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Abstract

Statistical association is a key facet of statistical literacy: claims based on
relationships between variables or ideas rooted in data are found everywhere in media
and discourse. A key development in introductory statistics curricula is the use of
simulation-based inference, which has shown positive outcomes for students, especially
in regards to statistical literacy and conceptual understanding. In this dissertation project,
I investigate students from the Change Agents for the Teaching and Learning of
STatistics (CATALST) curriculum in activities | designed for learning statistical
association and linear regression. First, | analyzed the informal line fitting strategies of
CATALST students. Findings suggest that students still face many challenges in informal
line fitting, but their use of the offsetting distances criterion may be a future point of
focus for teaching and activity development. Next, | compared student outcomes in a
traditional course and a CATALST course on their ability to recognize the need for
inference and hypothesis testing. Results revealed that CATALST students were more
prepared to learn inference in their course and made greater gains by the end of the linear
regression unit. Finally, I examine CATALST students’ inferential reasoning in light of
frameworks that identify challenges in learning simulation-based inference. Based on the
success CATALST students demonstrated, | propose technology innovations to the
simulation software so that the classroom can better focus on learning statistics rather
than technology. Overall, this dissertation provides insights into activities that expand the
existing CATALST curriculum to include linear regression and shares the benefits of
leveraging this simulation-based curriculum while highlighting challenges these students

experienced and directions for future work to address these challenges.
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Chapter 1: Introduction

“Proximity to freeways increases autism risk, study finds.” This headline,
published in the Los Angeles Times, appears to be claiming a cause-and-effect
relationship. However, the study’s researchers were quoted directly in that article, stating
that “this study isn’t saying exposure to air pollution or exposure to traffic causes
autism,” revealing that the study merely found a correlation which may be spurious
(Roan, 2010). While we can hope that readers will think critically about what is being
presented to them in the entire article, many in the age of social media do not even
engage with news beyond a headline. On Twitter, 59% of links that are shared are never
clicked, and most of the remining links have fewer than 1 in 1000 followers click that
link. (Gabielkov et al., 2016). But even for those that do engage with the full news
content, readers would need to recognize the difference between correlation and

causation to be able to challenge the claim made in the headline.

This small anecdote of one news headline highlights the importance of a generally
literate public. But literacy goes beyond the importance of just reading and writing — it is
also vitally important to give citizens the tools to evaluate information and think
critically, especially in the age of “fake news” where sources of information are often
misleading and may contradict each other. Quantitative reasoning is required of readers
in order to challenge these types of claims rather than accepting them at face value. This
kind of reasoning is a social empowerment that literacy alone cannot provide:
“mathematics should be taught so as to ... enable learners to function as numerate critical

citizens, able to use their knowledge in social and political realms of activity, for the



betterment of both themselves and for democratic society as a whole” (Ernest, 2015, p.
191). Many see statistics as being truly at the heart of this social empowerment that

Ernest describes, with notable author H.G. Wells claiming that:

Endless social and political problems are only accessible and only thinkable to
those who have had a sound training in mathematical analysis ... for complete
initiation as an efficient citizen of one of the new great complex world -wide states
that are now developing, it is as necessary to be able to compute, to think in

averages and maxima and minima, as it is now to be able to read and write”
(Wells, 1904, p. 192).

Such a claim seems especially prophetic considering the relative infancy of statistics as a
field then. And as technology has evolved, views on the importance of being able to
reason with data and statistics have become more centered around technology: “As
information becomes ever more quantitative and as society relies on computers and the
data they produce, an innumerate citizen today is as vulnerable as the illiterate peasant of
[the 15™ century]” (Steen, 1997, p. xv). We now live in a world of “big data,” with
seemingly endless amounts of statistics and information to process and analyze, many of
which are conflicting and challenging to relate and internalize in totality without the

proper skills.

This idea of reading, writing, and critiquing claims based in data is known as
statistical literacy. Gal (2002) defines statistical literacy as being made up of two
interrelated components: “people’s ability to interpret and critically evaluate statistical
information, data-related arguments, or stochastic phenomena” (p. 2) and “their ability to
discuss or communicate their reactions to such statistical information, such as their
understanding of the meaning of the information, their opinions about the implications of

this information, or their concerns regarding the acceptability of given conclusions” (p.



3). This definition draws a parallel to general literacy, with each of the components
describing one’s ability to “read” statistics and “write” or communicate statistics to
others. Writers of the aforementioned Los Angeles times article did not appropriately
communicate their reactions to the study on autism and freeways, and thus leaves those
without the ability to critically evaluate these claims susceptible to mis-information.
Thus, it is not only important for the consumers of media to be statistically literate, but

the producers of media should also be careful not to spread such misinformation.

Statistical literacy is central to curricular standards for statistics, with the preK-12
Guidelines for Assessment and Instruction in Statistics Education (GAISE) stating that
their ultimate goal is promoting statistical literacy (Franklin et al., 2007). While the term
of statistical literacy is no longer present in the college level GAISE (Carver et al., 2016),
researchers argue that statistical literacy is still at the forefront of these guidelines
(Schield, 2017). | argue that the most central concept to statistical literacy is statistical
association, as it is key to understanding how real-world events and processes are linked
together. “Knowing whether events are related, and how strongly they are related,
enables individuals to explain the past, control the present, and predict the future”
(Crocker, 1981, p. 272). McKenzie and Mikkelson (2007) state that covariational
reasoning is one of the most important activities that humans perform. Understanding
relationships and making connections between different phenomenon based on data is
necessary to understand the world and how different aspects of it are connected. It is a
necessary skill to have to be able to critically analyze the arguments from the Los

Angeles Times article, which analyzed an association between incidence rates of autism

and factors associated with proximity to freeways.



To meet the aims of addressing statistical literacy in regards to the topic of
covariation and statistical association, this study investigated classroom activities
designed to support students learning of statistical association through linear regression.
Understanding linear regression is central to addressing the need for students to be able to
process and analyze data-based claims. These activities take place in the context of the
Change Agents for Teaching and Learning Statistics (CATALST) curriculum, which
currently does not include content on association between two numerical variables,
typically analyzed by linear regression techniques. | believe that it is important to expand
this curriculum to include such a fundamental topic because it is a topic recommended for
introductory statistics courses at the collegiate level (Carver et al., 2016), there are clear
advantages to the use of modeling and simulation in the CATALST curriculum, and there
is a clear societal benefit to understanding statistical association generally through

empowering students statistical literacy.

The recognition of statistical association is just one part of covariational
reasoning, which is a broad topic that lies at the intersection of fields like psychology,
mathematics, science, and statistics. The key element of covariational reasoning in
statistics is the use of data in multiple variables, which can be used to support or question
claims of association, especially those made in the media. Unfortunately, students are not
apt to question these types of claims, even when such claims are not supported with
evidence like data or graphs (Watson & Moritz, 1997). Even when data are present, prior
beliefs about an association often take priority in making conclusions — this is known as
an illusory correlation, and has been shown to be a major element in the formation of

stereotypes (Hamilton & Gifford, 1976). Not only is there benefit in promoting statistical
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association and covariational reasoning in promoting a well-informed society, but it can

also provide a benefit to society by combating the kinds of reasoning that lead to unjust

stereotyping.

This study focuses on CATALST-based activities for linear regression with the
goal of building on students’ existing conceptions of association identified in the
literature, while also upholding the modeling and simulation philosophy of the
CATALST curriculum. The CATALST curriculum is rooted in the modeling of
probability-based situations and using simulation-based statistical methods to draw
conclusions (Garfield et al., 2012). Research has shown that simulation-based methods
provide many advantages to students’ learning of statistical topics, especially inferential
reasoning (Chance et al., 2016, 2018; Hildreth et al., 2018; Tintle et al., 2014). The
CATALST curriculum is notable among simulation-based curricula as because it allows
students to create and model their own simulation processes, unlocking the supporting
rationale for the statistical methods being used. This study examines potential advantages
of using this simulation and modeling approach with the topic of linear regression while

also drawing comparisons to more traditional curricula.

Overview of Chapters

This dissertation follows a three-paper model. In my first paper, | investigate
CATALST students’ strategies for informally fitting a line of best fit to scatterplots in
various data scenarios. The second paper compares students from both the CATALST
curriculum and a traditional curriculum on how they determine whether a data scenario

yields a significant linear relationship, with a focus on if the students recognize the need



for using a hypothesis test. Finally, the last paper examines CATALST students’
experiences modeling and carrying out test for the least squares line and their conceptual
understanding of their probability models, the null hypothesis, and the p-value. This

paper also presents potential technology innovations to better support students learning.

Students’ Knowledge about Lines of Best Fit in a Modeling and Simulation
Introductory Statistics Curriculum. Students hold various conceptions about statistical
association that can interfere with learning the line of best fit. Three of these conceptions
that this study focuses on are the univariate conception, the localist conception, and prior
beliefs (Batenero et al., 1996; Estepa et al., 1999; Moritz, 2004). When students attempt
to fit lines to data, these conceptions can lead to students potentially biasing toward lines
that are upward sloping when not appropriate, fitting a line based only on a few cases in
the data, or fitting a line based on their own prior knowledge of the data context. Previous
work has focused on middle school students and pre-service teachers informal line fitting
strategies, and has found these existing conceptions have influenced their strategies
(Casey, 2015; Casey & Wasserman, 2015). This study aims to add to this literature by
focusing on a novel population of college students using the CATALST curriculum.
There is reason to believe that CATALST students may have success in fitting lines to
scatterplots informally, not only because of the advantages of simulation-based curricula
(Chance et al., 2018, 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014), but also
because of the potential advantages of CATALST’s focus on modeling (Noll et al.,
2018), which may aid in understanding the line of best fit as a model itself. To assess this

hypothesis about the CATALST curriculum, | investigated the following research



question: What are CATALST students’ intuitive strategies for placing lines of best fit

before and after formally learning about least squares criterion?

Analysis of the data leveraged the coding scheme from the aforementioned
studies on informal line fitting (Casey, 2015; Casey & Wasserman, 2015), with additional
codes added to reflect the strategies that emerged in the data collected. In many cases,
students’ strategies still often reflected many of these known conceptions identified in the
literature, which indicates more work needs to be done to improve instruction on informal
line fitting. One novel strategy that emerged among CATALST students in the interview
was the use of offsetting distances, where students attempted to group all the data into
sets where their residuals appeared to sum to 0 visually. This strategy, which is a
necessary but not sufficient condition of the least squares criterion, may be an
approachable way to teaching students informal line fitting that aligns with the concepts
of least squares. One additional result that emerged from students’ informal line fitting
was regarding the impact of outliers. Students seemed to account well for outliers that
appeared in the corner of graphs, but did not account for outliers that had large residuals

but appeared in the middle of the graph.

Comparing Student Outcomes on Testing for a Statistical Association for
Traditional and Simulation-Based Curricula. Cobb’s (2007) call for reforming the
introductory statistics course to emphasize conceptual pillars of inference and leverage
modern technology has brought about the rise of simulation-based inference courses.
Numerous studies comparing student outcomes across traditional and simulation-based

curricula have yielded many benefits, especially on tasks regarding the purpose and



8
interpretation of inferential techniques (Chance et al., 2018, 2022; Hildreth et al., 2018;

Tintle et al., 2012, 2014). This study adds to this wealth of comparison literature by
focusing on models and modeling in two ways: first, by studying students who used the
modeling-focused CATALST curriculum, and by examining their understanding of
hypothesis testing as it pertains to linear regression models. In the introductory statistics
course, the unit on linear regression typically is taught with many various diagnostic and
descriptive measures, such as correlation, r-squared, residual standard error, and the
slope/intercept of the least squares line, all of which can be used to evaluate the relevance
of a linear relationship. Given that in the traditional classroom that the procedures for
hypothesis testing or any of these descriptive measures are often all reliant on using
technology to produce statistical output, | hypothesis that students may have trouble
making distinctions in their purposes and interpretations. In the CATALST curriculum,
the methods for conducting a hypothesis test are quite distinct from descriptive statistics,
as students are responsible for constructing a probability model for carrying out a
simulation as well as building up a sampling distribution to find the p-value. This may
give them a stronger conceptual understanding of inferential techniques in linear
regression. To test this hypothesis, my study aims to answer the following research
question: do students from a traditional curriculum and the CATALST curriculum

recognize the need to use a hypothesis test for evaluating the statistical significance of a

linear relationship? How do students’ approaches compare across these two curricula?

Students participated in pre/post-surveys during their introductory statistics course
that asked them to describe how they would carry out a hypothesis test for specific data

context on linear regression. Selected students were invited to participate in interviews



where they were asked to carry out the hypothesis test and draw conclusions based on
their results. Analysis of the survey responses began with an open coding procedure to
determine interesting features of students’ strategies for determining a significant linear
relationship. These codes were refined into a coding scheme that categorized students’
responses as reflecting a hypothesis test, descriptive statistics, or non-statistical method,
with further codes in each category to capture the detail of their response. Data from one
interviewed student from each curriculum were also analyzed to provide a more detailed
look at two students with similar survey responses. Results from the study revealed that
CATALST students not only made greater gains from the pre-survey to post-survey, but
CATALST students were often more prepared to describe a hypothesis test before
formally learning this content. Interview data also revealed that CATALST students also
were more apt in determining the difference in purpose between the correlation value and
a hypothesis test, and often exhibited greater conceptual understanding of hypothesis
testing. These results have implications for the teaching of linear regression and
distinguishing the purpose and interpretation of measures like correlation from inferential
techniques. It also raises questions about how CATALST may compare to other

simulation-based curricula that do not emphasize modeling.

Evidence for Further Development of TinkerPlots to Support Inferential
Reasoning with Linear Regression. The CATALST curriculum and TinkerPlots
software provide students with a fertile modeling environment for expressing their
statistical reasoning. This environment is powerful in providing a true transparent
experience of simulating from probability models that allows students to have full

ownership of the process. However, the original design of the CATALST curriculum
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does not cover all topics covered in a typical introductory statistics course, such as linear

regression. | designed CATALST-inspired activities for linear regression that leverage
TinkerPlots, and detail the clumsy workarounds required to use TinkerPlots in this way.
Suggestions for future improvements to TinkerPlots to avoid this workaround are
provided. These suggested improvements are based on research-based recommendations
for the choice of simulation-based software (Rossman & Chance, 2014) as well as
empirical results of students understanding of inference who learned using these
TinkerPlots activities and the workaround. These empirical results assessed students’
understanding of hypothesis testing in linear regression through the analysis of classroom
assessments. This analysis aimed to answer the following research question: How does
using TinkerPlots for conducting a hypothesis test for the least squares line aid students’

inferential reasoning and address common challenges faced when using simulation?

