropriate, although | am aware that the scientific English
jargon can be difficult: ICME®3, ICOTS®, PME®>, CERME?®®.

Second, conducting didactic research requires skills from research in
education and psychology. These are usually not included in science education

80 See also: https://embodieddesign.sites.uu.nl/activity/

81 Havo is a pre-college track for Grades 10 and 11.

82 https://www.uu.nl/en/research/freudenthal-institute/impact/conferences

83 International Congress on Mathematics Education. Content: all mathematical domains.
Website: https://www.mathunion.org/icmi

84 International Conference on Teaching Statistics. Content: statistics, data science and
probability education. website: https://iase-web.org/Conferences.php

85 psychology of Mathematics Education. Content: all mathematical domains. Website:
https://www.igpme.org/

86 Conference of the European Society for Research in Mathematics Education
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(e.g., Bakx et al., 2016). | learned these skills on my own time parallel to writing
the research proposal. | had the luxury of taking off at least one day a week for
this, in addition to my job, running my own company, and taking care of three
teenagers. | would wish for future teachers to have the opportunity to gain
these skills with a teacher grant in a kind of pre-promotion master's program
(1-2 years, maximum 30-60 credits), in which they also write their research
proposal.

Third, | was surprised that so much research at universities is done by
relatively inexperienced people: bachelor, master, and PhD students, and
postdocs. By the time they are sufficiently experienced, there is often little to
no external funding available anymore through, for instance, NWO. As a result,
experienced researchers mainly teach and supervise, and very rarely conduct
their own research. Moreover, for the majority of researchers, there is simply
no place at the university after their PhD or postdoc position. Their research
experience then gets lost to the scientific world. This is a waste of money,
talent, and human resources.

Fourth, | greatly appreciate that a follow-up postdoc grant exists for
didactical research by secondary and vocational education science and
mathematics teachers. My wonderment concerns the possible gap of
sometimes more than a year after completing a PhD trajectory. Although
certainly not the most important reason, this possible gap played a role in my
decision not to continue teaching at a secondary school. | was eager to
continue in didactical research right away, and wanted to write my research
proposal for continuation as part of my job, instead of on my own time. My
advice to NRO is to install a post-promotion proposal writing grant that can be
applied for on an ongoing basis once a dissertation is submitted and a
promotion date is scheduled.

| sometimes joke that teachers must be incredibly smart people as they
conduct a full PhD research in about two full-time years. The grant my school
got to replace me was for 0.4 FTE¥, initially for four years, then for five, and
thanks to COVID-19, three more months were added. That worked out at 2.1
FTE. Internal PhD candidates at the university get almost double—four years
full time, hence, my joke. Of course, there is some room for disagreement with
this reasoning. To give just one example, the latter have (few) teaching duties,
although these could include teaching others to conduct qualitative research—
lessons from which young teachers might learn a lot themselves. In addition,
switching between short-term requirements from school and long-term
planning of research is challenging (Bakx et al., 2016), hard work and requires a
lot of energy. | am extremely grateful that | was able to do this research. Still, |

87 Full Time Equivalent. 1 FTE is equivalent to a full time job.
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hope that my successors will have an easier job, after finishing the proposed
pre-promotion master's program.

| end this personal reflection with three more wishes for the future.
First, as a teacher, | would like to see an analysis of the implemented statistics
education curriculum in textbooks—in a format accessible for teachers—
compared to the intended curriculum. Textbook analyses have been made
previously (e.g., for primary education, Van Zanten, 2020; for secondary
education, Huang, 2022) but this information is scattered, mostly in English,
difficult for teachers to find and access, contains scientific jargon, and is often
outdated by new books due to the long duration of research. Second, | am
curious about the association between Dutch textbooks and final exam results
for specific domains, as well as students’ results in subsequent education. My
suspicion is that there is a difference between them depending on the
textbooks, but | know of no recent research on this for Dutch education. Third,
| advocate for research-informed advice based on didactical research in
mathematics and statistics education in a form that has been found effective
for secondary STEM education, such as an A4-sheet per topic listing the most
important misinterpretations, best practices, specific points of interest for
teaching, and so on (e.g., Pareja Roblin et al., 2018), as so-called evidence-
based advice is regularly based on elementary and to a lesser extent, special
secondary education (e.g., Mason & Otero, 2021) and, due to the necessity of
meta-analysis and review studies, also sometimes based on past practices that
might not always fit future needs and innovations. Fourth, | think it would be
helpful if there were research schools for secondary and vocational education,
affiliated with an (applied) university, where research is conducted on an
ongoing basis. This could create a community of mathematics teachers who
jointly address didactical problems in mathematics and statistics education
through lesson study and action or design research. In addition, such a
community could prepare for research-informed teaching and could introduce
teachers to opportunities to conduct their own doctoral research. Similar to
what has been done for health research®, | advocate for funding for research
addressing the didactical—not pedagogical—needs of mathematics teachers in
that community and beyond.

88 https://www.zonmw.nl/nl/onderzoek-resultaten/preventie/programmas/programma-
detail/alledaagse-ziekten/
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Summary

Statistical literacy is an important learning goal for citizens. The studies in this
dissertation focus on a specific part of it—graph literacy—which includes being
able to comprehend and interpret graphs of statistical data. Many secondary
school students are not well prepared to draw justified conclusions from
statistical data in graphs. For example, in 2022, only 42 percent of Dutch Grade
11 students correctly selected a graph from which they could draw justified
conclusions (Cito, 2022). Such problems occur even with seemingly simple
graphical representations of data, such as histograms. As histograms are
omnipresent in research, society and education, they are important for
learning about key concepts such as probability distributions. Therefore, our
main research question is: How can pre-university track students in Grades 10—
12 be supported in understanding histograms?

We expected that a review of the literature and a small-scale eye-
tracking study would be sufficient input for a larger design study (Bakker,
2018). However, the topic of our research turned out to be much tougher than
initially expected. As histograms are used in numerous disciplines it was
impossible to summarize all that is known about them for education.
Moreover, few interventions in statistics education had been reported at the
start of our research, which, in addition, were not very successful. Hence, the
literature provided little basis for the design of a new intervention. More
research was needed before a new approach to teaching histograms could be
designed. The eye-tracking studies not only examined in more detail how
students interpreted histograms but also how these interpretations changed
after solving dotplots.

In Chapter 1, we elaborated on the important role of graphs in
statistical literacy. As many people tend to misinterpret histograms, an
introduction to histograms was also provided. Furthermore, some reflections
on the position of histograms in the school curriculum as well as a motive for
doing this research as a teacher were given. Figure 1 shows an overview of the
studies in this dissertation. We started with a literature review (Chapter 2). We
conducted several eye-tracking studies, in which we qualitatively (Chapter 3)
and quantitatively (Chapters 4 and 5) analyzed students’ gaze data. We
finished with a design study (Chapter 6) for which we developed, empirically
tested and evaluated our conjectured learning trajectory.
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Figure 1 Overview of the studies in this dissertation

Review of literature on interpreting and constructing histograms

As an overview of the most common misinterpretations of histograms was
lacking, in Chapter 2 we reviewed 86 publications on people’s difficulties with
histograms. Given the persistence of these misinterpretations, there is a need
to reflect on what conceptual difficulties may lie at their basis through the first
research question:

RQ1: What are the conceptual difficulties that become manifest in
the common misinterpretations people have when constructing or
interpreting histograms?

The most common conceptual difficulties could be grouped into three
categories labeled data, distribution, and miscellaneous. The first two each
relate to a key concept in statistics: data and distribution. Difficulties that
relate to the key concept of data are, for example, identifying the number of
statistical variables and the measurement level of their attributes. Distribution-
related difficulties include estimating or comparing centers (e.g., the mean) or
comparing variation (variability). Although data-related misinterpretations are
observed more often, research specifically addressing these misinterpretations
is scarce. A third and more diverse category of misinterpretations is related to
other conceptual difficulties. This includes having trouble linking the context to
the histogram, not understanding the difference between a histogram of a
sample and of a population and the influence of ICT. The analysis of the
publications in our review also led to the identification of a network of
statistical concepts specifically relevant to interpreting histograms (Chapter 2,
Figure 2.2).
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Students’ strategies for statistical graphs tasks: an eye-tracking study

The review results allowed for more broadly addressing students’ conceptual
difficulties that become manifest in most common misinterpretations rather
than focusing on a specific misinterpretation. Misinterpretations related to the
statistical key concepts data and distribution can be observed when students
confuse histograms with look-alikes, including case-value plots. As many
studies draw conclusions from students’ final answers (e.g., delMas et al.,
2007; Whitaker & Jacobbe, 2017), little was known about students’ strategies
for reaching these answers, including their micro-level thinking processes.
Therefore, it was unclear how to intervene effectively. The persistence of
students’ misinterpretations also called for a closer inspection of students’
conceptual difficulties. Hence, in the second study (Chapter 3), we decided to
figure out on a more detailed level what students’ difficulties with histograms
were through a larger eye-tracking study, as we thought that students’ gaze
patterns could provide insight into their approaches. In this second study, we
posed the research question:

RQ2: How and how well do Grades 1012 pre-university track
students estimate and compare arithmetic means of histograms
and case-value plots?

Therefore, in Chapter 3, we observed students’ actions by tracking their gazes
while they were solving graph tasks, in particular, estimating and comparing
arithmetic means of histograms and their look-alikes, case-value plots. By
observing these actions, it becomes clear how students use their conceptual
knowledge of the data in histograms, hence what strategies they employ. In
this eye-tracking study, we investigated Grades 10—12 pre-university track
(VWO) students’ strategies (N = 50) when interpreting graphs. We recorded
students’ gazes while they solved 12 graph tasks and interviewed them right
after. Students’ gaze data were combined with verbal data from this cued
recall to connect specific gaze patterns—the perceptual forms of gazes—to
interpretation strategies.

In a qualitative analysis of students’ scanpath patterns, we found five
strategies. Two hypothesized most-common strategies for single graph tasks
for estimating the mean as found in our pilot study (Boels et al., 2018) were
confirmed: a typical case-value plot and a histogram strategy, the latter
indicating that the student interprets the graph at hand as if it is a histogram
(Figure 2). A vertical gaze pattern reflected this histogram strategy. A
horizontal pattern was connected to a case-value plot strategy. In addition, a
third, new, count-and-compute strategy was found that was only correct for
case-value plots. Two more strategies were found for comparing case-value
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plots and histograms—hence, for double graph items: a distribution-informed
histogram strategy and a distribution-informed case-value plot strategy (Figure
3). Distribution informed means using specific features of the graph such as
the same symmetry and positions of the bar, thus, the same mean, or similar
shape but moved to the right, thus, higher mean; in short, they used ‘shape’
and ‘shift’ (cf. Frischemeier & Biehler, 2016).

Figure 2 Examples of the perceptual form of gaze patterns on single histogram tasks
(estimating means) with a correct strategy for histograms in the top left and a correct
strategy for case-value plots in the bottom right

Note. The circles are places where a student looked longer. The dotted lines indicate
the perceptual form of the scanpath patterns relevant to the strategy used.

The percentages of correct strategies varied between on average 43% for
single histograms and 100% for case-value plots; the latter being distributed
between a case-value plot strategy (71%) and a count-and-compute strategy
(29%). These findings were in line with results from a pilot study (Boels et al.,
2018) and a study with teachers rather than students (Boels et al., 2019b). The
percentages of correct strategies varied between on average 50% for double
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histograms and 90% for double case-value plots; the latter being mostly a case-
value plot strategy (87% points). To our surprise, in on average 9% of the
double case-value plots tasks, students used a distribution-informed histogram
strategy that resulted in an incorrect answer, for example, by using the
symmetry of the graphs. Furthermore, some students ignored bars with
frequency or measured value zero even though they looked at them (cf.
delMas & Liu, 2005).

Figure 3 A correct distribution-informed strategy for comparing the means of two
histograms in ltem09 using similar shape, shifted to the right and for comparing means
of two case-value plots in Item07 using shape and number of bars

Note. Students specifically compared the position of the ‘zero’ bars (black ovals) and
other bars on similar positions (e.g., purple squares). Correct answer top: Kees;
bottom: same.

362



Summary

Automatic, gaze-based identification of student strategies

The patterns we found in students’ gaze data for single histograms stimulated
us to explore, in Chapter 4, whether automatic recognition of students’
strategies through a machine learning analysis might be possible. Identification
of student strategies is a prerequisite for targeted intelligent feedback, for
example, during online learning. However, it was still unclear how to automate
real-time identification of task-specific solution strategies based on students’
gazes on histograms. The study in Chapter 4 is a first step in this automation
process.

RQ3: How can gaze data be used to automatically identify
students’ task-specific strategies on single histograms?

We used a software tool (Mathematica Classify Function) which automatically
prepared the gaze data and fed these into its implementation of a supervised
machine learning algorithm (MLA; random forest). This MLA was able to
identify whether students used a histogram interpretation strategy or another
strategy when estimating the mean from a single histogram. This other
strategy most often was a strategy that would have been correct if the graph
had been a case-value plot. The MLA performed acceptably (Figure 4), and
accuracies varied from around chance level (38%) to well above (88%)
depending on the validation procedure. Values above 70% are considered
good as these are well above chance level. One disadvantage of the MLA is
that it does not explain how it reached its decision for an individual student
and we, therefore, consider it a black box. The results of the MLA provided a
baseline for the transparent, interpretable mathematical model (IMM) we
constructed. This IMM was theoretically meaningful and performed well with
accuracies between 62% and 84%, acceptable sensitivity, and quite good
specificity (Figure 4). We also succeeded in training our MLA when we used
students’ gaze data from one item and had the MLA identify strategies for all
other items. These results indicate that students’ strategies can be derived
from their gaze data.

In the future, the results of such an automated strategy identification
might be made available to teachers. Our method allows for the design of
immediate, personalized feedback during online learning, homework, or
massive open online courses (MOOCs)through measuring gazes with, for
example, a webcam.
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Figure 4 Results of the MLA and the IMM

Note. ldeally, points should be concentrated in the upper left corner of the graph and
close together for all items. The MLA provided a baseline for the IMM. Although the
IMM worked well, the plot implies room for improvement.

Assessing students’ interpretations of histograms before and after solving
dotplot tasks

The previous studies revealed students’ solution strategies when solving
histogram tasks in more detail. A local instruction theory in statistics education
suggests that solving dotplots can support interpreting histograms (e.g., Bakker
& Gravemeijer, 2004; Garfield, 2002; Garfield & Ben-Zvi, 2008b) as dotplots
can draw students’ attention to the variable being presented along the
horizontal axis in both graphs. We wondered whether interpreting dotplots
would influence students’ strategies on histogram tasks. Therefore, while
collecting eye-tracking data, we included six dotplot tasks immediately after
the first twelve tasks followed by three histogram tasks. In Chapter 5 we
explored:

RQ4: In what way do Grades 10-12 pre-university track students’
histogram interpretations change after solving dotplot items?