Analysis of the data leveraged Case and Jacobbe’s (2018) framework on the
common difficulties students experience when interpreting simulation-based inference
techniques, as well as work on connecting study design to the interpretations of
hypothesis testing, especially with experiment-to-causation inference (Pfannkuch et al.,
2015). These two works provided three areas of focus in analyzing students’ assessment
work: how they connect the null hypothesis to their sampler model in TinkerPlots, how
they determine their choice of replacement and connect this to the study design, and how
they interpret their p-value and the results of the hypothesis test. Results showed that an
overwhelming majority of the CATALST students provided responses that exhibited an
understanding of the null hypothesis and their p-values. There were some students that

did not recognize the appropriate study design in their choice of replacement, but these
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students still often provided reasoning consistent with their choice. These results provide

evidence for the success of emphasizing modeling in simulation-based curricula using
TinkerPlots, and add support for the development of further technology innovations with

TinkerPlots to improve student experiences with linear regression and other typical

introductory statistics topics.

Discussion

These papers add to statistics education literature by expanding the existing use of
the CATALST curriculum to linear regression. They detail the benefits of this expansion,
especially with regards to inference and hypothesis testing, while highlighting potential
improvements that can be made in students’ strategies for informally fitting lines of best

fit. The following three chapters present these three studies and are followed up by a

concluding chapter that discusses and synthesizes the relevance of this work.
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Chapter 2: Students’ Knowledge about Lines of Best Fit in a Modeling and

Simulation Introductory Statistics Curriculum
Abstract: Students’ hold a wide variety of conceptions regarding statistical association.
These conceptions pose challenges when summarizing the relationship displayed in a
scatterplot through informally placing a line of best fit. This study examined college
students’ strategies for fitting a line to a scatterplot informally through surveys and task-
based interviews. The students represented a novel population of students from a
simulation-based curricula who engaged with activities specifically designed to consider
informal line fitting before learning the least squares criterion. Results from this study
revealed that many students leveraged a unique strategy of using offsetting distances
when informally fitting lines, and that students’ placement of their line of best fit revealed
a differing perspective on outliers that appear in a corner of the scatterplot as opposed to
the middle of the scatterplot. Students in this learning environment also exhibited

reasoning reflecting the previously known conceptions of association, which has

implications for future work on how to best teach students lines of best fit.

Introduction
Research has shown that simulation-based methods provide many advantages to
students’ learning of statistical topics (Chance et al., 2016, 2018; Hildreth et al., 2018;
Tintle et al., 2014), especially in regards to inferential techniques and drawing
conclusions from data. The CATALST curriculum (Zieffler, 2012) was inspired by
Schoenfeld’s (1998) call for mathematics curriculum to focus on teaching students how
to “cook” rather than just follow recipes, and by TinkerPlots (Konold & Miller, 2018),

the modeling and simulation tool that acts as the ideal statistics “kitchen.” TinkerPlots
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provides students opportunities beyond just the ability to simulate sampling distributions;

it allows students to create the devices and models used to simulate data. The CATALST
curriculum and TinkerPlots provide students with opportunities to create and model their
own simulation processes. Students’ narratives built around data contexts and the
statistical models they build can unlock the supporting rationale for the statistical

methods being used (Noll et al., 2018; Noll & Kirin, 2017).

However, the CATALST curriculum was originally designed to only focus on key
concepts of inferential statistics, and does not cover every topic traditionally taught in an
introductory statistics course. While this limited selection of topics was by design to
narrow the focus on inference and promote statistical literacy (Justice et al., 2020),
statistical association is potentially one of the most fundamental concepts of statistical
literacy. Understanding relationships and making connections between different
phenomenon based on data is necessary to understand the world and how different
aspects of it are connected. “Knowing whether events are related, and how strongly they
are related, enables individuals to explain the past, control the present, and predict the
future” (Crocker, 1981, p. 272). McKenzie and Mikkelson (2007) state that covariational
reasoning is one of the most important activities that humans perform. Science is rooted
in understanding these relations, with Halley’s (1686) observations about barometric
pressure and altitude being among the first statistical associations observed that led to the
study of meteorology. As society continues to face the effects of climate change,
understanding relationships between global temperatures and other variables that
contribute to Earth’s warming is vital not just to scientists and policy makers, but also the

general population who will face this warming and resulting climate impacts. An
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Figure 1. Scatterplot of CO2 emissions and temperature anomaly from 1901-2000
average.

example of one such relationship can be seen in the scatterplot shown in Figure 1 relating
global CO2 emissions to the global temperature anomaly. Understanding scatterplots is a
vital tool for both science and the general public, as they are ubiquitous. It is estimated
that at least 40 percent of data visualizations across all scientific publications relate two

or more variables, such as scatterplots (Tufte, 2001).

One tool used to summarize linear relationships is the line of best fit, seen
superimposed on the scatterplot in Figure 1. The line of best fit is the most formal topic
for statistical association in the collegiate introductory statistics class outlined by the
Guidelines for Assessment and Instruction in Statistics Education (GAISE) and is a major
focus for research on students’ statistical literacy and thinking (Carver et al., 2016;

Garfield & Ben-Zvi, 2004). Exploratory bivariate data analysis is presented as an
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introductory unit in AP Statistics and many other collegiate level textbooks (Agresti et

al., 2017; AP Statistics, 2006; Utts & Heckard, 2014). Given the unique nature of
CATALST as a statistics curriculum that gives students the ability to cook, not only is
statistical association a natural and necessary addition to the CATALST curriculum, but
there is reason to believe that this curriculum is a potentially ideal environment for
students to learn this topic. Research has already identified clear advantages for the
CATALST curriculum for learning statistical inference, and TinkerPlots makes for a
powerful research tool for revealing students’ statistical thinking. Features of this
software could also provide a fertile environment for students to learn about lines of best
fit and explore the criteria used to determine them through trial and error. Statistical
literacy should be an art of cooking, not just reading recipes, as there is no one recipe for
making judgments about statements that use any form of statistical association in the
news, social media, or other various sources. Students who have this ability to “cook” can

critique potentially misleading claims made based on data, and not just accept data

visualizations or data-based conclusions at face value.

The goal of this study is to explore students’ knowledge about lines of best fit
before and after learning the material in a college level introductory statistics course.
These students learned with a version of the CATALST curriculum that was expanded to
introduce concepts of statistical association and linear regression. Students place lines of
best fit informally on scatterplots using TinkerPlots software (Konold & Miller, 2018)
before examining more formal methods that use a criterion to optimally place the line of
best fit. While collegiate-level standards do not typically emphasize the use of informal

line of best fit, they are recommended by Common Core State Standards in grade eight as
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a way to gain foundational understanding to later learn the least squares regression line,

and are also recommended at a similar level in the preK-12 GAISE standards. While
fitting lines of best fit informally is not discussed in the collegiate GAISE standards,
there are clear gaps in student knowledge at the preK-12 level (Biehler et al., 2018;
Shaughnessy, 2007). These gaps can make learning formal concepts like least squares
regression problematic when these students learn these topics at the collegiate level.
GAISE guidelines explicitly spell out that it is not appropriate to teach more formal
concepts to students without experiences at more foundational levels, highlighting the
importance of studying informal line of best fit in collegiate statistics (Franklin et al.,
2007, p. 13). Additionally, marginalized groups of students typically have less access to
STEM fields like statistics through their K-12 education (Basile & Murray, 2015), which
further highlights the need to address these foundational concepts to create an equitable
learning experience at the collegiate level. This is especially relevant considering that this
study was conducted at Portland State University, an urban institution with a high
percentage of students from traditionally underrepresented groups (e.g. first-generation,
ESL, black/African American, Hispanic, women). These groups of students tend to fail or
drop the course in far higher numbers, with 41% of black/African American PSU
students dropping the course from 2009-2013 compared to 21% of their white
counterparts. Universities need to better prepare these underrepresented students to
become statistically literate for a data-driven society, and curricular advancements along
with research investigating their impact is necessary to improve learning for these groups
of students. Focusing on informal lines of best fit can give students an environment to use

their common or out-of-school knowledge, which is a productive environment for
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transitioning to more formal concepts in many mathematical settings (Gueudet et al.,

2016). With the implementation of statistics concepts at the K-12 level by Common Core
being a relatively recent development, it will take significant time for the benefits of
these curriculum changes to bear fruit. Professional development for primary and
secondary teachers does not happen overnight, and the young students who benefit from

learning statistics at a young age are several years away from collegiate courses.

Only a single study on informal lines of best fit with college students presently
exists in the literature, which gave an informal presentation on one classroom of
introductory level students’ initial strategies for line fitting and suggested strategies for
motivating the least squares lines with students (Sorto et al., 2011). These initial
strategies were the basis for many studies with K-12 students on informal line fitting
(Casey, 2015; Casey & Nagle, 2016; Casey & Wasserman, 2015), but little has been done
on collegiate students since. This study aims to add to that pool of literature while also
introducing a novel population in CATALST students. Looking at students’ conceptions
after the end of the course can aid in assessing how well the CATALST-inspired
activities on regression address common conceptions students hold about statistical

association and the line of best fit.

Literature Review and Research Question
To help frame the goals of this research study, | present three conceptions
identified in research literature that students hold about statistical association relevant to

the lines of best fit, which are outlined in the first subsection. The next subsection
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provides the motivation for studying lines of best fit in the CATALST curriculum and

why this may lead to successful learning outcomes for students.

Students’ Conceptions of Statistical Association

Moritz (2004) describes three different types of covariation: logical, numerical,
and statistical. Logical and numerical covariation involve more deterministic,
mathematical forms of covariation, where logical covariation defines how the truth status
of events varies the truth of other events (e.g. “not A = B”), and numerical covariation is
how one quantity or variable defines a specific variation in another variable (e.g. y = x?).
Students are frequently exposed to these ideas of covariation through expressions and
functions in their K-12 mathematics education, but it is not clear if students view this as
covariation. Student images of a given function tend to be focused on a visual graph
using Cartesian coordinates, which is problematic when analyzing compositions of
functions such as f(g(x)), which require a deeper understanding of covariational reasoning

(Thompson, 1994).

It is thus not surprising that students struggle with ideas of statistical association,
which requires students to think not only about how two quantities or variables may
change, but to think about this in a stochastic manner, where there is not necessarily a
perfect relationship. Batenero et al. (1996) studied pre-university students’ conceptions
about statistical association with categorical data in 2x2 contingency tables and identified
some conceptions that students have when thinking about covariational reasoning that
interfere with analyzing this kind of data appropriately. These conceptions include the

unidirectional and localist conceptions, which | detail in the subsections that follow. The
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final subsection explores research that shows the importance of considering students’

prior beliefs about the data.

Unidirectional Conception of Association. Historically, it was not immediately
obvious to statisticians that statistical association could be summarized in two directions.
When Francis Galton first defined the idea of a numeric value for correlation (now
known as the Pearson correlation coefficient), he made the following statement defining
the idea of correlation to the Royal Society on December 5™, 1889: “Two variable organs
are said to be correlated when the variation of the one is accompanied on the average by
more or less variation of the other, and in the same direction” (Pearson, 1920, p. 39).
Galton had not considered the possibility of a negative correlation when defining the

measure, and it turns out that students often do not consider this possibility either.

Batenero et al. (1996) noticed the unidirectional conception of association when
students interpreted data regarding a drug’s effect on reducing digestive troubles. The
table showed a relationship between the drug and reducing digestive troubles, but
students recognized these two variables as independent or showing no association rather
than the inverse relationship that was presented. Cognitive psychologists studied
association with similar tasks on adults, and found that adults reason poorly about
covariation when the presence of one variable tends to correspond with the absence of
another (Beyth-Marom, 1982). Moritz (2004) gave a task to students from third to ninth
grade that involved producing a graph of students’ spelling test scores based on the
statement “People who studied for more time got lower scores.” This statement would

describe a negative association, but intuition about studying and test scores would
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suggest a positive association. Many of the students produced graphs that showed a

positive association in spite of the data that were described in the task — it’s unclear if this
was due to the influence of prior beliefs (a topic to be discussed later) or this

unidirectional conception of association, but it is very possible that both played an

influence.

When focusing on this conception as it relates to the line of best fit, students often
have difficulty in placing lines of best fit for data that have a flat or negative slope. Casey
(2015) noted this when studying 8" graders’ ability to place an informal line of best fit on
scatterplots. While students tended to have somewhat less accuracy in placing lines on
negatively sloped data, this struggle was incredibly prominent with data that exhibited no
association. For the task on placing lines with no association, numerous students drew
informal lines through the data that were clearly upward sloping. Even many pre-service
and in-service teachers who attempted this same task presented similar upward sloping
lines to fit the data, with one teacher who refused to place a line on the data at all (Casey
& Wasserman, 2015). Students conducting middle school science experiments struggled
in situations where their data showed that the dependent variable did not covary with the
independent variable. Multiple investigations with situations of association and no
association are recommended to ensure that students are comfortable drawing
conclusions in both situations, rather than just when there is an association (Kanari &

Millar, 2004).

Thus, it seems that there are inherent difficulties in recognizing a negative

association or a lack of association in data. One possible conjecture for the source of this
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existing conception is how students’ mathematics education shaped students’ knowledge

of slopes and rates of change. Teuscher and Reys (2010) noted that when secondary
students are introduced to the ideas of slope, that concepts of steepness and slope can be
often seen as the same concept, but slope carries information about a sign or direction
where steepness does not. Teuscher and Rays provided a common example determining

the steepness of a roof, in which it is possible to ignore the sign of the slope.

“We must help our students understand that the slope of a line is calculated
according to a particular orientation and that the sign of the slope indicates
whether the line goes up or down... one way to extend this example and help
students focus on the sign in addition to the steepness is to ask them to find the
slope of the other side of the roof and compare it with the original” (Teuscher and
Reys, p. 523).

The concepts that students build when working with ideas of non-negative rates like
speed and steepness may be a source of this unidirectional conception when students
transition to analyzing statistical association. But it might simply be more natural to think
of positive associations before negative ones — even a statistician like Galton initially did

not consider these cases.