Students’ gaze data on four histogram items were used as inputs for an MLA
(random forest). Our MLA can quite accurately classify whether students’ gaze
data belong to an item solved before or after solving the dotplot items. The
results indicate that there is a change in students’ gaze patterns. Moreover, we
found that the direction (e.g., almost vertical) and magnitude (length) of
saccades (fast transitions between positions where students looked) were
different on the before and after items. For example, gazes contained more
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vertical and less horizontal saccades on the histogram tasks after solving the
dotplot tasks. These changes could indicate a change in strategies.

We found three indications that students’ histogram interpretations
changed after solving the dotplot items: a change in students’ gaze patterns
(from the MLA result), an improvement in students’ estimations of the
arithmetic means for single histogram items, and a shift in students’ reported
strategies for solving histogram items. However, the number of correct
answers did not change significantly. For single histograms this number was
sensitive to the researchers’ choice of an answer range for correct answers. In
addition, evidence that the change in gaze behavior indicates learning, that in
turn can only be attributed to solving the dotplot items, is weak. We consider
as a most likely explanation for the mixed results that the action of solving
dotplot items creates readiness for learning (Church & Goldin-Meadow, 1986).
Reflection on their strategy—induced by the stimulated recall with the adult
interviewer—then made students realize their misinterpretation of, for
example, the frequencies as the measured values. This study suggests that
activities with dotplots may support students in understanding histograms.
Moreover, Konold (2007) already noted that dotplots can support students’
understanding of histograms through actions such as “separate, order, [...]
stack” and “fuse” the dots (p. 282). Fusing dots results in a bar that contains all
these dots. Taken together, the results could point at a learning effect of
solving the dotplots tasks—depending on how learning is defined.

Embodied design of a learning trajectory

The literature research (Chapter 2) also made clear that existing interventions
were not sufficiently successful in teaching students to correctly interpret
histograms. Students’ solution strategies (Chapter 3) showed that many of
these Dutch students lacked understanding of how and where data are
represented in histograms. Interpreting dotplots may assist students’
understanding of histogram (Chapter 5) as they draw students’ attention to
the axis along which the data are represented in both histograms and dotplots
(being the horizontal axis). However, it was still unclear how an intervention
could be designed that would support students’ learning of statistical key
concepts through interpreting dotplots and histograms.

Given the persistence of students’ difficulties with interpreting
histograms, we assumed that students’ education might have lacked an
embodied grounding of how histograms are constructed as well as sufficient
attention to how these artifacts become tools in statistical reasoning. In
embodied designs, students’ actions play an important role, such as the
actions described in the previous paragraph (Konold, 2007). Therefore, using
an embodied instrumentation approach (Drijvers, 2019) as a theoretical lens,
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we designed a learning trajectory (Chapter 6) using findings and insights from
previous studies. This design study is a first cycle of a design research project
on how to teach some of the most important aspects of the key concepts of
statistics through teaching histograms. The research question for this study
was:

RQ5: What sequence of tasks designed from an embodied
instrumentation perspective can support students’ understanding
of histograms and the underlying key concepts?

Figure 5 Saccades of magnitude 200 pixels or more of all participants on Item11 and
Item21 (double-histograms, top) as well as Item02 and Item20 (single-histogram,
bottom)

Note. Notice the difference in whiteness and blackness of students’ saccade directions
between the before items (left column) and after items (right column). Differences
between rows are most likely mainly due to differences in tasks and, therefore, most
probably irrelevant for our research question.

Our conjectured learning trajectory consists of five stages: (1) learning
initiation—experiencing a lack of understanding, (2) reinventing the role of the
horizontal scale in univariate graphs, (3) reinventing the role of the vertical
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scale in histograms, (4) reinventing arithmetic means in histograms, and (5)
confirming learning—transfer to other contexts and environments.

Our multiple case study with five students (Grades 10-12) suggested
that most conjectures of the learning trajectory were met but transfer can be
improved. Contributing to further theorization of embodied instrumentation,
we discussed heuristics for the design process. In addition, we showed how
more complicated artifacts (e.g., histograms) can be reinvented from actions
with simpler ones (e.g., positioning dots on a scale, dotplots).

Figure 6 Example of attempts by students when reinventing that the bars’ heights in
histograms is equal to the number of measured values in each bar, incorrect (left) and
correct (right)

Our hypothetical learning trajectory (HLT, Table 1) was used to support
students in understanding some of the most important aspects of the concepts
of data and distribution presented in histograms. For data, these aspects were
where and how the data are depicted in a histogram, including that the vertical
axis does not represent measured values. For distribution, these aspects were
how the mean is influenced by the spread in and shape of the histogram as a
precursor for understanding variation in a histogram. In secondary schools, the
focus is often on calculating measures of center and plotting histograms (e.g.,
Burrill, 2020). In our design, the focus was on the key concepts that we wanted
students to grasp instead of only teaching them how to construct histogram.

What is also new in the design is that we added tasks that required
instrumented actions (Shvarts et al., 2021). Instrumented actions can be
understood as actions influenced by digital technology, hence by the specific
way the digital tasks were designed. An example is the unit height for bars in
histograms not being equal to the size of dots, which made students
understand through a productive struggle (e.g., Kapur, 2014; Roth, 2019) that
this height is equal to the number of measurements (in histograms with equal
bin widths only).
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Table 1 Overview of the hypothetical learning trajectory

Step Example task Activities Example conjecture
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.g _3 means and confusion or
;S & o variation in a misunderstanding,
-OED %0 -g histogram (left) students’ intentionality
g @ g and case-value  and motivation for
E g g plot (right). upcorr.ung tasks are
i = established.
o @ Slide dots to H2b: By horizontally
o § o their position moving dots to their
g © g on a scale. correct position on a
2y § 2)" horizontal scale, students
g 5 § notice the position of a dot
2 ﬁ g depicts the measured
g f_,_ S value.
~ o £
o c Build a H3b: By moving the
° L histogram (orange) sliders up,
g § overlay froma  students notice the height
® g dotplot. of the bars is related to the
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Comparing students’ performances with the conjectures from the anticipated
HLT, our case study suggests most conjectures were met. Students
experienced misunderstanding in the first step, had no trouble reinventing the
role of the horizontal scale, struggled but reinvented the role of the vertical
scale in histograms, seemed to have an easy task estimating the balance point
of a histogram, and stated that it is the arithmetic mean. The final tasks
showed that students were often able to transfer the acquired knowledge to
paper, hence, to a different environment. Students' gestures indicated using
actions from previous tasks to solve follow-up tasks. Taken together, the
results suggest that embodied experiences followed by reflection contributed
to overcoming some well-known misinterpretations. However, some
improvements are suggested for future designs, such as also adding transfer
tasks after the steps which are dedicated to horizontal and vertical actions of
the HLT. To further develop students’ notions of distribution and variability,
the artifact “area” may need to be included in the design, and the artifact
“interval” may need to be reinvented by students.

Conclusions and discussion

An important component of statistical literacy is graph literacy. The histogram
can be regarded as a spider in a web of knowledge. For example,
understanding histograms is a good preparation for key concepts such as
probability distribution and density in probability theory. The aim of this
research was to contribute to an empirically grounded theory on how to teach
histograms as a means to contribute to students’ statistical literacy.

We answered the question of how pre-university track students in
Grades 10-12 can be supported in understanding histograms. The main
answer is a hypothetical learning trajectory (HLT) (Simon, 2020) that intends to
develop students’ notions of some key aspects of first data and then
distributions in graphs of univariate data. This HLT was based on an extensive
review of literature and methodologically innovative eye-tracking studies. In
addition, it was designed from an embodied instrumentation perspective. Our
HLT is a step toward a domain-specific instructional framework on how to help
students correctly interpret graphs of univariate data, including histograms,
dot-, stem-and-leaf, and boxplots, hatplots (Konold, 2007), frequency
polygons, and histodots (Chapter 2). For future designs, it could be
investigated whether an Intelligent Tutoring System could be incorporated for
automatic feedback based on scanpath patterns on only the graph area of
histograms. Such a system would require webcams that can do eye-tracking.