Localist Conception of Association. Students often try to summarize a
relationship between two variables by focusing on just a few data cases or just one of the
variables presented. Batenero et al. (1996) attributed the idea of a localist conception to
students whose strategies for analyzing contingency tables focused solely on a single cell
of the table or only one relative frequency or percentage to draw their conclusions about
association. For example, one student in this study claimed that there was no dependence
on smoking and bronchial disease because there were a higher percentage of non-smokers

in the study. Moritz (2004) also noted this tendency to focus on just one variable in tasks
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designed to have students produce graphs that describe a particular relationship. In a

context about studying time and test scores, students would often create graphs that
focused on only one of the two variables, thus insufficiently conveying any idea of

association.

This localist conception is not unique to covariational reasoning though, and is a
common approach that students take when analyzing even univariate data. Bakker et al.
(2004) noted this orientation as case-oriented, whereas an expert in statistics would
analyze and interpret data with an aggregate perspective. This view is informative in
summarizing the strategies students use for fitting lines of best fit to data presented in
scatterplots, as it informs whether they see the line as relative to just a few points in the
scatterplot or representative of the entire data set. Many students often attend to just a few
points in a scatterplot when producing an informal line of best fit; these are typically a set
of points that are nearly collinear or the two most extreme points (Casey, 2015). Outlier
points are also a source of case-oriented thinking when placing a line of best fit. When
fitting lines to data with outliers present, adult participants seemed to place lines that
overstated the effect of outliers, even when explicitly asked to identify and disregard
them when placing the line (Ciccione et al., 2022). Ideally, students should be fitting lines
of best fit by placing them as close as possible to all data points simultaneously, as this
represents an aggregate view of data, while also reflects the logic of fitting lines based on
the ordinary least squares method. Given the complexity of managing the relationship
between two variables, localist approaches seem natural, as they avoid the complexities

of analyzing two variables simultaneously. Educators should consider how to best use
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these initial localist conceptions to scaffold toward an understanding of covariational

reasoning.

Prior Beliefs. One last difficulty with regards to statistical association is
emphasizing the use of data for drawing conclusions about associations and avoiding
prior beliefs about the association to impact those conclusions. One study examined
abilities of the “intuitive psychologist” with respect to covariational reasoning. Jennings
and colleagues interviewed a group of Stanford undergraduates with no collegiate
statistics course, determining their ability to judge the level of association in two
scenarios. They presented both data on two categorical variables with no context, as well
as contexts based on existing studies with no data provided. These students massively
understated the actual level of association when data was provided, but quite frequently

overestimated the level of association when just provided contextual information. Their

main conclusion:

“When no objective, immediately available, bivariate data can be examined, but

prior theories or preconceptions can be brought to bear, the intuitive psychologist
is apt to expect and predict covariations of considerable magnitude — often of far
greater magnitude than are likely to have been presented by past experience or to
be borne out by future experience” (Jennings et al., 1982, p. 224).

These results agree with previously discussed findings from Moritz (2004) in which
students created graphs that showed positive associations, reflecting their own beliefs
rather than the negative association that was conveyed in the task. Batenero et al. (1996)
found similar results when students claimed associations that matched intuition despite
the data reflecting no association. Prior beliefs about a causal relationship are also a
source of confusion in interpreting statistical association, as Estepa et al. (1999) found

that some students analyzing scatterplots would only identify association if there was a
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known causal link between the variables based on their previous experience. Estepa &

Sanchez Cobo (2001) also found that some students were likely to interpret strong
correlation coefficients with causal statements. This causal conception of association is a
common fallacy of statistical associations necessitating a causal link, summarized by the
statistics instructor’s mantra of “correlation does not imply causation.” Working with
concepts like critical inference or mapping relationships between variables with causal
diagrams may help students to manage their prior beliefs with data-based assumptions
about these confounding relationships. This gives students the ability to know when a

causal link can be drawn based on data given that potential confounding sources are

controlled (Cummiskey et al., 2020).

On the one hand, it seems that prior beliefs should be avoided in these bivariate
contexts. Wild and Pfannkuch warn that “whenever students have contextual knowledge
about a situation... they will come up with a range of possible causal explanations with
little or no prompting” (Wild & Pfannkuch, 1999, p. 238). Psychological studies on
placing lines of best fit on scatterplots of contextless data seem to reflect that adults’
ability to perform “mental regression” is quite strong, although the lines placed better
reflect minimizing the orthogonal distance from points to the line rather than the vertical
distance as done with least squares (Ciccione & Dehaene, 2021). Despite this relative
success in placing lines of best fit informally on contextless data, this should not be an
argument to remove statistics questions from their contexts. Contextual reasoning gives
meaning to the statistics problems at hand, and real statistical problems are always
entrenched in the contextual world. Gil and Ben-Zvi (2011) found that students were

more engaged in problems with data contexts chosen to match student interests and
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expertise. Culturally relevant teaching practices agree with this recommendation but

stress that this implementation is not trivial; relevant contexts should be integrated into
larger, open investigations that allow students to process and apply their knowledge in
order to promote engagement and independent learning (Hammond, 2014). Place-based
education is especially engaging for students conducting science experiments on-site, and
is especially effective with students from underrepresented groups (PEEC, 2010; Leonard
et al., 2016). Day-to-day life presents challenges that require covariational reasoning, and
these situations are not absent of context. Given that students have difficulty questioning
claims of association made in the media (Watson & Moritz, 1997), it is important to
integrate these contextual aspects in a meaningful way for students and emphasize the use
of data rather than beliefs in making conclusions. Biases in data analysis and data
themselves are ever present in a data-rich society, and this presents numerous ethical and
social justice issues. An example of such an issue can be seen with software like PredPol,
a predictive policing method that uses data to predict where crimes will happen. But since
historical crime data is collected by police forces that have targeted and heavily patrolled
areas where marginalized groups often live, the source of this data is inherently based in
these biases (D’ignazio & Klein, 2020). This highlights the importance for students to
work with data sets in relevant contexts and think about potential sources and biases in
the data collection. To address the difficulty of managing both the contextual and
statistical in the classroom, Moritz (2004) suggests emphasizing to students having them
temporarily set aside their beliefs about the data, and then once the covariation in the data
is understood, integrate the contextual aspects and their own experiences to be able to

properly question any conclusions made, or how the data were collected. On the other
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hand, having students explicitly make conjectures about the data based on their beliefs

and experiences and revisit them after conducting a statistical analysis may also be
promising, and reflects the design principles of the CATALST curriculum (Cobb &

McClain, 2004; Garfield et al., 2012).

To summarize these three conceptions, Table 1 provides a description and
examples of each. These three conceptions were used as a foundation for task

development and analysis in this study.

Table 1. Summary and examples of existing conceptions of statistical association.

Conception Description Example

Localist Characterizing a statistical Informally determining the line of best
association through focusing on fit on a scatterplot by connecting just a
only a few cases or only one few nearly collinear points.
variable.

Univariate A biased view of statistical Informally fitting an upward sloping

associations toward those that are  line of best fit on data that have little
positively associated, leadingto a to no association.
mischaracterization of unassociated

or negatively associated variables.

Prior Beliefs  Determining a statistical association Informally fitting an upward sloping
by the contextual details rather than line on data based on one’s belief
the data presented. about the two variables, despite the

actual data showing no correlation.

Background and Motivation

To address common student conceptions about covariation such as univariate,
localist and prior beliefs, | created statistical association activities to align with the
learning theories of the original CATALST materials. The key characteristic of the
CATALST curriculum that sets it apart from other simulation-based curricula is its use of
modeling probability-based situations. This is achieved through the TinkerPlots software

(Konold & Miller, 2018), which gives students the ability to create “sampler” devices
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using commonly understood chance devices like spinners or containers of balls akin to a

lottery machine. TinkerPlots allows students to have a great deal of control and
customization of the simulation process, and animates these devices in order to connect
with their physical counterparts. This degree of exploration and visualization allows
students to gain a deeper understanding of how simulations generate results that can be
used to draw statistical conclusions. The activities that | developed leverage TinkerPlots
so that students could explore informal line fitting through placing diagonal lines freely
on a scatterplot. This gave students a way to propose criteria to evaluate their lines of best
fit. Students could then use this criteria to calculate a global measure of distance from the
line, leading to criteria like least absolute deviations. CATALST students are already
familiar with the concept of using distance or differences as a measure of interest through
working on guided reinvention activities that focus on concepts like the mean absolute
deviation to measure variability, or taking a difference of two means or percentages to
draw comparisons. Employing a similar strategy to lead students to using least absolute
deviation allows students to explore ideas of fit visually and informally before moving

into more formal measures for determining the best fit for a line, like least squares.

While literature does not prescribe an ideal simulation-based curriculum, there are
some advantages provided to the CATALST curriculum over other simulation-based and
traditional curricula, notably with the success rate of students in the CATALST course
and with understanding the purpose of using simulation and randomization methods
(Hildreth et al., 2018). Students’ understanding of the simulation itself can likely be
explained by the novel use of TinkerPlots samplers. Giving students autonomy over

model construction for simulating data reveals that students hold a variety of conceptions
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on the purpose of simulating data as well as how data should be simulated (Noll & Kirin,

2017). Students may not fully grasp how data are generated when simulating data in a
black box environment, and thus do not easily see how the simulation can be used to
carry out statistical inferences. Even in-service and pre-service teachers with statistics
experience referred to the simulation process done as “magic” and hand -waved the details
of this process in a sequence of MEAS designed to conduct inference with simulation,
leading the researchers to recommend that an emphasis be placed upon students creating
their own models to simulate data (Lee et al., 2016). Additionally, the creation of student
models often reflects narrative perspectives students hold with respect to the problem’s
contextual details, reinforcing their understanding of the data that is being simulated

(Noll et al., 2018).

Most other simulation-based curricula that exist use an “applet”-based approach,
where the design of the simulation itself is pre-constructed. One such simulation-based
curriculum is based off the Introduction to Statistical Investigations textbook (Tintle et
al., 2015), which has been analyzed in the literature heavily in comparison studies with
traditional statistics curricula. While the research typically reveals many advantages to
this simulation-based curricula over traditional statistics curricula, it is notable that
studies that examine student performance by topic area reveal that simulation-based
curricula are not significantly better than traditional curricula for bivariate data, with the
pre-post gains often being larger for the traditional curricula (Tintle et al., 2011, 2012,

2014, 2018).
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While the lone comparison study on CATALST did not include comparisons by

topic, there is reason to believe that CATALST students may have better success with
topics of bivariate data and lines of best fit. Simulation itself isn’t directly relevant to
informally placing lines of best fit; however, there are aspects of modeling and simulation
that do apply. The line of best fit allows students to simplify noisy data into a
summarized linear relationship, just as probability models often take complex random
outcomes and simplify them to their most necessary aspects. CATALST students have
experience with the process of building probability-based models based on certain
assumptions they identify, often associated with a null hypothesis. When placing a line of
best fit, students also need to identify an assumption by defining criteria that determine
how well a line fits. Like the assumptions placed upon probability-based models, students
need to identify criteria they see as important in fitting lines to evaluate the connection

between the summarized model and the data as a whole.

In summary, | hypothesize that CATALST students may be best equipped for
learning strategies for informal line fitting. First, their experience with statistical
modeling and managing the assumptions made within their TinkerPlots samplers could
potentially transfer for managing criteria to evaluate a line of best fit. Second, these
CATALST students have already experienced guided reinvention activities that focus on
using global differences as a measure, which may prepare them for the activities that are
constructed for reinventing least absolute deviations. For these reasons, studying this

population of students is an interesting and novel avenue for research.
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In light of the difficulties students face in learning topics of statistical association,

this study aims to leverage the modeling-focused features of the CATALST curriculum
and line-fitting capabilities of TinkerPlots software for teaching the line of best fit in the
collegiate introductory statistics classroom. The research question for this study is: What
are CATALST students’ intuitive strategies for placing lines of best fit before and after

formally learning about least squares criterion?

Methodology

Data Collection Instruments

To answer the research questions posed, individual surveys and task-based
interviews were conducted with students. First, | provide the rationale for why using

instruments targeted at individual students is appropriate, and then detail the tasks that

were used on each instrument.

Rationale. The CATALST curriculum leverages carefully scaffolded activities
that have students work in groups to uncover statistical concepts in TinkerPlots. Within
the classroom, | take a social constructivist view to learning. This view assumes that
students come with many pre-conceived notions about statistical associations and the line
of best fit from their own experiences. It also prepares students to be able to discuss
statistical ideas with others, and critique statistical claims that are ubiquitous in today’s
society. However, a student’s individual knowledge is just as important for evaluating
these kinds of statistical claims once they complete the course. Additionally, for better or
worse, most higher education institutions still assess students via grades at the individual

level. To improve the achievement gaps for typically underrepresented groups previously
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identified in the introductory statistics course, individual students’ knowledge must be

assessed and addressed.

For the purposes of assessing students’ learning in this study, | am thus interested
in assessing individual knowledge, representing a cognitive approach to learning. These
two learning perspectives can be viewed as compatible, as social constructivism involves
students shuffling between interpsychological and intrapsychological levels, where
students bring their individual experiences to a social setting and center learning within a
group of students. When students learn in groups, the experiences they bring to the course
and the experiences they share with their classmates during the course affect their
individual experiences with the activities and the data contexts. Thus, the individual
instruments used in this study can still capture the results of students shared experiences
in the course. The pre-survey aims to establish a baseline by capturing these out-of-
course experiences of individual students and how they impact their reading and
understanding of data. The post-survey and interview reflect what knowledge they
constructed working with other students and their various perspectives, but again at an
individual level. Thus, individual surveys and individual task-based interviews are an

appropriate choice to capture students’ learning considering these perspectives.

Survey. Individual surveys were administered to students both before and after learning
linear regression content in the course. These pre and post surveys contained three
questions related to selecting the most appropriate line of best for the data. These
questions each had six choices of lines of best fit to pick from, with one of the lines being

the least squares line. Students were also asked to justify their choice. These task-based
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instruments on the survey were designed to elicit student conceptions about lines of best

fit as well as the conceptions that they constructed throughout the course. For more
details on the survey tasks and how the design of the tasks connects to the conceptions
identified in the literature review, see Appendix 1. A summarized list of the survey tasks
and their details is shown in Table 2. The second task listed that focused on elementary
students’ shoe size and height, originally used in two previous studies (Casey, 2015;
Casey & Wasserman, 2015), is placed in the survey to potentially target students’ prior
beliefs. Students often think there is an association between these two variables as there
would be among adults, but the data presented here for elementary students show no such

association.

Table 2. Summary of survey tasks on informal line-fitting.