A scientific contribution of our work is that we showed how theoretical
(Chapter 2) and empirical (Chapters 3, 5) insights about students’ difficulties
with statistical concepts can be incorporated into a sequence of tasks designed
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from an embodied instrumentation perspective (Chapter 6). This is the first
design in statistics education using an embodied instrumentation approach. In
addition, we developed, tested, and evaluated guidelines for an embodied
instrumentation design.

A methodological contribution of our work is that we introduced and
applied several new research tools in statistics education research: eye-
tracking, machine learning algorithms (MLAs), and an Interpretable
Mathematical Model (IMM) (Chapter 4). These tools can be used for
investigating details of students’ strategies and informing designs (eye-
tracking, MLA) and for designing intelligent tutoring systems that provide
feedback (MLA and IMM). In addition, we showed that the perceptual forms of
scanpaths on the graph area only of statistical graphs can reveal students’
strategies when comparing and estimating means from these graphs.

A methodological limitation of our work is the geographical selection
bias that seems to exist in the review study (Chapter 2) and the number of
students in the eye-tracking study (N = 50, Chapters 3-5) and multiple-case
study (N = 5; Chapter 6). Still, the approach is open to further scaling up and
the results seem independent of these specific settings.

An implication for research is that eye-tracking can potentially shed
new light on tenacious didactical problems in mathematics teaching, as
students’ scanpaths can reveal correct reasoning even when answers are
incorrect. In addition, gaze data combined with an MLA and IMM could be a
powerful tool for validating qualitative research findings.

An implication for educational practice is that histograms may play a
central role in learning statistical key concepts such as data, distribution,
variability or variation, and central tendency, and that more attention is
needed to the key concept of data. In addition, more emphasis is needed on
interpreting histograms and less on technical skills such as how to draw them
and how to compute means of data presented in graphs. For initial learning, an
embodied instrumentation approach seems a fruitful route for developing
students’ graphical literacy as part of statistical literacy. With this in mind, we
call on designers to use our guidelines for embodied instrumentation designs
for tenacious didactical problems in mathematics teaching and to question for
all aspects of the artifacts (axes, scale, area) whether the mathematical actions
and ‘thinking’ should be done by the software or the student.
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Statistische gecijferdheid is een belangrijk leerdoel voor burgers om
volwaardig mee te kunnen doen in de maatschappij. Dit onderzoek richt zich
op een onderdeel hiervan: grafische gecijferdheid. Grafische gecijferdheid
omvat het correct kunnen interpreteren van statistische data die zijn
weergegeven in diagrammen. Veel leerlingen zijn niet goed voorbereid op het
trekken van verantwoorde conclusies uit statistische data in diagrammen. In
2022 kon slechts 42 procent van de Nederlandse 5-havo-leerlingen met
wiskunde A op hun eindexamen een correct diagram selecteren waaruit zij
onderbouwde conclusies konden trekken (Cito, 2022). Dergelijke problemen
doen zich ook voor bij ogenschijnlijk eenvoudige grafische weergaven van data
zoals histogrammen. Histogrammen worden veel gebruikt in onderzoek,
maatschappij en onderwijs en zijn daarom belangrijk om te leren. Daarnaast
zijn histogrammen belangrijk om kernconcepten—zoals kansverdelingen—te
leren. De hoofdvraag van dit onderzoek is daarom: Hoe kunnen leerlingen in 4—
6 vwo ondersteund worden bij het begrijpen van histogrammen?

Aanvankelijk hadden we verwacht dat een literatuurstudie en een
kleinschalige studie van oogbewegingen voldoende informatie zou opleveren
voor een grotere ontwerpstudie (Bakker, 2018). Het onderwerp van ons
onderzoek bleek echter veel lastiger dan aanvankelijk gedacht. Ten eerste
worden histogrammen in tal van disciplines gebruikt. Ten tweede waren er
weinig interventies in het statistiekonderwijs gerapporteerd, die bovendien
niet erg succesvol waren. De literatuur bood dus weinig basis voor het ontwerp
van een nieuwe interventie. Er was daarom meer onderzoek nodig voordat we
een nieuwe aanpak voor het onderwijzen van histogrammen konden
ontwerpen. In de oogbewegingsstudies is zodoende niet alleen nader
onderzocht hoe leerlingen histogrammen interpreteerden maar ook hoe deze
interpretaties veranderden na het oplossen van stippendiagramtaken.

Hoofdstuk 1 bespreekt de belangrijke rol van diagrammen bij
statistische gecijferdheid. Aangezien veel mensen geneigd zijn histogrammen
verkeerd te interpreteren, is ook een inleiding op histogrammen gegeven.
Verder beschouwen we kort de plaats van histogrammen in het
schoolcurriculum en motieven om als docent dit promotieonderzoek te doen.
Figuur 1 biedt een overzicht van de studies in dit proefschrift. De eerste studie
is een literatuurstudie (hoofdstuk 2). We voerden verschillende
oogbewegingsstudies uit waarin we de oogbewegingsdata van leerlingen
kwalitatief (hoofdstuk 3) en kwantitatief (hoofdstukken 4 en 5) analyseerden.
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We eindigden met een ontwerpstudie (hoofdstuk 6) waarin we een
hypothetisch leertraject ontwikkelden, empirisch testten en evalueerden.

Figuur 1 Overzicht van de studies in dit proefschrift

Opmerking. MLA betekent machine learning algoritme

Literatuuronderzoek naar het interpreteren en construeren van
histogrammen

Aangezien een overzicht van de meest voorkomende misinterpretaties van
histogrammen ontbrak, hebben we 86 publicaties bekeken waarin
moeilijkheden van mensen met het interpreteren van histogrammen
(hoofdstuk 2) voorkwamen. De hardnekkigheid van deze misinterpretaties
maakte het nodig om na te gaan welke conceptuele moeilijkheden eraan ten
grondslag liggen:

V1: Wat zijn de conceptuele moeilijkheden die tot uiting komen in
veelvoorkomende misinterpretaties die mensen hebben bij het
construeren of interpreteren van histogrammen?

De meest voorkomende conceptuele moeilijkheden kunnen worden
gegroepeerd in drie categorieén: data, verdeling en overige. De eerste twee
zijn kernconcepten in de statistiek. Moeilijkheden die gerelateerd zijn aan het
kernconcept data zijn bijvoorbeeld het bepalen van het aantal statistische
variabelen en het meetniveau van de bijbehorende metingen. Moeilijkheden
die gerelateerd zijn aan het kernconcept verdeling zijn bijvoorbeeld het
bepalen of vergelijken van een centrummaat—zoals het gemiddelde—of het
vergelijken van variabiliteit. Een derde en meer diverse categorie
moeilijkheden houdt verband met andere conceptuele moeilijkheden zoals
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problemen om de context aan een histogram te koppelen, het niet begrijpen
van het verschil tussen een histogram van een steekproef en van een
populatie, en de invloed van ICT. De analyse van de publicaties in ons overzicht
leidde ook tot de identificatie van een netwerk van statistische concepten die
specifiek relevant zijn voor de interpretatie van histogrammen (hoofdstuk 2,
figuur 2).

Leerlingstrategieén voor statistische diagramtaken: een
oogbewegingsstudie

Het literatuuronderzoek maakte een bredere aanpak mogelijk van de
conceptuele problemen van leerlingen die tot uiting komen in de meest
voorkomende misinterpretaties. Misinterpretaties gerelateerd aan de
kernconcepten data en verdeling kunnen worden geobserveerd wanneer
leerlingen histogrammen verwarren met hun evenbeelden, inclusief
staafdiagrammen. Veel studies trekken conclusies uit de uiteindelijke
antwoorden van studenten (bv. delMas et al., 2007; Whitaker & Jacobbe,
2017). Hierdoor was er weinig bekend over de strategieén van studenten om
tot deze antwoorden te komen, inclusief hun denkprocessen op microniveau.
Het was daarom onduidelijk hoe een effectieve interventie eruit kon zien. De
hardnekkigheid van de misinterpretaties van leerlingen vroeg bovendien om
een nadere inspectie van hun conceptuele moeilijkheden. In een tweede
onderzoek is daarom op een gedetailleerder niveau uitgezocht wat deze
moeilijkheden waren in een oogbewegingsonderzoek omdat we verwachtten
dat de oogbewegingen van leerlingen inzicht konden geven in hun aanpak. In
deze tweede studie stelden we de onderzoeksvraag:

V2: Hoe en hoe goed schatten en vergelijken bovenbouw vwo-
leerlingen rekenkundige gemiddelden van histogrammen en
casusstaafdiagrammen?

Hiertoe observeerden we in hoofdstuk 3 de acties van leerlingen door hun
oogbewegingen te volgen terwijl ze diagramtaken oplosten, in het bijzonder
het schatten en vergelijken van rekenkundige gemiddelden van histogrammen
en hun ogenschijnlijke evenbeelden, casusstaafdiagrammen. Door deze acties
te observeren wordt duidelijk hoe leerlingen hun conceptuele kennis van data
in histogrammen gebruiken en welke strategieén ze daarbij hanteren.

In deze oogbewegingsstudie onderzochten we de strategieén van
leerlingen in 4—-6 vwo (N = 50) bij het interpreteren van statistische
diagrammen. We registreerden de oogbewegingen van leerlingen terwijl ze 12
diagramtaken oplosten en interviewden hen direct daarna. Daarbij lieten we

373



Samenvatting

hen hun eigen oogbewegingen terugzien terwijl ze vertelden welke strategie ze
hadden gebruikt. De ooghewegingsdata van de leerlingen werden
gecombineerd met deze verbale data zodat specifieke kijkpatronen—de
perceptuele vormen ervan—konden worden verbonden met
interpretatiestrategieén.

Figuur 2 Voorbeelden van de kijkpatronen op enkelvoudige histogramtaken (schatten
van gemiddelden) met een correcte strategie voor histogrammen linksboven en een
correcte strategie voor casusstaafdiagrammen rechtsonder

Opmerking. De cirkels zijn plekken waar een leerling langer keek. De stippellijnen
geven de vorm van de voor de gebruikte strategie relevante kijkpatronen aan.

In een kwalitatieve analyse van de kijkpatronen van studenten vonden we vijf
strategieén. Vooraf vermoedden we dat er twee meest voorkomende
strategieén zouden zijn waarbij leerlingen het gemiddelde schatten in
enkelvoudige diagramtaken, zoals we eerder hadden gevonden in onze
pilotstudie (Boels et al., 2018): een casusstaafdiagram- en een
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histogramstrategie. Dit vermoeden werd bevestigd. Een histogramstrategie
houdt in dat de leerling het diagram interpreteert als een histogram (figuur 2).
Een verticaal kijkpatroon weerspiegelde deze histogramstrategie. Een
horizontaal kijkpatroon hing samen met een casusstaafdiagramstrategie.
Daarnaast werd een derde nieuwe tel-en-berekenstrategie gevonden die
alleen correct was voor casusstaafdiagrammen. Voor het vergelijken van
casusstaafdiagrammen en histogrammen—dus voor dubbele diagramtaken—
werden nog twee strategieén gevonden: een verdelingsgeinformeerde
histogramstrategie en een verdelingsgeinformeerde
casusstaafdiagramstrategie (figuur 3). Verdelingsgeinformeerd betekent dat
specifieke kenmerken van het diagram werden gebruikt zoals: beide
diagrammen hebben dezelfde symmetrie en posities van de staven dus is het
gemiddelde hetzelfde, of de diagrammen hebben een vergelijkbare vorm maar
de staven zijn naar rechts verschoven dus het gemiddelde is hoger. Ze
gebruikten dus “vorm” en "verschuiving” (cf. Frischemeier & Biehler, 2016).

Het percentage correcte strategieén varieerde tussen gemiddeld 43%
voor enkelvoudige histogrammen en 100% voor casusstaafdiagrammen; dit
laatste percentage was verdeeld over een casusstaafdiagramstrategie (71%) en
een tel-en-berekenstrategie (29%). Deze resultaten waren vergelijkbaar met
resultaten uit een pilotstudie met studenten (Boels et al., 2018) en een studie
met docenten (Boels et al., 2019b). Voor dubbele diagramtaken varieerde het
percentage correcte strategieén tussen gemiddeld 50% voor dubbele-
histogramtaken en 90% voor dubbele-casusstaafdiagrammen; de laatste was
vooral een casusstaafdiagramstrategie (87% punten). Tot onze verrassing
gebruikten leerlingen in gemiddeld 9% van de taken met dubbele
casusstaafdiagrammen een verdelingsgeinformeerde histogramstrategie die
resulteerde in een onjuist antwoord, bijvoorbeeld door gebruik te maken van
symmetrie van de diagrammen. Verder negeerden sommige leerlingen staven
met frequentie of meetwaarde nul, ondanks dat ze er wel naar keken (cf.
delMas & Liu, 2005).
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Figuur 3 Een correcte verdelingsgeinformeerde strategie voor het vergelijken van de
gemiddelden van twee histogrammen in taak09 met behulp van vergelijkbare vorm,
verschoven naar rechts en voor het vergelijken van de gemiddelden van twee
casusstaafdiagrammen in TaakO7 met behulp van vorm en aantal staven

Opmerking. Leerlingen vergeleken specifiek de positie van de ‘nul’-staven (zwarte
ovalen) en andere staven op vergelijkbare posities (bijvoorbeeld paarse vierkanten).
Correcte antwoorden op de vraag waar het gemiddelde gewicht hoger is: boven is dat
Kees; onder is op beide stranden gemiddeld hetzelfde gewicht geraapt.

Automatische, op oogbewegingen gebaseerde identificatie van
leerlingstrategieén

De patronen die we vonden in de oogbewegingsdata van leerlingen voor
afzonderlijke histogrammen stimuleerden ons om te onderzoeken of
automatische herkenning van strategieén van leerlingen mogelijk zou kunnen
zijn door middel van een analyse met machine learning (hoofdstuk 4).
Identificatie van leerlingenstrategieén is een voorwaarde voor gerichte
intelligente feedback, bijvoorbeeld bij online leren. Het was echter nog
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onduidelijk hoe live identificatie van taakspecifieke oplossingsstrategieén op
basis van de oogbewegingen van studenten in het statistiekonderwijs
geautomatiseerd kon worden. De studie in hoofdstuk 4 is een eerste stap in dit
automatiseringsproces.

V3: Hoe kunnen oogbewegingsdata worden gebruikt om
automatisch taakspecifieke strategieén van leerlingen te
identificeren op enkelvoudige histogrammen?