Task Direction Correlation Targeted Conception(s)

Ad_ult age and None r=-0.07 Localist, Unidirectional

heights

Child shoe size and _ Localist, Unidirectional, Prior
. None r=-0.03 .

height Beliefs

Athlete height and

. . Positive r=0.82 Localist
long jump distance

Interview. The interview tasks had similar goals of targeting these existing
conceptions of statistical association. These task-based interviews featured line-fitting
tasks similar to those in the survey, but with students able to fully control the placement
of the line in TinkerPlots rather than picking from one of six choices. A summary of the
four line fitting tasks from the interviews can be seen in Table 3, with the full tasks and
protocol shown in Appendix 2. While the survey aimed to capture students’ conceptions

of the line of best fit before and after learning the content in the course, the purpose of the
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Table 3. Summary of interview tasks on informal line-fitting.

Task Direction Correlation Targeted Conception  Outliers?
Attendance
and Grades
Ocean
Temperature  Negative r=-0.84 Localist (outliers) Yes (5)
and Salinity
UberEATS
delivery
distance and
tip
Accidental
deaths by Negative r=-0.64 Prior Beliefs Yes (1)
truck and bed

Positive r=0.66 Localist (collinearity) No

None r=0.05 Univariate No

interview was to provide a richer perspective of these conceptions. The interview format
better allows for students to follow-up and provide more detail for their rationale in
placing lines of best fit. This also acts as a way to triangulate conceptions observed in the

survey data, which were often based on responses that are brief in nature.

With the open-nature of these interview tasks allowing students to freely place
their lines of best fit, the design of the task to target certain conceptions lies in the choice
of data, rather than the prescripted choices of lines in the surveys. The first task thus had
several places that would allow students to place a line that followed some collinear
points that did not closely align with the least squares line. The second task targeted
localist conceptions by having students need to fit a line to data that was mostly linear,
with a cluster of five outliers! that somewhat broke off from a very clear linear trend.

This aimed to determine if students would appropriately incorporate the outliers into the

1 There is nota strict definition 1 am using to identify outliers, and instead use the term informally based on
visual separation. Students may recognize other data points in these tasks as outliers rather than natural
variations in the data, and may not label points as outliers that were intended to be by the task design.
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placement of their line, if they would ignore the outliers completely, or if their line would

be placed too heavily toward the outliers. The third UberEATS task aimed to determine
how students recognized unassociated data, and if they would place a flat line or place a
line representing some association not displayed in the data. Finally, the accidents task
had students work with data that exhibited a purely spurious correlation, which may lead

students to think the data should be unassociated based on their own beliefs.

After placing their lines, students were asked a series of follow-up questions to
understand their thinking. First, students were asked “Why did you place your line in that
location, and why do you think that best fits the data?” to understand generally their
criteria for placing the lines. To get more specific answers for this, students would be
asked “Did you use any specific criteria for placing your line?” if no criteria were
provided initially. To get students to recall how they might have learned about placing
lines of best fit from their CATALST course, students were asked “Do you think this
reflects how the line of best fit was determined in your class? Did your class use different
criteria for determining the line of best fit?”” For the final task on accidents with the
spurious correlation, students were asked “Does this plot indicate that more deaths from
falling out of bed in a given year causes there to be fewer deaths by truck crashing into
stationary objects?” in order to get them to think critically about the context and the
meaning of the line, as well as challenge their understanding of the difference between

correlation and causation.
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Participants

This study focuses on one CATALST classroom of 23 students in the second 10-
week course of an undergraduate introductory statistics sequence. Of those 23 students,
21 consented to participate in the study. This course is targeted at non-statistics majors,
most of which come from a social science background. Some students in the course may
have had some prior statistics knowledge from high school or other courses in their own

departments, but for the most, this course is their primary exposure to statistics in college.

To encourage participation in the surveys, these were assigned as a homework
assignment to students to introduce students to ideas of line fitting and capture their
conjectures, and again to revisit these scenarios again after formally learning the content.
Students who did not consent to research completed the assignments for the purpose of
the course, but their responses were removed before analysis. Of the 21 students who
agreed to participate in the research, there were 18 who participated in both pre and post
surveys and are included in the analysis of this study. A subset of those 18 students were
then selected to participate in interviews. The selection of interviewed students was done
purposefully based on their survey responses to obtain a pool of students with a wide
variety of conceptions on the line-fitting survey tasks. Thus, the interview sample is
somewhat biased toward conceptions that were uncommon, and is intended to show the
full range of possible student conceptions rather than be a representative sample. Eight
students were invited to participate in interviews approximately 1-2 months after the
course’s completion, five of whom participated. These five students are referenced in this

study by the pseudonyms Dabney, Dene, Garnett, Morgan, and Riley.
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Analysis

Analysis of the survey responses began with the development of a coding
structure for student justifications. The justifications that students gave in the survey
lined up with codes used to characterize student responses during task-based interviews
in Casey (2015), which served as a basis for the coding structure. However, since this
previous study used task-based interviews rather than surveys, student survey answers
were often brief and only justified the choice based on the apparent overall direction of
the relationship. These brief responses could be investigated further in an interview
setting with follow-up questions to determine their criteria or rationale for that specific
choice. In this setting, to characterize these kinds of vague responses, codes for
recognizing that the data held a specific association were created. The final coding
structure used for these tasks is shown in Table 4. Codes were not mutually exclusive for
a given response, so students could be assigned multiple codes or none at all. All student
responses were coded by the author and a second coder, and all disagreements in coding
were discussed until an agreement could be reached. Analysis of the student interviews
began with the creation of transcripts. These transcripts were then read through for
interesting discussions, with major points of interest being the criteria students used to
characterize their line, how they responded to perceived outliers, how they characterize
the line of best fit itself, and how their beliefs impacted the placement of the line. This
process was iterative in nature, with moving back and forth between the transcripts
themselves and the summaries/themes that emerged from the transcripts. Based on these

observations, one additional reasoning code for offsetting distances was added for the

interviews, which was verified by the second coder. Additionally, since the interviews
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Table 4. Summary and examples of each code for characterizing explanations from

survey tasks.

Code Description Examples
Prior beliefs Characterizes the “It shows that as the person gets
relationship based upon older, they get shorter and it also
contextual details and covers more data on the line.”
previous experience, clearly  “It allows you to see a trend...
not based on the given data. allowing for an easier
understanding that shoe size and
heigh show correlation.”
Recognizes __ Describes the data as having  “The line is not increasing just like

(+/-/0) correlation

a positive, negative, or no
relationship. This may be
implicit by choice of line, if
the data "follow" the line or
something similar.

the data. And the line goes in the
direction the data is going.”

“I chose this to be the line of best
fit because it goes in the same
direction and incline as the dots.”

Equal above and
below

Describes a desirable quality
of their chosen line to have
equal number of points
above and below it. May
also reference ideas of
median or characterize the
line as representing the
median.

“This seemed to go through the
middle of the data.”

“I chose this line because it seems
as though the data is relatively
split between the higher and lower
sides, so it makes sense the line is
in the middle.”

Closest to points

Describes how the line is the
closest to the points or a
closest fit, or focuses on
vertical distances in a way
that implies this. Could also
characterize the line as
representing the mean or
being in between the points.

“The data means are going to
hover right around that 170.0
height across the ages, giving
relatively close to a zero slope.”
“The line pretty evenly divides the
data... with similar average
vertical distances between the dots
and the lines.”

Collinear/Localist

Describes a desirable quality
of the line to go through or
go near to a selection of a
few data points.

“This choice seemed to connect
through many of the points in the
graph as well.”

“It includes the majority of the
student's heights and distance they
jumped.”
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provided richer responses than the surveys, the codes for recognizing the direction of the

relationship were not applied. The final coding scheme applied to these tasks can be seen
in Table 5. Codes were applied at the task level if that reasoning was used in finding their
line of best fit for that given task. When multiple codes were selected for a task, the
coders also selected one code to be the primary code that best reflects the main reasoning

a student used in placing their line. Aswith the surveys, both the author and second coder

determined their codes independently and resolved all disagreements. To aid in tying

together the method of analysis and the literature, Table 6 summarizes the codes applied

Table 5. Summary of each code for characterizing explanations from interview tasks.

Code Description Examples
Prior beliefs  Characterizes the “They have nothing to do with one another... Just
relationship based upon looking at the scenario, | don't see why there would be
contextual details and any correlation whatsoever.”
previous experience, clearly  “My mental model is that the further you drive the more
not based on the given data. tip you would get, but at the same time though, | don't
know that people honestly think a lot about it.”
Equal above  Describes a desirable “There's like three below here, three above, they're
and below quality of their chosen line roughly equal number above and below here.”
to have equal number of “They were balanced on each side and almost running
points above and below it. through the center of the dots.”
May also reference ideas of
median or characterize the
line as representing the
median.
Closest to Describes how the line is “[I’m] determining the distance between each line at the
points the closest to the pointsora  line and each point. The smallest distance possible,
closest fit, may also approximately, but I don't have the calculations.”
characterize the line as “You're trying to find the center of the data... trying to
representing the mean or represent the average of the data points.”
being in between the points.
Collinear Describes a desirable “When I look at information or data points always feel
/Localist quality of the line to go like they have to, at least for me, like, it's easier to
through or go nearto a understand if the line is going through data.”
selection of a few data “[If] this was the starting point... then I think I'd be
points. trying to touch more of these dots with the line.”
Offsetting Describes their line as being  “You want the average distance to be balanced between
Distances placed so that there are the two sides, the average distance to the line”

many pairs or groups of
points whose residuals
balance each other out.

“These two [distances] right here are roughly the same
as these two, these two [distances] over here don't have
any counterparts. But neither does this one [data point],
which is a bit further away from the line.”
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to surveys and interviews and how they connect back to the conceptions of association

identified in the literature.

Students’ final lines of best fit for each task were also compiled and analyzed

against the least squares line in each scenario to reveal any interesting differences. While

the logic of least squares was not readily intuitive, appropriate informal methods of fitting

a line should come close to this line. Examining differences between students’ informal

lines and the least squares line highlighted some interesting differences in how students

dealt with outliers, which led to a greater focus on students’ comments about outliers in

future readings.

Table 6. Summary and examples of existing conceptions of statistical association.

Conception  Description Example Associated Code
Localist Characterizing a Informally determining  Collinear/Localist
statistical association the line of best fit on a
through focusing on only  scatterplot by
a few cases or only one connecting just a few
variable. nearly collinear points.
Univariate A biased view of Informally fitting an Recognizes
statistical associations upward sloping line of  (+/-/0)
toward those that are best fit on data that association
positively associated, have little to no
leading to a association.
mischaracterization of
unassociated or
negatively associated
variables.
Prior Determining a statistical ~ Informally fitting an Prior beliefs
Beliefs association by the upward sloping line on

contextual details rather
than the data presented.

data based on one’s
belief about the two
variables, despite the
actual data showing no
correlation.
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Results

This section details the results from the surveys and interviews conducted in this
study. After reviewing the overall results from the surveys and interviews, transcripts

from the interviews are presented and have been organized into subsections by common

themes.

Surveys

Overall, students generally had success in picking the choice that represented the
least squares line in the survey tasks. Table 7 shows the summary tallies of students
whose chosen line of best fit was the least squares line for the data. This relative success
was prevalent in both the pre-survey and the post-survey; on two of the tasks,
approximately 80% of the 18 students selected the correct line on both surveys. The only
task that proved to be troublesome for students was the first task on adults’ age and
heights, whose least squares line was essentially flat. However, the task on elementary
students’ shoe size and height was also a flat-lined relationship, yet far more students

identified the least squares line as the line of best fit when they did not on the task for

adults’ age and heights. There were some gains made from pre to post survey on the age

Table 7. Tallies and percentages of students who identified the least squares line.

Task Pre-Survey  Post-Survey Difference
Adult age and heights 10/18 13/18 3/18
(55.6%) (72.2%) (16.7%)
Child shoe size and height 15/18 14/18 -1/18
(83.3%) (77.8%) (-5.6%)
Athlete height and long jump distance  15/18 15/18 0/18

(83.3%) (83.3%) (0%)
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Table 8. Tallies for the number of students that used a particular reasoning on a given
survey task.

Adults’ age and Elementary students’ Athletes height and

heights shoe size and height  long jump distance
Code Pre Post Diff Pre Post Diff Pre Post Diff
Prior Beliefs 1 1 0 1 1 0 0 0 0
No 8 8 0 8 11 3 0 0 0
Correlation
Positive 1 0 -1 2 2 0 9 12 3
Correlation
Negative 5 3 -2 0 1 1 0 0 0
Correlation
Equal Above 4 7 3 4 8 4 10 9 -1
and Below
Closest to 5 2 -3 3 4 1 2 5 3
Points
Collinear 0 2 2 0 1 1 2 1 -1
Uncoded 2 2 0 3 0 -3 0 -3 -1

and height task, but other tasks saw little change, with one task having one fewer student

picking the least squares line.

Despite this relative success in choosing the least squares line, the students’
reasoning on the survey was typically not backed by detailed reasoning. A summary of
the reasoning codes applied to each of the tasks is shown in Table 8. Typically, students
used reasoning summarized by the equal above and below or closest to points codes on
agiven task 50% of the time or less, and for some tasks, this was far less often. This type
of reasoning may be infrequent due to the nature of open-ended survey questions, as
students may have not shared their thought process fully in the prompt if they felt like a
simple explanation like “The data seem to follow this line best”” was sufficient given the
other choices available. Of course, it’s also possible that students actually had trouble

articulating their reasoning in the prompt, or something else entirely. Reviewing the
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interview data provides more depth of students’ understanding of informally placing a

line of best fit.

Students were generally more apt to use reasoning reflecting the equal above and
below or closest to line codes on the task with an upward sloping least squares line as
opposed to the two tasks with flat least squares lines. Students rarely leveraged prior
beliefs in their survey responses, but when they did, the reasoning only appeared on tasks
with flat least squares lines as well. This was expected with the shoe size and height
context based on the potential expectation for these variables to be associated, but
students did not commonly show this reasoning. When looking across the surveys from
pre to post, the reasoning that students gave did not change in any meaningful way. The
elementary students’ shoe size and height task was the only task where students used the
two ideal reasoning codes more often, especially the equal above and below code
increasing by 4 students from pre to post. The other two tasks were generally mixed, with
one type of reasoning decreasing and the other increasing. It’s not readily clear why these
shifts occurred. Shifting from only talking about the correlation or direction of the line to
using reasoning like equal and above and below may reflect efficacy of the classroom
intervention, but opposing shifts are curious. This may reflect the timing of the post
survey being near finals week in the course, and students may have been less motivated
to provide more detail that might have reflected a better picture of their reasoning. But it

is also possible that these shifts are attributable to the classroom intervention too.