Wij gebruikten een gesuperviseerd machine learning algoritme (MLA; random
forest) geimplementeerd in een softwaretool (Mathematica Classify Function)
met de oogbewegingsdata als input. Dit MLA kon vaststellen of leerlingen een
histogram-interpretatiestrategie gebruikten of een andere strategie—meestal
een strategie die correct zou zijn geweest als het diagram een
casusstaafdiagram was—bij het schatten van het gemiddelde uit een enkel
histogram. Het MLA had acceptabele prestaties (figuur 4) en de
nauwkeurigheid varieerde tussen kansniveau (38%) en ruim daarboven (88%),
afhankelijk van de gebruikte validatie procedure. Waarden boven 70% worden
als goed beschouwd, aangezien deze ruim boven kansniveau liggen. Een
nadeel van dit MLA is echter dat het niet uitlegt hoe het voor een individuele
student tot een beslissing is gekomen en daarom beschouwen wij het als een
black box. De resultaten van het MLA vormden voor ons een ijkpunt voor het
transparante, interpreteerbare wiskundige model (IWM) dat wij
construeerden. Dit IWM was theoretisch zinvol en had goede prestaties met
nauwkeurigheden tussen 62% en 84%, acceptabele sensitiviteit en erg hoge
specificiteit (Figuur 4). Wij slaagden er bovendien in om het MLA te trainen
met de oogbewegingsdata van leerlingen op één taak om daarmee strategieén
te identificeren op alle andere taken. Deze resultaten wijzen erop dat de
strategieén van de leerlingen kunnen worden afgeleid uit de
oogbewegingsdata.

In de toekomst zouden de resultaten van een dergelijke
geautomatiseerde strategie-identificatie in aan docenten ter beschikking
kunnen worden gesteld. Onze methode maakt het mogelijk om directe,
gepersonaliseerde feedback te ontwerpen tijdens online leren, huiswerk of
massive open online courses (MOQOC’s), door het meten van oogbewegingen
met bijvoorbeeld een webcam.
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Figuur 4 Resultaten van het MLA en het IWM

Opmerking. Idealiter zijn de punten geconcentreerd in de linkerbovenhoek van het
diagram en liggen ze voor alle taken dicht bij elkaar. Hoewel het IWM goed werkte,
laat het diagram zien dat er ruimte voor verbetering is.

Vergelijken van histograminterpretaties van leerlingen voor en na het
oplossen van stippendiagramtaken

De voorgaande studies makende details van de oplossingsstrategieén van
leerlingen bij histogramtaken zichtbaar. Een lokale instructietheorie in het
statistiekonderwijs suggereert dat het oplossen van stippendiagramtaken het
interpreteren van histogrammen kan bevorderen, (bv. Bakker & Gravemeijer,
2004; Garfield, 2002; Garfield & Ben-Zvi, 2008b) omdat stippendiagrammen de
aandacht van leerlingen kunnen vestigen op de variabele die in beide
diagrammen langs de horizontale as wordt gepresenteerd. Wij vroegen ons af
of het interpreteren van stippendiagrammen de strategieén van leerlingen bij
histogramtaken zouden beinvioeden. Daarom hebben we tijdens het
verzamelen van de oogbewegingsdata zes stippendiagramtaken opgenomen
onmiddellijk na de eerste twaalf taken met histogrammen, gevolgd door
opnieuw drie histogramtaken. In de studie in hoofdstuk 5 onderzochten we:

V4: Op welke manier veranderen de histograminterpretaties van
leerlingen in 4—6 vwo na het oplossen van stippendiagramtaken?

De kijkgegevens van leerlingen op vier histogramtaken werden gebruikt als
input voor een MLA (random forest). Onze MLA kan vrij nauwkeurig
classificeren of de oogbewegingsdata van leerlingen behoren tot een taak die
is opgelost véor of na de stippendiagramtaken. De resultaten wijzen erop dat
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er een verandering is in het kijkpatroon van de leerlingen. Bovendien vonden
wij dat de richting (bv. bijna verticaal) en de lengte van de saccades (snelle
overgangen tussen posities waar leerlingen keken) verschillend waren bij de
taken voor en na het oplossen van de stippendiagramtaken. Er waren
bijvoorbeeld meer verticale en minder horizontale saccades in de
oogbewegingen op de histogramtaken na het oplossen van de
stippendiagramtaken. Deze veranderingen zouden kunnen wijzen op een
verandering in strategieén.

Wij vonden drie aanwijzingen dat histograminterpretaties van de
leerlingen veranderden na het oplossen van de stippendiagramtaken: een
verandering in de kijkpatronen (afgeleid uit het MLA-resultaat), een
verbetering in de schattingen van de rekenkundige gemiddelden voor taken
met enkelvoudige histogrammen en een verschuiving in de gerapporteerde
strategie voor het oplossen van histogramtaken. Het aantal correcte
antwoorden veranderde echter niet significant. Voor enkelvoudige
histogrammen was dit aantal gevoelig voor de keuze van de onderzoekers
binnen welk bereik antwoorden correct werden gerekend. Daarnaast is het
bewijs zwak voor de veronderstelling dat de verandering in het kijkgedrag
duidt op leren, dat op zijn beurt uitsluitend zou kunnen worden toegeschreven
aan het oplossen van de histogramtaken. We beschouwen de meest
waarschijnlijke verklaring voor de gemengde resultaten dat de actie van het
oplossen van stippendiagramtaken rijpheid voor leren creéert (Church &
Goldin-Meadow, 1986). Reflectie op hun eigen strategie—opgeroepen door de
gestimuleerde herinnering aan de gebruikte strategie door het interview met
een volwassene—deed de leerlingen vervolgens beseffen dat zij bijvoorbeeld
de frequenties verkeerd interpreteerden als zijnde de gemeten waarden. Deze
studie suggereert dat activiteiten met stippendiagrammen leerlingen mogelijk
kunnen ondersteunen bij het begrijpen van histogrammen. Bovendien merkte
Konold (2007) al op dat stippendiagrammen het begrip van histogrammen
door leerlingen kunnen ondersteunen door acties als "scheiden, ordenen, [...]
stapelen" en "versmelten" van de stippen (p. 282). Het samensmelten van
stippen resulteert in een staaf die al deze stippen bevat. Samengevat zouden
de resultaten kunnen wijzen op een leereffect van het oplossen van de
stippendiagramtaken—afhankelijk van hoe leren wordt gedefinieerd.
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Figuur 5 Saccades van lengte 200 pixels of meer van alle deelnemers op taakll en
taak21 (dubbele histogrammen, boven) en taak02 en taak20 (enkel histogram, onder)

Opmerking. Let op het verschil in witheid en zwartheid van de richtingen van de
saccades van studenten tussen de taken ervoor (linker kolom) en erna (rechter kolom).
Verschillen tussen de bovenste en onderste rij zijn zeer waarschijnlijk veroorzaakt door
verschillen in typen taken en daarom waarschijnlijk irrelevant voor onze
onderzoeksvraag.

Ontwerp van een belichaamd leertraject

Het literatuuronderzoek (hoofdstuk 2) maakte ook duidelijk dat bestaande
interventies onvoldoende succesvol waren om leerlingen te leren
histogrammen correct te interpreteren. Uit de oplossingsstrategieén
(hoofdstuk 3) bleek dat veel van deze Nederlandse leerlingen niet goed
begrepen hoe en waar gegevens in histogrammen worden weergegeven. Het
interpreteren van stippendiagrammen kan leerlingen helpen bij het begrijpen
van histogrammen (hoofdstuk 5), omdat ze de aandacht vestigen op de as
waarlangs de gegevens in zowel histogrammen als stippendiagrammen
worden weergegeven (namelijk de horizontale as). Het was echter nog

380



Samenvatting

onduidelijk hoe een interventie kon worden ontworpen die het leren van
statistische kernconcepten door leerlingen zou ondersteunen door het leren
interpreteren van stippendiagrammen en histogrammen.