To investigate this at the student level, tallies for the number of students that used

a particular reasoning at least once on either the pre-survey or post-survey are given in
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Table 9. Tallies of students who used a particular reasoning on any of the survey items
on either the pre-survey or post-survey.

Code Pre-Survey Post-Survey Difference Both Pre and Post
Prior Beliefs 2 2 0 0

Equal Above 11 11 0 8

and Below

Closest to 5 5 0 3

Points

Collinear 2 3 1 1

Table 9. This table also shows how many students gave this reasoning code in both their
pre-survey and post-survey, in order to track if the same students were consistently using
that type of reasoning. These counts reveal that overall, the number of students giving a
certain type of reasoning did not change dramatically from the pre-survey to the post-
survey. However, for the more troubling conceptions like leveraging prior beliefs or
connecting collinear points to determine the line of best fit, all but one of the students that
used this type of reasoning did it on just either the pre or post survey. Thus, some
students ceased using this kind of reasoning after learning the relevant content in their
course, but others began using this kind of reasoning in their post-survey only. It is not

readily apparent why these opposing shifts in reasoning occurred with these students.

Interviews

As previously mentioned, students were chosen for interviews to obtain a group
with a wide variety of conceptions on the line-fitting survey tasks. The five students
selected and the codes for their survey responses are provided in Table 10. Among these
students, all codes arose on at least one task for either the pre or post survey, which
indicates a decent variability in responses. Codes like prior beliefs and collinear that

represent troublesome conceptions for line fitting came only from Garnett, who also



48

Table 10. Codes assigned to survey responses for students selected for interviews.

Adults’ age and heights

Elementary students’ shoe
size and height

Athletes height and long

jump distance

Student  Pre Post Pre Post Pre Post
Dabney  Neg. corr. No corr., No corr. No corr., Pos. corr., Pos. corr.,
Equal above Equalabove Equalabove equalabove
and below and below and below and below
Dene Neg. corr. Neg. corr., No corr. No corr. Pos. corr., Pos. corr.,
Equal above Equalabove equalabove
and below and below and below
Garnett  Uncoded Uncoded Uncoded Prior beliefs,  Uncoded Pos. corr,
collinear closest to
points
Morgan Neg. corr.,, Closest to No corr. No corr., Pos. corr., Closest to
Prior beliefs,  points Closest to Equalabove points
Equalabove points and below
and below
Riley No corr., Equalabove No corr. Equalabove  Equalabove Closest to
closest to and below and below, and below points
points closest to
points

provided many responses that did not reflect reasoning captured by the coding structure,
due to a lack of clarity in the response. Morgan and Riley’s surveys seem to show a shift
toward more expert reasoning like closest to points or equal above and below, especially
with Morgan, whose reasoning was coded as closest to points and cited the least squares
criterion in their reasoning throughout the post-survey. Dabney and Dene shifted to using
the equal above and below reasoning more frequently on their post surveys, but did not
use reasoning reflecting the closest to points code. Overall, these five students seem to
meet the aims of the selection process to provide a wide variety of conceptions for

informal line fitting.

On the interview, students were able to freely place their informal lines of best fit using
TinkerPlots. The lines they placed for each of the four tasks are shown in Figure 2. The

least squares line is also placed on each plot in red. Overall, students seemed to place
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Figure 2. Students’ informal lines of best fit and the least squares line for each task.

lines informally that generally matched the least squares lines, with the exception of one
upward sloping line on the UberEats tip and distance task, and two flat lines on the truck
and bed accidental deaths task. However, for students that did have a downward sloping

line on the accidental deaths task, they did seem to have a much steeper slope than the

least squares line.

The reasoning students gave for their informal lines varied from student to
student, and even task to task for many. Codes applied to students on each interview task
are shown in Table 11. In this table, each type of reasoning that appears in students’
explanations are marked with an “X”. Additionally, the primary reasoning that best

characterizes how they determined their lines of best fit is highlighted in black in the
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Table 11. Students assigned codes for placing their informal lines of best fit on each task.

Student  Task Equal Closest Offsetting Prior Collinear/
Ab/Bel to Points  Distances Beliefs Localist

Grades
Ocean
UberEATS
Accidents
Grades
Ocean
UberEATS
Accidents
Grades

Ocean
UberEATS
Accidents
Grades X
Ocean
UberEATS
Accidents
Grades
Ocean
UberEATS
Accidents

Dabney

Dene

Garnett

Morgan

Riley

X
X
X — -
X | x I

table. For each task, the student’s code that best describes their primary or overall

approach is highlighted in black. Two of the students were very consistent in their
reasoning across all their tasks, where the other three students had varied justifications
depending on the context presented and often by how their thinking evolved throughout

the interview.

The following subsections will examine the transcripts of students working
through these tasks. The first section will focus on students that used the more ideal
criteria like closest to points or offsetting distances. The next subsection will look at how

students dealt with the tasks that included outliers. The final subsection will examine
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students whose reasoning aligns with previously-known, troubling conceptions of

statistical association.

Students with Closest to Points or Offsetting Distances Reasoning. Morgan’s
reasoning was quite fixed throughout the interview. They heavily used closest to points
reasoning, and were the only student to reference the least squares criterion in the
interview. Their approach to each task was to emulate how least squares might place the
line, and defined the least squares criterion appropriately: “There's a calculation where
the smaller it is, the better it fits. It’s the space -- If you see my pointer, from [the line] to
[a data point], and then they square it and then they add them all together.” Other students
did leverage reasoning that tried to get the line as close to all the points as possible, but

did not explicitly describe least squares in this way.

One of the codes that only emerged in the interviews was the use of offsetting
distances. This is a good line of reasoning for students to leverage in their intuitive
placement of the line of best fit. The condition of having the sum of residuals for your
line equal to zero is at least necessary for least squares, but it is not a sufficient condition.
In Dabney’s interview, they first employed a strategy of having an equal number of
points above and below the line for the grades task, a strategy that works well for
symmetric data like the grades task has. However, this approach was forced to change for

the ocean task, as there were many outliers, highlighted by the black dots in Figure 3.

Dabney: What makes this challenging is like, right, you know, if | were to
move this line here, like all this data fits like beautifully on this
line. And then we’ve got these [five outliers in black] right here. In
my mind, that’s going to skew our line a little bit, it’s going to pull
our line up.
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Figure 3. Dabney’s proposed informal lines of best fit, with five outliers in data set
highlighted in black.

This is making me actually question that idea of trying to make
them symmetrical, like, through their data points, because I don’t
think that there’s really a way to do that with this data set.

That makes me lean more towards using almost like the average of
those data points, the average, dragging it as close to that middle.

Dabney comes to the realization that for the ocean task that using a “symmetrical”
approach is not ideal, as the outliers in the upper left of the plot of the ocean task make it
challenging to characterize the relationship appropriately. Thus, Dabney pivots and takes

a more “average” focused approach to fit their line:

Dabney: I’m almost using like the pull of these [outliers marked in black in
Figure 3] to modify the line.
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There’s very clearly a lot of data along this [thin line in Fig. 3] that
I’ve drawn here. Yep. And then I’ve got these outliers here [in
red]. So in order to also accommodate those, the line has to come
up [to the thick line in Figure 3].

And really, what 1’m doing is I’m trying to visually discern the
weights of the value points of those data points. And so | guess by
weight, in my mind, the further away from the group is more
weight a data point would have... You want the average distance
to be balanced between the two sides, the average distance to the
line.

Dabney now describes each point as having an amount of “pull” to the line itself. This

seems to be how Dabney reckoned with managing the line as representing an average of

some kind. Building on this idea of the data points pulling the line, they mention having

the “average distance balanced between the two sides,” which was the emergence of this

offsetting distance reasoning. On the tasks that followed, Dabney almost exclusively used

this reasoning to justify the placement of their line of best fit, as can be seen on the

UberEATS task. Figure 4 shows the UberEats task with several of the points that Dabney

referenced during the interview excerpt.

Dabney:

I’m not trying to cut the data points in half. I’'m kind of using that
same logic for like, these ones [in the rectangle in Fig. 4] definitely
have more pull, because they’re much higher up.

Maybe another way to describe it is by using [a weight] analogy. |
am trying to balance it so you know like this [“100” dot in Fig. 4]
pulls 100 pounds and [the “40” and “30” dots] pull, | don’t know,
40 and 30 [pounds], and so on and so forth. That’s the balance I’'m
trying to find, so that it’s being pulled the same amount on both
sides.
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Figure 4. Plot of the UberEats task with certain dots that Dabney describes highlighted.

Maybe I'm just reiterating the same concept, but this [white] dot
here is gonna be the same weight wise as these three [black] dots
here.

Unlike the previous interview segment, Dabney’s reasoning here focused solely on the
distances between points and if the distances on each side were balanced, rather than the
idea of an average and getting as close as possible to all the points. Dabney uses informal
weight measures to call this concept out, and then shows an example where dots on
opposite sides of the line have equivalent weights, matching up one dot above the line
with three dots below the line. Dene showed a similar trajectory of reasoning throughout

their interview as well, shifting from equal above and below to closest to points and

finally to offsetting distances as they moved through the tasks.

Students’ Attentiveness to Outliers. Another interesting feature of the ocean and

accidents tasks were their use of outliers. On the ocean task, students were very quick to

notice the presence of the cluster of 5 points that were in the upper left corner of the plot.



Table 12. Students’ responses to outliers in the ocean task and their plotted lines.
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In addition to Dabney recognizing this, three other students explicitly mentioned them,

often as soon as they began working on the task. These three students lines and reasoning
for their placement can be seen in Table 12. Morgan and Riley made significant
adjustments to their line upon noticing the impact of the black outlier points. Dene did
not have a similar adjustment in their interview, but did initially place their line with a

very steep slope, so much that the line itself seems to touch one of the outlier points.

In contrast to this task, students were much less attentive to the outlier in the
accidents task. Only two of the students made mention of this outlier, and in both cases
seemed to make minimal adjustments to their line when reasoning through it. These two

students’ reasoning and plots of their lines can be seen in Table 13. While both students

Table 13. Students’ responses to outliers in the accidents task and their plotted lines.

Student

Excerpt

Plot

Dabney So I'm going to pull it down a little bit. This

guy is a pretty big outlier... But I'm in my
mind wondering how much would this
[black] outlier pull this down? ... I'm
adjusting for this big outlier... (adjusts
from thin line to thick line) and I think I'm
getting pretty close to it.
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I was just trying to take into account that
this [black dot] would really drag the data
down, but I don't think it would drag it
down so dramatically, because even these
two [white dots] are pretty close, like,
pretty in sync with all of the other data...
(adjusts from thin line to thick line) 1’1l
probably put it there, because | think this
would have more of an effect on it than
what | originally had it.
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made some adjustments to their downward sloping lines after recognizing the outlier’s

impact on the line, the actual adjustments they made were minimal. Additionally, it can
be seen from Figure 2 that all three students who chose downward sloping lines were still
too steep relative to the least squares line, thus not fully accounting for the effect of that
outlier value. The third student who chose a downward sloping line, Morgan, did not
specifically call this out as an outlier at all. The other two students placed completely flat

lines instead, thus not seeing this point as an outlier from their perspective.

Students with Reasoning Reflecting Previously-Known Conceptions. There
were a few cases of students whose reasoning reflected some of the conceptions of
statistical association identified in previous literature. An example of this can be seen in
the Ocean task with the cluster of outliers. The only student that did not explicitly call out
these outliers was Garnett. As shown in Table 11, Garnett’s reasoning was primarily
localist in nature, and this is in part why this was not called out specifically. Initially,
Garnett had placed a line that went directly through the cluster of points in the corner as

shown by the thin line in Figure 5. They gave this justification:

Garnett: | feel like I focus more on the clusters towards the end of the data.
Because | feel like that probably leads to a better explanation to
where it kind of starts going down.

... (adjusts line from the thin line in Figure 5 to the thick line)

It kinda looks weird like this to me. It doesn’t seem like it’ll take
all the information... not all the dots are going to be that close to it.

Garnett’s initial intuition was to draw the line from corner to corner on the graph, but
made some changes after some back and forth with the interviewer. Still, Garnett is

uncomfortable with the placement of this line. The interview evolved into a discussion
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Figure 5. Garnett’s initial and final line placed for the ocean task.

about Garnett’s desire for having a “starting point” to place the line, and how this data

did not allow for an easy selection of a starting point.

Garnett:

Interviewer:

Garnett:

Interviewer:

Garnett:

I think about where the placement starts. | mean, | can just assume
that it’s kind of like, decreasing towards the right. But if someone
was also looking at this, thought it was increasing upwards. I don’t
know how that would work. But I think that, you know, this line
kind of leads you to not put a starting point to it.

Can you clarify what you mean by like, putting a starting point to
it?

If I think that the starting point is [in the cluster of black points],
and it’s going down, I’m probably going to put [the line] up [in the
middle of that cluster] towards going down. But if I’m trying to not
label a starting point, but like trying to see if there’s a relation with
the dots not touching the line, then I think most of the time, we’ll
put it where it’s kind of even [between the cluster of black points
and the rest of the data].

Okay, so having the line go through a bunch of points is definitely
an important criteria for you. But it sounds like also here, you’re
also weighing trying to go through the middle of the points.

Yeah. Well, | feel like when | look at information or data points, |
always feel like ... it’s easier to understand if the line is going
through data. Just because like visually, [the five black points]
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stand out to me. So if I had, let’s say, in this case, if [ had this line
[going through the cluster], and it’s kind of touching [a dot in the
outlier cluster] now. But if it’s kind of touching [a dot in the lower
right corner], then like, it makes me interested in comparing [the
two previously mentioned points] and trying to find out the relation
between both data points, and what that has to do with the
problem.

Garnett is having a struggle with placing their line while balancing between this idea of a
“starting point” and going through a majority of the points on the graph. While Garnett
placed the line for this task in an appropriate way, which balanced the outliers with the
majority of the data, their initial reasoning and preferences for placing lines was heavily
based on finding two critical points to connect with the line of best fit. When the resulting
line did not go through a large number of points, Garnett decided to use a line that split
the difference between these two overall localist ideas. Their sensemaking about placing
lines of best fit seems to be centered around trying to compare dots at opposite ends of
the line that the line goes through, and placing the line in the middle does not seem to
give Garnett a way to interpret their line in a meaningful way.

Garnett ran into a similar situation with the accidents task in being torn between
two different starting points. They were debating between drawing a mostly downward
sloping line, ignoring the outlier marked in black from the plots of Table 10, or placing a
completely flat line that used that outlier point as a starting point. Garnett’s initial
reasoning led them to place a downward sloping line, as they seemed to recognize the
downward trend in this plot. However, Garnett then changes to a flat line, as the line did a
good job of “separating the data" for them. This task’s context would suggest that the two
variables are completely unrelated, but Garnett did not make it explicit that this was their

prior belief, only mentioning that the scenario was “weird” without discussing the link
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between these variables. This suggests that their reasoning was more grounded in placing

the line based on a starting point and how they believe it best fits the data.

Riley was the other student to place a completely flat line on the accidents task.

However, unlike Garnett’s localist reasoning, Riley’s line of reasoning was firmly rooted

in prior beliefs.

Riley:

Interviewer:

Riley:

Interviewer:

Riley:

I think that there won’t be any correlation between these two
things? They have nothing to do with one another. ... I mean, just
looking at the scenario, I don’t see why there would be any
correlation whatsoever. ... I would just placed the line as a
horizontal line. If I didn’t know what the data was, | would
probably bifurcated this way, based upon what I’ve talked about
before.

If 1 had just shown you this plot, with no contextual information at
all, would you have placed this line any differently?

Either flat like this, because that sort of bifurcates the data or,
again, using my ignoring the extremes at first and basically trying
to divide the data in two, I would do something [downward

sloping].

Do you feel like what you know about the situation, should that
impact how you placed the line?

Yeah, I think so. Absolutely. I mean, otherwise, I’'m just like
fumbling in the dark. I mean, if you if you look at like sugar and
diabetes, we know in the world that has a relationship, right? ...
But if you look at like, beds and trucks, they that one has nothing
to do with the other one apart from they both cause people to have
trouble. ... So it feels like you have to factor in a hypothesis when
you look at this there. And the hypothesis is there is some
relationship between these two things. And if you just can’t believe
your hypothesis in the first place, because it just seems like a
random thing to say then it doesn’t feel like you should be able to
play that line with any sort of surety whatsoever.

Riley was adamant on not trying to use the data alone to guide their judgment on placing

what they believed the line of best fit to be, sticking to a flat line. It was not reasonable to



61
Riley to place any relationship between two variables whose connection seemed

nonsensical. When asked how Riley would place the line if there was no context
presented in this scenario, Riley did place a downward sloping line, but did not think it

appropriate to hypothesize such a relationship in this context and stuck with the flat line.

The last conception of association identified by previous literature was the
univariate conception of association, where students often struggle to properly identify
associations that are non-positive, especially with unassociated data. The UberEATS task
was the lone task that provided students an opportunity to fit a line to unassociated data.
Four of the five students were successful in placing a flat line, with Garnett placing the
lone upward sloping line. Their explicit reasoning was in line with the reasoning they
gave on both the Ocean and Accidents tasks with connecting a line to a starting point.
They also briefly referencing a belief about the context that a longer distance should
result in a higher tip. It is impossible to decisively know if Garnett had an internal bias to
look for an association in this unassociated data based on their reasoning, but it is
reasonable to believe this could be the case given their beliefs about the situation and

what is known based on previous literature.

Discussion
Students’ conceptions of the line of best fit revealed by this analysis yield some
promising features of what they gained from this CATALST course, but also highlight
the many challenges in learning statistical association topics. This discussion will

highlight three main themes: the existing conceptions from previous literature that still
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persist, the use of offsetting distances as a line of reasoning, and students’ approaches to

tasks that feature outliers.

Existing Conceptions

While students were mostly successful in choosing an appropriate informal line of
best fit in both the surveys and interviews, the reasoning that students gave for their
choices did not always reflect reasoning that is consistent with how the least squares line
is placed. In the surveys, students did not commonly use ideal criteria like equal above
and below or closest to points. This could potentially be a result of students giving vague
responses without the opportunity to follow-up, as the most common reasoning students
gave was just observing the overall direction of the line as upward, downward, or flat.
However, there was little change in the prevalence of equal above and below or closest to
points reasoning from the pre-survey to the post-survey, which may have been expected
after learning this content in the CATALST course. 1t may seem that students have strong
beliefs based on their existing conceptions when reasoning through these tasks — do
students know the criteria for lines of best fit and just experience difficulty applying it
informally? While students were able to informally fit lines in TinkerPlots and measure
how well it fits the data as they adjusted it, it may not be necessarily obvious or intuitive
to connect these activities to the least squares criterion. Squaring distances between the
dots and the line is not simple to do visually, and so students may rely on some sort of
heuristic for doing this. This suggests that future work in this area should focus on how to
improve students’ informal line-fitting strategies, given that learning least squares alone

does not seem to provide students with a rich understanding of how to visually fit a line
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and justify its placement. It may be useful to emphasize other criteria for fitting lines to

support students’ statistical literacy; I suggest the offsetting distances criteria, which will

be discussed in the next section.

Students in the surveys and interviews still exhibited known conceptions of
association identified in previous research literature, primarily related to the univariate
conception, localist conception, and prior beliefs. In the surveys, two of the tasks were
overall relatively flat lines of best fit, yet many students’ justifications for these tasks
were based on recognizing some positive or negative correlation in the data. Thus, it
seems that even after working with activities on informally fitting lines to scatterplots,
students will still seek associations in data even if they are not present. It is also worth
noting that while the use of prior beliefs was generally rare, it was more common in
student reasoning in tasks with unassociated data. On the surveys, one student used prior
beliefs on each of the two uncorrelated tasks in both the pre-survey and post-survey, but
reasoning with prior beliefs was completely absent on the track athletes task which
exhibited positive correlation. On the interviews, Garnett’s informal line given on the
UberEATS task was upward sloping, where they referenced their prior beliefs about the
distance and tip being related to each other in their justification. It seems that when
students are faced with uncorrelated data, they may leverage other sources of reasoning
like prior beliefs to validate what they are seeing in the data, even if that may validate an
inaccurate view of the correlation, which reflects the literature on the univariate
conception and prior beliefs (Casey, 2015; Casey & Wasserman, 2015; Moritz, 2004).
While beliefs about data are valuable in analyzing data, as seen with Riley objecting to

the notion of the spurious correlation in the accidents task being anything meaningful,
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these prior beliefs can also lead to biases in data analysis. Prior beliefs that are based in

social prejudice can impact data analysis, leading to companies, policy makers, or others
that hold power having a negative impact on marginalized groups. Statistical literacy
should incorporate prior beliefs in such a way so that these biases can be recognized and

challenged appropriately.

Offsetting Distances

Students use of offsetting distances reasoning is a new finding in this study. In
previous studies, a similar form of reasoning was applied to pairs of offsetting points,
exclusively when pairs of points had similar residuals but in opposite directions. In Casey
& Wasserman (2015), only two teachers out of 19 used this kind of reasoning. Offsetting
distances reasoning was used by 3 out of the 5 interviewed students in the present study,
and was used by students in a way that expanded beyond just pairs of data points. The
students that used offsetting distances typically would group one data point with a large
residual with multiple points with small residuals in the opposite direction. This was
exhibited with Dabney’s reference to one point “pulling 100 pounds” and another pair of
points pulling “30 or 40 pounds” each in the opposite direction. Thus, it seems that this
conception extends to the idea that in least squares, the sum of residuals should be zero. It
is possible that students gained this conception through the interactive tools they used in
TinkerPlots, which gave students the ability to adjust and tweak their lines of best fit,
visually seeing the residuals on the screen. While this is not a sufficient condition for
least squares, it is at least a necessary condition, and thus is a reasonable and very visual

strategy that students can employ that is consistent with least squares.
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It is also worth noting how students offsetting distances reasoning evolved

throughout the interview, with this criterion emerging out of necessity in the presence of
data with outliers. Both Dabney and Dene’s primary reasoning for the first task on grades
data was based in placing an equal number of points above and below the line. As this
task featured data that was relatively symmetric and without outliers, doing this strategy
would produce a line that is in relatively close agreement with least squares; however, as
the second task on ocean data introduced outliers, this necessitated a change in reasoning
from both students. Both students in this task leveraged reasoning consistent with the line
representing an average or being as close to all points as possible. But Dabney also used
offsetting distances reasoning in this task, and leveraged this throughout the rest of the
interview as their primary type of reasoning. Dene’s trajectory to using offsetting
distances reasoning was a bit slower in comparison to Dabney, but emerged by the final
task on accidents. This developmental process that happened in two of the interviews
may suggest that students leverage this kind of reasoning by the necessity principle. Both
the ocean and accidents tasks feature outliers in the data, which are tricky to balance and
account for when determining the line of best fit. The timing of offsetting distances
emerging in each interview may suggest that students needed to leverage some other
criteria in order to justify their informal line of best fit for data with these outliers present.
Considering the unintuitive nature of least squares, and how students seemed to
pick up offsetting distances reasoning intuitively through the interviews, this method may
be intriguing to use in the classroom when students fit lines of best fit informally. While
there are many examples of inappropriate lines that have their sum of residuals equal to

zero, use of this criterion along with recognizing the general direction of the trend would
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likely produce a relatively strong approximation of the least squares line. This should not

replace the use of more formal criterion like least squares, but it may be a more
approachable method for students when learning about placing the line informally. The
use of technology like TinkerPlots can then be used to interactively adjust lines while
criteria like least absolute deviation or least squares updates as the line is adjusted,

providing a transition to more formal methods of fitting lines to data.

Corner and Middle Qutliers

Another feature that emerged in these interviews is the difference in how students
handled outliers depending on where they appeared in the plot. The ocean and accidents
tasks both presented students data that were negatively correlated and had outliers on the
left side of the plot. For the ocean task, there were 5 outliers above the line. and in the
accidents task there was one outlier below the line. This gives two different visual
appearances to these values: in the ocean task, the five outliers appear in the far corner of
the graph, where the single outlier in the accidents task is in the middle of the graph
relative to the y-axis. This difference seemed to impact how students placed their lines of
best fit. All five students placed accurate lines on the ocean task relative to the least
squares line. Many students here leveraged a strategy of trying to place the line
disregarding outliers first, and then adjust the line toward the outliers in a way that
balances the differences between the outliers and the rest of the data. However, for the
three students that did place a downward sloping line on the accidents task, all placed a
line that was much steeper than the least squares line, seemingly not accounting for this

outlier value appropriately. The previous transcripts revealed that two of these three
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students explicitly mentioned this value as an outlier. Thus, it does seem that students are

recognizing outliers in the middle of the graph, despite not accounting for its effect on the
line of best fit enough. This reveals a point of emphasis in teaching lines of best fit and
the impact outliers have on them, as it seems that students may not fully recognize the
impacts of the middle outlier. It is important to note though that since the ocean task had
5 outliers where the accidents task only had one, the number of outliers may be playing a
factor too in how students accounted for this in their informal lines. Future research that
specifically focuses on students’ perceptions of corner and middle outliers that removes

confounding factors like this may be further informative on this topic and how it should

inform teaching about outliers in this setting.

Conclusions and Future Work

On the whole, lines of best fit and understanding how to informally place one is a
challenging concept for students. Even with students learning in a simulation-based
curricula with interactive activities that allow for students to experience informal line
fitting through the TinkerPlots software, students exhibited reasoning that reflected many
already known conceptions of association. Some may believe that informally fitting lines
of best fit is not a necessary skill for students that have already learned to fit lines with
least squares using technology. However, | would argue that in order to be statistically
literate, one should be able to read and interpret scatterplots. Being able to recognize the
correlation in a scatterplot is one step to statistical literacy, but being able to visually fit a
line or other statistical model to data is crucial as well to being able to process noisy data
into a signal and summarize the relationship. It also leads into a deeper understanding of

the line of best fit as a conditional mean function of the y-variable, and how residuals act
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as the variance from this model. To that effect, there is much work to do in order for

students to reason with informal lines of best fit effectively. Future work should focus on
more interventions that can successfully teach students these strategies. The use of the
offsetting distances criteria seems like a natural start for students given its connection to
least squares and how intuitively students used it in this study. TinkerPlots already
supports an interactively updating sum of residuals, which is displayed similarly to the

sum of absolute residuals that students use as the criteria to place their line informally.

The results on outliers here also provides an interesting avenue for future
research. Real world data is often messy with noise and outliers, and how students
recognize and account for outliers in their interpretations of data is very relevant to
statistical literacy. This study posits that students may not appropriately account for
outliers on scatterplots that appear in the middle of the plot when assessing the statistical
relationship between the two variables, even if they recognize the data points as outliers.
Studies that remove more of the confounding variables that appeared in the tasks from the
present study like the number of outliers could help to confirm this finding and further

explore students’ understanding of outliers in scatterplots.
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Appendix A: Survey Questions

The following section details the tasks presented to the students. Comments in the
tables are provided to give context to the design of the tasks and were not presented to
students.

Task 1: Adult age and height

The image below shows a plot of 25 adults and their ages and heights (in centimeters).
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Figure 6. Age and height scatterplot as shown in survey.

The choices below all show the same plot of 25 adults' ages and heights with a line drawn
over the data. Which of the six lines do you think is the line that best fits the given data?

Table 14. Answer choices for age and height scatterplot in survey.

Line Choice Comments
190.0 Reflects the least squares line for this
1800] @ (@ data. One of two relatively flat line
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190.0 - Choice goes through several collinear
1800 ] points, targets a localist conception of
= association. One of two negatively sloped
= 170.0 line choices.
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Task 2: Child shoe size and height

The image below shows a plot of 8 elementary students shoe size and their height in
inches. Each circular point represents an observation for one elementary student.
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Figure 7. Shoe size and height scatterplot as shown in survey.

The choices below all show the same plot of elementary students’ shoe size and height
with a line drawn over the data. Which of the six lines do you think is the line that best

fits the given data?

Table 15. Answer choices for shoe size and height scatterplot in survey.
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Task 3: Athlete height and long jump distance

A high school track and field coach collected data on their 12 students’ height and their
long jump, both measured in inches. The data were organized in the plot shown below:
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Figure 8. Height and distance scatterplot as shown in survey.

The choices below all show the same plot of these track students' height and long jump
distance. Which of the six lines do you think is the line that best fits the given data?

Table 16. Answer choices for height and distance scatterplot in survey.
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Appendix B: Interview Task Protocol

Students will be presented with scatterplots in TinkerPlots and a line tool. All students will be
reminded/introduced to how to adjust the line on the plot, which is especially important for
traditional students who have not used TinkerPlots before. The interviewer will open these TP
files on their computer and have the student request for computer control via Zoom so they can
control the line.