Gezien de hardnekkige problemen van leerlingen met het interpreteren
van histogrammen veronderstelden wij dat het in het onderwijs wellicht had
ontbroken aan een belichaamde basis van hoe histogrammen worden
geconstrueerd. Daarnaast vermoedden wij dat er onvoldoende aandacht was
geweest voor hoe histogrammen instrumenten worden bij statistisch
redeneren. Bij belichaamde ontwerpen spelen de acties van leerlingen een
belangrijke rol, zoals de in de vorige alinea beschreven acties (Konold, 2007).
Daarom hebben we, met een belichaamde-instrumentatieaanpak (Drijvers,
2019) als theoretische lens, een leertraject ontworpen (hoofdstuk 6) waarbij
we gebruikmaakten van bevindingen en inzichten uit eerdere studies Deze
ontwerpstudie is een eerste cyclus van een ontwerponderzoek naar hoe
enkele van de belangrijkste aspecten van de kernconcepten van statistiek
kunnen worden onderwezen via onderwijs in histogrammen. De
onderzoeksvraag voor deze studie was:

V5: Welke opeenvolging van taken ontworpen vanuit een
belichaamde instrumentatie perspectief kan het begrip van
studenten van histogrammen en de onderliggende kernconcepten
ondersteunen?

Ons veronderstelde leertraject bestaat uit vijf fasen: (1) Uitlokken van het
leren—ervaren van onbegrip, (2) heruitvinden van de rol van de horizontale
schaal in univariate diagrammen, (3) heruitvinden van de rol van de verticale
schaal in histogrammen, (4) heruitvinden van rekenkundige gemiddelden in
histogrammen, en (5) bevestigen van het leren—overdracht naar andere
contexten en omgevingen.

Onze meervoudige gevalstudie met vijf leerlingen (4—6 vwo)
suggereerde dat de meeste vermoedens over het leertraject werden
bevestigd, maar dat transfer kan worden verbeterd. Als bijdrage aan de
verdere theorievorming over belichaamde instrumentatie bespraken we
heuristieken voor het ontwerpproces. Bovendien lieten we zien hoe meer
ingewikkelde artefacten (bv. histogrammen) kunnen worden heruitgevonden
uit acties met eenvoudiger artefacten (bv. het plaatsen van stippen op een
schaal, stippendiagrammen).
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Figuur 6 Voorbeeld van pogingen van leerlingen bij het heruitvinden dat de hoogte van
de staven in histogrammen gelijk is aan het aantal gemeten waarden in elke staaf,
onjuist (links) en juist (rechts)

Ons hypothetisch leertraject (HLT, tabel 1) werd gebruikt om de leerlingen te
helpen om enkele van de belangrijkste aspecten van de concepten van data en
verdeling in histogrammen beter te begrijpen. Voor data waren deze aspecten:
waar en hoe de data in een histogram worden weergegeven, inclusief dat de
verticale as geen gemeten waarden weergeeft. Voor verdeling waren deze
aspecten: hoe het gemiddelde wordt beinvioed door de spreiding in en de
vorm van het histogram, als voorloper voor het begrijpen van variabiliteit in
een histogram. In het voortgezet onderwijs ligt de nadruk veelal op het
berekenen van centrummaten en het tekenen van histogrammen (bv. Burrill,
2020). In ons ontwerp lag de nadruk op de belangrijkste concepten die we de
leerlingen wilden laten begrijpen, in plaats van hen alleen te leren hoe ze een
histogram moeten construeren.

Nieuw in onze HLT is dat we een belichaamde-instrumentatieaanpak
gebruikten. Omdat kernconcepten niet tastbaar zijn, onderscheidden we
(semiotische) artefacten—of tekens zoals Bakker en Hoffmann (2015) ze
noemden—waardoor deze geleerd kunnen worden. Artefacten zijn
bijvoorbeeld stippendiagrammen, intervallen, een stapel. Vervolgens hebben
we deze artefacten gedeconstrueerd naar acties die tot het ontstaan van deze
artefacten hadden kunnen leiden. We ontwierpen taken waarin leerlingen
acties uitvoerden met deze artefacten om het zo zelf ‘nieuwe’ artefacten te
laten heruitvinden en creéren. Door leerlingen bijvoorbeeld een staaf te laten
optrekken—een actie—werden leerlingen begeleid om opnieuw uit te vinden
dat de hoogte van de staven in een histogram staat voor het aantal metingen
in de staaf (figuur 6). Leerlingen gebruikten artefacten waarmee ze al
vertrouwd zijn, zoals bijvoorbeeld een verticale schaal. De acties van de
leerlingen brachten hen ertoe aandacht te besteden aan enkele moeilijke
aspecten van de weergave van data, en hun verdeling, in histogrammen.
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Tabel 1 Overzicht van het hypothetische leertraject
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Stap Voorbeeldtaak Activiteiten Voorbeeld van
vermoeden
Vergelijken H1b: Doordat

2 gemiddelde en leerlingen initieel
%D variatie in een verwarring en
5 histogram (links) onbegrip ervaren
P en wordt
:‘5 casusstaafdiagram  intentionaliteit
:E c (rechts). en motivatie
§ % voor komende
o2 taken gecreéerd.

3 Heruitvinden rol verticale schaal in 2 Heruitvinden van rol horizontale schaal

histogrammen

in univariate diagrammen

Schuiven stippen
naar hun correcte
positie op een
schaal.

Over een
stippendiagram
bouwen leerlingen
een histogram.

H2b: Door
stippen
horizontaal naar
hun juiste plek
op een
horizontale
schaal te
schuiven,
merken
leerlingen dat de
positie van een
stip de gemeten
waarde
weergeeft.

H3b: Door de
(oranje) schuiven
omhoog te
slepen, merken
de leerlingen dat
de hoogte van de
staven
samenhangt met
het aantal
metingen in een
staaf—bij gelijke
klassenbreedten.
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Stap

Voorbeeldtaak

Activiteiten

Voorbeeld van
vermoeden

4 Rekenkundige gemiddelde in
histogrammen heruitvinden

5 Leren bevestigen: transfer

naar andere situaties

Versterken relatie
tussen data en
gemiddelde;
ontdekken invloed
van uitschieters,
gaten en verdeling
op gemiddelde.

Construeren en
interpreteren van
histogrammen op
papier. Sorteren
van histogrammen
en evenbeelden.

H5a: Door het
evenwichtspunt
van het diagram
te vinden,
ervaren de
leerlingen dat
het gemiddelde
kan worden
gezien als het
punt waar het
diagram “in
evenwicht” is.
H18b: Door het
op papier
tekenen van een
histogram bij een
frequentietabel
wordt transfer
naar een andere
omgeving
(papier) tot
stand gebracht.

Nieuw in het ontwerp is ook dat we taken hebben toegevoegd die
geinstrumenteerde acties vereisen (Shvarts et al., 2021). Geinstrumenteerde
acties kunnen worden opgevat als acties die worden beinvloed door digitale
technologie, dus door de specifieke manier waarop de digitale taken zijn
ontworpen. Een voorbeeld hiervan is dat de schaal voor één eenheid bij de
hoogte van de staven in histogrammen niet gelijk is aan de hoogte van één
stip, waardoor leerlingen door een productieve worsteling (bv. Kapur, 2014;
Roth, 2019) begrepen dat deze hoogte gelijk is aan het aantal metingen (in
histogrammen met constante klassenbreedte).