Four scatterplots and contexts will be presented to students:

Table 17. Details of the four line-fitting interview tasks.

Context Scatterplot Comments
Grades and 100.00001- Intended to be a more
attendance 90,0000 | ® straightforward line
g ® L2 T placement task to gain a
S 80.0000 O °® i
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g o000y O g ¢ understanding of how to
8000007 place a line without targeting
sooo00- a specific conception.
65 70 75 80 85 90 95 100
Attendance
Ocean 18.000 . Targets a localist conception
temperature woo0] @ ® of association by having a
and salinity g 14.000 ® ® cluster of dots separate from
Z.‘ 12000{® @ & the rest. Students’ placement
2 10.000 %0 @@ ° of lines may aim to reflect
8000 © 0o how much they account for
eo0: ‘Cp‘ these dots in their line
niasBBEAAs Y333 placement
Salinity (g/kg)
UberEATS 10l- Targets a univariate
distance © conception to determine if
and tip 8 ® students recognize data with
© e ® no slope. The context may
g 61 0 ® ® also challenge students’ prior
8 ® beliefs if they believe a
4 08 8 @ .
5 1) ® longer dellver_y shom_JId _
5 correspond with a higher tip.
O.IO 0.‘2 0.‘4 O‘IG O.IE! 1.IO 1.‘2 1f4 1.|6 1.IE! 2.‘0 2‘I2 2f4
Distance
Accidental 250 Targets students prior beliefs
deaths @ by presenting two variables
L % ® e that seem completely
3 1504~ ® unrelated yet display a purely
" 100 ® o @ spurious correlation.
@
50
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For each of the four scenarios, ask students the following questions:

1. Can you explain to me why you placed your line in that location, and why you
think that best fits the data?
2. Did you use any criteria for placing your line?
o Expected criteria that students may provide:
= Through as many points as possible
Equal number of points on both sides
As close to all points as possible
Reflects expected relationship based on context
Through the first and last points (leftmost/rightmost)
3. Do you think this reflects how the line of best fit was determined in your class, or
did your class use different criteria when determining the line of best fit?

Unstructured follow-up questions based on interesting features of students’ responses
may be asked to gain insight into their line-fitting strategies.

Additionally, for the accidents task, ask students if the plot indicates that more falling out
of bed deaths causes there to be fewer deaths by truck crashing into objects.
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Chapter 3: Comparing Student Outcomes on Testing for a Statistical Association

for Traditional and Simulation-Based Curricula
Abstract: Simulation-based inference has been advocated by educators and researchers
for its power in helping students understand statistical inference at a deeper conceptual
level. This study adds to the wealth of comparison literature by focusing on student
approaches to conducting hypothesis tests for the slope of a least squares line. This study
also focuses on the Change Agents for the Teaching and Learning of STatistics
(CATALST) curriculum, which is uniqgue among simulation-based curriculum for its focus
on probability modeling in TinkerPlots. Students completed pre/post-survey instruments
and task-based interviews to track the effectiveness of both a simulation-based
curriculum and a traditional curriculum to compare their effectiveness. Results revealed
that students from the simulation-based course not only showed greater progress in their
learning from the classroom intervention, but were more prepared to apply inferential
concepts to a novel data scenario before formally learning this content. These results
have implications for teaching in emphasizing the importance of generalization in
hypothesis testing and distinguishing testing from other descriptive methods in linear

regression like correlation.

Introduction
For at least the past decade, the proliferation of high-powered computers has
made statistics and data science more accessible. However, the introductory statistics
curriculum has not caught up with the technology available, and the traditional
curriculum focused on rote algebraic statistical tests still prevails as the consensus

curriculum. Cobb (2007) argued that the introductory statistics course should emphasize



86
key inferential concepts and leveraging technology through simulation-based techniques

like bootstrapping and randomization tests. Since Cobb’s appeal for this shift toward
simulation-based curricula, a plethora of research indicates generally positive student

outcomes in these courses in comparison to the traditional curriculum (Chance et al.,

2016, 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014).

Statistics educators have also taken a particular focus on students’ modeling
techniques. Modeling itself is an essential practice of statistics and should be an
important aspect of the introductory statistics class. One curriculum that gives students
authentic modeling experiences is the Change Agents for Teaching and Learning
STatistics (CATALST) curriculum (Garfield et al., 2012). This curriculum aims to have
students explore statistics concepts by both building probability models and carrying out
simulations using those models. Many simulation-based curricula focus on students
working with applets that serve as prepared models to students, giving students the ability
to adjust just the parameters of these models to carry out simulations. Students may gain
some insight by recognizing the consequences of adjusting these model parameters, but
do not get the authentic, expressive experience of building statistical models from scratch
(Doerr & Pratt, 2008). This particular focus of the CATALST curriculum on modeling
gives students opportunities to model real world phenomenon as statisticians do

themselves, which best aligns the introductory statistics course with actual practice.

In a traditional introductory statistics course, students are typically only exposed
to models through a simple linear regression model, and the typical presentation of this

topic is very static in nature. The regression line or least squares line, which acts as the
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model for the relationship between the two variables, is typically found through

procedures or computation. There are also many other statistical concepts that accompany
linear regression, including descriptive measures like the correlation or r-squared value,
as well as inferential techniques such as the t-test statistics and p-values that are used to
test for a significant linear relationship. Students will likely rely on some form of
technology to compute these statistics associated with linear regression, both the
descriptive and inferential. The processes for computing such output would be very

procedural in nature, leveraging some software package like Excel, R, or SPSS.

In the CATALST classroom, there is more of a distinction in the methods used to
compute descriptive measures and to carry out inferential tests. Where students in a
traditional class could carry out a test for the slope of a least squares line with just a few
clicks of a dialog in their respective software package, students in the CATALST
classroom are engaged in a modeling and simulation process that has them engage with
many different statistical aspects of the process. In this paper, | argue that the CATALST
curriculum is more effective than a traditional curriculum in giving students a greater
sense of the purpose and interpretation of statistical inference than students in a

traditional statistics course.

When CATALST students carry out an inferential test for the slope of the least
squares line, students must model the scenario appropriately under the null hypothesis in
their TinkerPlots sampler. Then, they must use this sampler to produce one sample of
data and determine the appropriate statistic of interest that best addresses their research

question. Finally, they simulate data from their model many times to produce a sampling
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distribution and find a p-value to draw their conclusions. Carrying out a test in this way

requires students to carefully think about relevant aspects of the data, context, and
statistical question they are trying to answer. This enables students to actively think like
modelers rather than just follow procedures for finding results of a hypothesis test. |
hypothesize that this multifaceted modeling and simulation process may help students set
apart the key interpretations and conclusions drawn from significance testing and
descriptive statistics like correlation. In a traditional course, calculating the correlation or
carrying out a statistical test have near identical procedures: load the data, and then click
the appropriate dialog, which may make distinctions in their purposes and interpretations
less clear. To this effect, this study aims to investigate students from two different
curricula (a CATALST-inspired introductory statistics course and a traditional
introductory statistics course) and compare their approaches to carrying out a significance

test for the slope of a regression line.

Background and Literature Review
This section details the relevant literature and motivation for conducting the
present study. First, I will detail the importance of generalization in inference and how
this should be set apart from descriptive statistics. Next, we will look at example data
scenarios that highlight the relationship between correlation and inferential methods.
Finally, we will highlight the importance of modeling in simulation, and how the
CATALST curriculum is best posed to teach students the importance of generalization

and how it conceptually differs from descriptive statistics like correlation.
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Generalization

Statistical association and lines of best fit are a key component of the introductory
statistics course. It is often the deepest topic in terms of both conceptual understanding
and computation that students experience in their introductory course. On top of this,
students must also understand the purpose of significance testing for linear relationships
as a method to generalize results from a sample. Generalization of results is a key tenet of
inferential reasoning, and students must be able to set apart the purposes of exploratory
data analysis and significance testing (Makar & Rubin, 2009). I conjecture that this may
be difficult for students in a traditional, algebra-based introductory statistics course. The
procedures for both descriptive and inferential statistics in linear regression rely heavily
on computers, making it more challenging to set apart their conceptual differences. The
computation of p-values relies heavily on computation in any data scenario in the
traditional classroom, as it relies on a calculator or computer to perform a calculus-based
computation of area under a distribution function. For concepts typically taught earlier in
the course like tests of means or proportions, procedures for the computations of
descriptive statistics are potentially approachable to students conceptually. Students
likely know how to calculate proportions or means by hand, even if software is still
typically used to do this. Knowing how to calculate these descriptive statistics may set
them conceptually apart from computing the p-value, which often is computed by
software and may appear as a “black box™ procedure to students. This idea is supported
by comparison studies that show students from simulation-based courses make
significantly greater improvement on test items that focus on inferential reasoning by the

end of the course (Chance et al., 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014).



90
However, when learning linear regression, both descriptive and inferential statistics act as

a black box to students in a traditional class. Students typically lean heavily on software
for descriptive statistics like residual standard error, correlation, and the slope/intercept
for the least squares line, and are less familiar with how to calculate these measures
themselves. This may lead to problematic conceptual understanding if students obscure
the differences in purpose between these two methods. Correlation and p-values are often
described with similar descriptors like the “strength” of results, adding to the potential
conflation of their purpose. While measures like correlation may give a descriptive
measure for the strength of association within a given data set by measuring how close
data values are to the least squares line, examining this value alone cannot confirm a
generalizable result, and may also discount potential meaningful relationships that do not

have a correlation value typically seen as representing a strong relationship.

Relating correlation and p-values

To illustrate the relationship between correlation values and significance, Table
18 shows the corresponding t-test statistics at a given sample size and correlation, with
the statistical significance marked by asterisks. Note that tests of correlation and tests of
the slope of a line of best fit produce the same test statistic and p-value. First, values
typically associated with “strong” or at least “moderately strong” correlations around 0.5
to 0.7 are not significant at the 0.05 significance level for very small samples like n = 10.
That being said, in the age of data science and big data, most analyses are not done on
very small samples. What is more notable is that statistical significance at the 0.05 level

can be achieved with large sample sizes and correlation values typically thought of as a
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Table 18. Values for t-test statistics for the given correlation and sample size values.

Correlation n= n=20 n=30 n=50 n=100

10
0.2 0.58 0.87 1.08 1.41 2.02*
0.3 089 1.33 1.66 2.18* 3.11**
0.4 123 185 2.31* 3.02**  4.32%**
0.5 1.63 2.45* 3.06**  4.00*** 572***
0.6 212 3.18**  3.97*** 520*** 7.42%**
0.7 2.77* 4.16*** 5.19*** 6.79*** 9.70***

*p < 0.05, **p < 0.01, ***p < 0.001

“weak” association. While large sample sizes often bring up caution about practical
significance, this still highlights potential variables which could be informative to some
linear model may not require correlation values normally thought of as strong. A low or
“weak” correlation value may not provide an accurate prediction, but if the relationship is
significant, it does inform that the typical or average value for the response variable
changes with the predictor. Thus, only looking at a correlation value to determine the

strength of a relationship may lead to ignoring potentially informative relationships.

To illustrate this idea, | present two example data sets to examine. The first
examines the relationship between the average environmental temperature and energy
used by a residence in a given summer month. Obtaining this data is not terribly difficult,
especially for a utility that is already collecting usage data for billing purposes. Now
consider another data scenario that examines the relationship between the weight of a hen
and the weight of the eggs produced by the hen. Here, obtaining data on this requires
observing and working with animals, which is more time consuming and costly, so larger
samples are difficult to obtain. Thus, when examining scatterplots of each of these
scenarios in Figure 9, we can see that the energy scenario has 100 observations, where

the hen data only has 20. However, the correlation values are much different, due to the
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Figure 9. Example scatterplots with various sample sizes and correlations.

nature of these relationships. There are many other factors that control energy usage in a
residence, such as the size of the residence or their desired indoor temperature, so the
correlation is only 0.3. For hens, other than factors like breed which are likely already
correlated with their weight, there are not as many obvious, measurable variables that
could predict egg size, so the correlation is stronger at 0.6. When checking these
combinations of correlation and sample size in Table 18, we would find they would both
produce a p-value under 0.01, indicating both are significant relationships. Thus, while it
would be difficult to accurately predict one residence’s bill based on the temperature
alone, as the correlation itself is low due to many outside factors, the relationship
between environmental temperature and energy usage is clearly meaningful for
determining an average energy usage based on a given temperature. The scatterplot of the
energy data set does not yield an obvious trend visually, but hypothesis testing reveals
this to be just as meaningful as the hen scenario, where the relationship is more visually
obvious and the points are tighter to the line. This also highlights how different scientific
fields may have different heuristics for what correlation values are meaningful. A

biologist may typically work with smaller data sets like this one and know heuristics for
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what correlation values typically produce meaningful results for data sets of that size, but

if they only look for similarly strong correlations when examining larger data sets, they
may potentially miss potentially surprising links between variables. Fields that typically
work with larger data sets due to the ease of collecting large amounts of data could not
use these same heuristics. Having a universal scale for what determines a strong or weak
correlation value is thus problematic, as it should only be presented as a way to determine
the predictability of results in a given context based on how close the points are to the
regression line, and not for determining the generalizability or relevance of the

relationship between two variables.

Importance of Modeling

This highlights the importance of significance testing and determining
generalizability of results in linear regression through inference. If students are to
understand the differences in purposes and use of correlation and hypothesis testing,
more distinction must be made between the two. As previously discussed, the setting in
which students traditionally work with both descriptive and inferential statistics for linear
regression is all procedural in nature and relies heavily on technology for computation,
making all of this output indistinguishable by the setting alone. Considering these
challenges students face when learning significance testing for linear regression, the ideal
curriculum should emphasize conceptual understanding of these topics to help students
understand the purpose of different statistical measures and methods related to linear
regression. A simulation-based curriculum is one potential answer for this, as this setting

has the potential to best allow students to draw connections from the study design to the
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logic of hypothesis testing (G. W. Cobb, 2007; Rossman, 2008). Among simulation-

based curricula, the CATALST curriculum may be the best choice to meet this purpose,
as it doesn’t just allow students to carry out simulations, but to create the data generation
devices that carry them out using TinkerPlots software (Konold & Miller, 2018). These
random generating devices are based on real-world, physical devices like lottery ball
machines or spinners. This allows them to act as models for students, allowing them to
deepen their understanding of the data generation process they create. Creating
TinkerPlots samplers in this way is a form of expressive modeling, which best reflects the
actual practice of statistical modeling (Doerr & Pratt, 2008). Students in CATALST
courses are more successful in identifying the purpose of simulations than students from
other traditional and even simulation-based curricula (Hildreth et al., 2018). And by using
TinkerPlots models and modeling in the classroom, this also provides a rich environment
for the exposition of students’ statistical reasoning (Pfannkuch et al., 2018). Thus,
CATALST and TinkerPlots seem to give students the ideal environment to act as
modelers and understand the purpose of the simulation they are carrying out with these
models. In TinkerPlots, carrying out a hypothesis test for the slope of a least squares line
can be done using a randomization test, which will be discussed in the following section

detailing the activities used with students.