Als we de prestaties van leerlingen vergelijken met de vermoedens uit

het HLT, suggereert onze gevalstudie dat de meeste vermoedens werden
bevestigd: leerlingen ondervonden onbegrip bij de eerste stap, hadden geen
moeite om de rol van de horizontale schaal opnieuw uit te vinden, vonden de
rol van de verticale schaal in histogrammen na enige moeite opnieuw uit, leken
het schatten van het evenwichtspunt van een histogram gemakkelijk te vinden
en gaven aan dat dit het rekenkundig gemiddelde is. Uit de laatste opgaven
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bleek dat de leerlingen meestal in staat waren de verworven kennis ook op
papier, dus in een andere omgeving, toe te passen. Hun gebaren wezen op het
gebruik van acties uit eerdere taken om de vervolgtaken op te lossen. Alles bij
elkaar suggereren de resultaten dat belichaamde ervaringen gevolgd door
reflectie hebben bijgedragen aan het overwinnen van enkele bekende
misinterpretaties. Enkele verbeteringen voor toekomstig ontwerp zijn ook
voorgesteld, zoals het toevoegen van transfertaken na de horizontale en
verticale acties in het HLT. Om de noties van verdeling en variabiliteit bij
leerlingen verder te ontwikkelen, is het misschien nodig om in een toekomstig
ontwerp meer aandacht te besteden aan de begrippen oppervlakte en interval.

Conclusies en discussie

Een belangrijke component van statistische gecijferdheid is grafische
gecijferdheid. Een histogram kan worden beschouwd als een spin in een web
van kennis. Begrip van histogrammen is bijvoorbeeld een goede voorbereiding
op belangrijke concepten zoals kansverdeling en kansdichtheid in de
kansrekening. Het doel van dit onderzoek was bij te dragen aan een empirisch
onderbouwde theorie over hoe histogrammen kunnen worden onderwezen als
middel om bij te dragen aan de statistische gecijferdheid van leerlingen. Wij
beantwoordden de vraag hoe leerlingen in 4—6 vwo ondersteund kunnen
worden bij het begrijpen van histogrammen. Het belangrijkste antwoord is een
hypothetisch leertraject (HLT) (Simon, 2020) dat erop gericht is de noties van
leerlingen over enkele belangrijke aspecten van eerst data en vervolgens
verdelingen in diagrammen van univariate data te ontwikkelen. Dit HLT is
gebaseerd op een uitgebreide literatuurstudie en methodologisch innovatieve
oogbewegingsstudies, en is bovendien ontworpen vanuit het perspectief van
belichaamde instrumentatie. Het is een stap naar een domeinspecifiek
instructiekader over hoe leerlingen te leren diagrammen van univariate data
correct te interpreteren, waaronder histogrammen, stippen-, steel-blad- en
hoeddiagrammen (Konold, 2007), boxplots, frequentiepolygonen en histodots
(hoofdstuk 2). Voor toekomstige ontwerpen zou kunnen worden onderzocht of
een intelligent tutoring systeem kan worden gemaakt voor automatische
feedback, gebaseerd op kijkpatronen op alleen het diagramgedeelte van
histogrammen. Een dergelijk systeem zou webcams vereisen die
oogbewegingen kunnen meten.

Een wetenschappelijke bijdrage van ons werk is dat we hebben laten
zien hoe theoretische (hoofdstuk 2) en empirische (hoofdstukken 3, 5)
inzichten over de moeilijkheden van studenten met statistische concepten
kunnen worden verwerkt in een opeenvolging van taken die zijn ontworpen
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vanuit een belichaamd instrumentatieperspectief (hoofdstuk 6). Dit is het
eerste ontwerp in het statistiekonderwijs dat gebruikmaakt van een
belichaamde-instrumentatiebenadering. Daarnaast hebben we richtlijnen voor
een belichaamd instrumentatieontwerp ontwikkeld, getest en geévalueerd.

Een methodologische bijdrage van ons werk is dat we enkele nieuwe
onderzoeksinstrumenten in het statistisch onderwijsonderzoek hebben
geintroduceerd en toegepast: ooghewegingsmetingen, machine learning
algorithmen (MLA’s) en een interpreteerbaar wiskundig model (IWM;
hoofdstuk 4). Deze gereedschappen kunnen worden gebruikt voor het
onderzoeken van de strategieén van leerlingen en het informeren van
ontwerpen (oogbewegingsmetingen, MLA) en voor het ontwerpen van
intelligente tutoring systemen die feedback geven (MLA en IWM). Bovendien
toonden wij aan dat de vormen van scanpaden op het diagramgebied van
statistische diagrammen de strategieén van leerlingen bij het vergelijken en
schatten van gemiddelden uit deze diagrammen kunnen onthullen.

Een methodologische beperking van ons werk is de geografische
selectiebias die lijkt te bestaan in de reviewstudie (hoofdstuk 2) en het aantal
studenten in de oogbewegingsmetingen studie (N = 50, hoofdstukken 3-5) en
meervoudige gevalstudie (N = 5; hoofdstuk 6). Toch is de aanpak geschikt voor
verdere opschaling en lijken de resultaten onafhankelijk van deze specifieke
omstandigheden.

Een implicatie voor onderzoek is dat oogbewegingsmetingen mogelijk
nieuw licht kunnen werpen op hardnekkige didactische problemen in het
wiskundeonderwijs, aangezien de scanpaden van leerlingen correcte
redeneringen kunnen onthullen, zelfs wanneer antwoorden onjuist zijn.
Daarnaast zouden oogbewegingsdata in combinatie met een MLA en IWM een
krachtig instrument kunnen zijn voor het valideren van kwalitatieve
onderzoeksbevindingen.

Een implicatie voor de onderwijspraktijk is dat histogrammen een
centrale rol kunnen spelen bij het leren van statistische kernbegrippen zoals
data, verdeling, variabiliteit, en centrale tendentie, en dat meer aandacht
nodig is voor het kernconcept data. Bovendien wordt het aanbevolen om meer
nadruk te leggen op het interpreteren van histogrammen en minder op
technische vaardigheden zoals het tekenen ervan en het berekenen van
gemiddelden van in diagrammen gepresenteerde data. Voor het initiéle leren
lijkt een belichaamde instrumentatiebenadering een vruchtbare route voor het
ontwikkelen van grafische gecijferdheid van leerlingen als onderdeel van
statistische gecijferdheid. Met dit in gedachten roepen wij ontwerpers op om
onze richtlijnen voor belichaamde-instrumentatieontwerpen te gebruiken bij
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hardnekkige didactische knelpunten in het wiskundeonderwijs en om zich bij
elk aspect van de artefacten (assen, schaal, oppervlakte) af te vragen of de
wiskundige acties en ‘denken’ door de software of de leerling moet worden

gedaan.
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Many high school students are unable to draw justified conclusions
from statistical data in histograms. A literature review revealed various
misinterpretations. Current statistics education often falls short of
preventing these. In preparation for new instructional materials,
several studies were conducted to better understand where these
misinterpretations come from. Five solution strategies were found
through qualitative analysis of students’ eye movements on histogram
and case-value plot tasks. Quantitative analysis of some tasks using
a mathematical model and a machine learning model confirmed the
results of the qualitative analysis which implied that the strategies
could be identified reliably and automatically. Literature suggested
that lesson materials with dotplot tasks can support students to
correctlyinterpret histograms. An analysis of students’ eye movements
on histogram tasks before and after dotplot tasks suggested that
students improved their strategies but not their answers. Based on
the literature and eye-tracking studies, we conjectured that students
most likely lacked embodied experiences with the actions required to
construct histograms. Inspired by ideas of embodied instrumentation,
we designed and tested instructional materials that provide starting
points for scaling up. Together, the studies contribute to theorizing
about teaching histograms and the use in statistics education of
eye-tracking research, quantitative methods from data science, and
instructional materials designed from the perspective of embodied
instrumentation.
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