CATALST Activities for Linear Regression
Many characteristics of the CATALST curriculum identified in the literature seem
ideal for learning topics surrounding linear regression, especially with regards to
hypothesis testing. However, the CATALST curriculum as originally designed does not

cover this content, as it was originally designed to cover fewer topics to focus on
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statistical thinking and literacy (Justice et al., 2020). The present study focuses on

students from a classroom that used a curriculum based on CATALST with additional
activities that cover topics traditionally taught in most introductory statistics courses, like
linear regression. The activities designed for linear regression have students explore three
main ideas: transitioning from analyzing univariate data distributions to bivariate data
distributions, understanding how to best fit a line to data, and conducting a test on the
slope of the least squares line. The following subsections will detail these activities and
motivations for why these activities should best support students’ learning of linear

regression and the inferential techniques surrounding this topic.

From Univariate to Bivariate Data

Before students can understand bivariate data distributions like a scatterplot, they
must have a solid foundation with distributions of a single variable. Zieffler and Garfield
(2009) used quantitative methods to analyze students gains through testing students on
items related to distributional reasoning and bivariate reasoning at several points during
the course. They found that students who had made progressively larger progress on
distributional reasoning test items early in the course made corresponding larger gains on
the bivariate data items compared to other students, backing up the claim that fluency

with univariate distributions is a precursor to understanding bivariate data.

To leverage students’ knowledge of univariate data, Cobb, McClain, and
Gravemeijer (2003) suggest a learning trajectory that begins with a focus on
distributional reasoning with univariate data, examining the shapes of data visualized

with dot plots. After developing the use of scatterplots as a visual tool for bivariate data,
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this knowledge of univariate data is leveraged by “slicing” bivariate data into several

conditional univariate distributions of the dependent variable. This allows students to see
how the variable changes as the independent variable changes, leveraging the
descriptions that students used when analyzing univariate data to describe the change.
Konold (2002) suggests a similar approach, adding the use of dot plots with a color
gradient. By using colors on each of the dots to represent a second variable, students can

leverage their familiarity with univariate distributions while also grasping how it relates

to some new variable displayed with the color.

The first activity done with students integrates these ideas, with a sample of plots
made in this activity shown in Figure 10. These three plots were made in TinkerPlots
based on a data set of drivers’ ages and maximum sight distance for reading road signs.
The first plot shows a univariate distribution of the ages, with a color gradient that shows
the sight distance. This visualization allows students to leverage their existing experience
with univariate distributions with a simple way to view a second variable. Building color-
coded distributions like this is possible with many software packages, but is quite simple

the relationship between two variables. The second plot reflects the “slicing” suggested
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by Cobb et al. (2003), which allows students to see conditional distributions of the y-

variable based on a range of values for the x-variable, while still being based on multiple
univariate distributions. This allows students to see how the variable changes as the
independent variable changes, leveraging the descriptions that students used when
analyzing univariate data to describe the change. By seeing a plot with various
conditional means, this also acts as a precursor to fitting a line to data, and understanding
the line as estimating the conditional mean.

The third plot in Figure 10 is another similar precursor, which uses the “color
meter” tool in TinkerPlots to trace a conditional mean line. This line is determined by the
mean y-value of the dots within the box, tracing that value along a line as the color meter
is moved. This plot can be helpful not only for the transition of the idea of center from
univariate to bivariate, but to motivate the use of a straight line to characterize the shape
of linearly related data, thus reinforcing a global, aggregate perspective of data.
Determining a Single Line of Best Fit

The previous activity motivated students toward summarizing data with a line, but
now leaves students with the question of how to choose a line appropriately. The
traditional method of fitting a line to data uses the least squares method, which minimizes
the sum of the squared differences in each data point’s observed y-value to the predicted
y-value. This method is not simple for students to understand initially, and the motivation
for why statisticians prefer squared distances over absolute distances is a nuance of
calculus, which is typically not a prerequisite for introductory statistics. In fact, research
indicates that using vertical distances is not an intuitive approach that students use for

fitting a line informally (Sorto et al., 2011).
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This activity’s approach to this topic is in light of Edwards’ (2005) rationale for

using the median-slope algorithm, although our methodology for fitting a line differs.
Edwards emphasizes the need for classroom activities to emphasize the underlying
mathematical concepts behind method like linear regression and least squares, rather than
hiding the results behind a black box. To this effect, these activities leverage TinkerPlots
to motivate the general idea of having the line as close as possible to all points
simultaneously. Students begin this activity by fitting a line informally based on where
they believe it most accurately represents the relationship of the data, considering the
ideas of the conditional mean and color meter tools from the previous activity. They can
then measure the total distance from their line to all the points, as shown in “Sum of | Diff
| of 45 cases” in Figure 11. Adjustments can then be made by the student to decrease this
value. Figure 11 shows such an adjustment, with the sum of absolute deviations going
from 3060.15 down to 2524.37, indicating a better fit. While TinkerPlots is restricted to
measuring the absolute deviations rather than taking a typical approach of squared
distances, this activity still gives students an introduction to the general idea of

minimizing a criterion based on the residuals in order to produce a line of best fit.
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However, it is still best to transition these ideas to least squares, as it reflects the more

widely used method for fitting lines to data, and students will use the least squares slope
for testing in the next activity. To motivate students about why least squares is used in
practice, one can motivate informal explanations about how squaring the distances ends
up putting less emphasis on small deviations from the line. As such small deviations are
expected through natural variation, a line’s placement should not fixate on placing a line
to further minimize distances that are already small, and are thus well explained by the
relationship summarized by the line already. Additionally, showing students carefully
constructed data examples that reveal that there is not always a unique line produced by
minimizing the absolute deviations can help motivate the use of least squares (Lesser,
1999). These ideas parallel lessons that explore mean absolute deviation as a gateway to
standard deviation, which is a commonly used activity in the CATALST classroom
already. As part of this activity, students also explore other descriptive ideas surround the

line of best fit, like the correlation and determination coefficients.
Testing for a Significant Linear Relationship

This final activity of the sequence will guide students in performing statistical
tests on the slope of a least squares line. This requires building a sampler in TinkerPlots
to conduct a simulation under the null hypothesis of no association between the two
variables. To understand this null hypothesis, students will first connect the idea of no
association to a line with a flat slope, and thus provide a statistical measure that can
indicate relative strength of an association. This can be used as the statistic of interest for

their simulation. After generating a sampling distribution of slopes, students can then



100
compare their slope of the least squares line from their observed data to this distribution

and determine the likelihood of obtaining such a slope if the null hypothesis is true. In
order to do this, students will be guided in this activity to construct sampler models in
TinkerPlots that simulate data assuming that the two variables of interest are
unassociated. Students will need to determine what random processes they can model in

TinkerPlots if there really was no association.

Students can leverage their knowledge of inference in previous scenarios,
especially those for comparing two populations or groups. In both of these scenarios,
students can leverage the idea of random assignment to simulate data under the null
hypothesis. The structure of the modeling process in two groups uses random assignment
to re-pair values from the response or outcome variable to one of the two group or
population labels. This modeling process is similar in a linear regression context, except
the grouping variable becomes a quantitative explanatory variable. Thus, numerical
responses are now just randomly assigned to a numerical value from the explanatory
variable. Because of this similarity, students are presented with a fairly direct connection
from students’ past experiences with statistical inference and performing it on the slope

of a regression line.

Research into students understanding of randomization tests for comparing two
populations is a recent and growing area of focus. Biehler et al. (2015) investigated
preservice teachers’ reasoning with randomization tests, and developed a framework for
the three worlds that represented how these teachers reasoned: the context world, the

statistical world, and the software world. These worlds are nested within each other,
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indicating that learners must be able to reason and draw connections between these three

worlds in order to fully reason with these randomization tests in software like
TinkerPlots, then subsequently draw conclusions in the original problem context.
However, subsequent research has revealed challenges for students in properly navigating
through these worlds. Noll & Kirin (2017) observed that students who created
randomization models for comparing two groups moved through these worlds constantly
to verify their reasoning and choices in constructing TinkerPlots models. For example,
students constantly needed to re-verify that their samplers in TinkerPlots were simulating
data under a hypothetical world where the null hypothesis is true, and that may not reflect
what they informally observed in the sample data. This required being able to read their
model appropriately in the software world, connect this to their null hypothesis in the
statistical world, and realize that the real, contextual world and the data presented may

not accurately reflect this world.

There are also gaps between how statisticians, students and even teachers view
and understand the randomization process. Noll et al. (2021) found that students often
saw a randomization process as taking a new sample of subjects rather than the process of
reassigning existing subjects to new groups. This reflected their narrative views of the
study, and how it would seem invalid or “unethical” to re-use the same subjects who have
already participated in the study. It was also not obvious to students that a control group
or taking a difference in means/proportions was necessary to properly answer the
research question. Justice et al. (2018) found that preservice teachers did not have a
proper view of understanding the purpose of modeling a randomization test was to

understand the scope of experimental variation. These teachers also had a strong
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preference for the order that their sampling devices came in, with their observed results

coming before group assignments; many did not see the reverse ordering as an
isomorphic model. Noll et al. (2018) observed that students had similar preferences with
the ordering of devices in a probability modeling context. Despite the challenges students
faced with the narrative elements of modeling, it is important to point out the CATALST
curriculum at least enables students to think about these conceptual aspects of hypothesis
testing, unlike traditional or even many other simulation-based curricula. There is much
for students to gain in understanding the data generating process of a hypothesis test and

how it is rooted in the null hypothesis assumption, which in turn can enable students to

have a rich understanding of the conclusions they draw from a test.

While research on students understanding of randomization tests and bivariate
data exists in isolation, there is not any work done yet on students modeling of
randomization tests for the least squares line. This study aims to fill this gap while also
comparing approaches for carrying out such a test to students who took a traditional,
algebra-based statistics course. Studies on students understanding of bivariate data yield
some mixed results when comparing student outcomes in traditional and simulation-
based curricula. Students in traditional statistics courses had mostly non-significant
differences gains in performance to those who took a simulation-based course on survey
guestions pertaining to bivariate data, with one survey item that significantly favored
students from the traditional curriculum (Tintle et al., 2011). Results were more mixed
when comparing retention of bivariate data topics across each curricula, with no
significant differences in retention on any of the survey items (Tintle et al., 2012).

However, these same comparison studies along with many others show notable gains in
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performance on survey items pertaining to hypothesis testing and the purpose of

inference, which makes sense due to the emphasis placed on inferential techniques and
their conceptual understanding through carrying out simulations (Chance et al., 2016;
Hildreth et al., 2018). These differing results emphasize the interest in the present study

that combines these two content areas.

In light of the potential benefits the CATALST curriculum has in highlighting the
purpose of inference for linear regression, this study aims to address the following
research question: Do students from a traditional curriculum and the CATALST
curriculum recognize the need to use a hypothesis test for evaluating the statistical
significance of a linear relationship? How do students’ approaches compare across these

two curricula?

Methodology
In this study, students participated in both surveys and interviews that focused on
questions about determining a significant linear relationship. The following subsections
will first detail the theoretical framing for the study and give background for why
individual instruments were used. Once this framing is established, I then explain the
tasks students completed as part of the surveys and interviews, detail the participants in

the study, and describe the method of analysis used on the data collected.

Theoretical Framing

My view on students’ learning reflects the theory of social constructivism.
Students are not only actively constructing their own knowledge from their experiences

in the course, but by working collaboratively with their peers and being integrated into a
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community of knowledge. This is especially true in the CATALST curriculum, where

students work on scaffolded activities designed for students to discover statistical
concepts in small groups. Knowledge in the classroom is thus constructed based on both
students’ statistical experiences within the course as well as personal experience outside
the course that may relate to statistical concepts or the data context. These activities are
rooted in various contextual settings, often with notable societal and cultural importance,
so students own experiences and backgrounds add to their learning experience in the
classroom. Students from the traditional classroom were also given opportunities to work

in groups on practice problems with their peers in order to build their statistical

knowledge collaboratively in a similar light to the CATALST classroom.

Considering this perspective and the collaborative nature of both classrooms, it
may seem surprising that this study’s data collection is based on individual surveys and
task-based interviews. However, individual instruments can still be seen as compatible
with the social constructivist perspective. Vygotsky views learning happening on two
levels: the interpsychological, where ideas are shared on the social level, and the
intrapsychological, where such ideas are internalized. Students come with many pre-
conceived notions about reading and interpreting bivariate data and linear relationships
from their own experiences, which the pre-survey aims to capture. The learning process
during the course is then experienced socially with their peers, and the experiences they
bring to the course individually affect their own experiences with classroom activities and
the data contexts. These experiences have individual impacts on their learning, leading to

this knowledge that students construct internalized once again in each individual student.
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The post-survey and the interviews aim to capture what knowledge these students

internalized.

For the purposes of the research | am conducting, my perspective of knowledge is
more cognitive than social, as | am more focused on what knowledge an individual has
constructed in each classroom. Individual achievement is very relevant to higher
education institution, as for better or worse, students’ knowledge is evaluated by
individual grades. However, this focus on the individual still incorporates the idea that
students’ knowledge is not based on a totally individual experience, but on their
experiences in and out of the classroom. This social perspective lends to why | believe
the CATALST curriculum has an advantage over other traditional curricula. Building a
TinkerPlots sampler requires a negotiation of both statistical and contextual ideas, and
contextual ideas are firmly rooted in students’ experiences. This gives students
perspectives on identifying the most relevant aspects of context to be used in their
TinkerPlots samplers while also engaging students in the statistical processes carried out
by that sampler. I believe that through these classroom experiences, students’ statistical
knowledge that they have gained individually can be observed by the individual survey

and interview instruments.
Survey

Individual surveys were administered electronically to students both before and
after learning linear regression content in the course. This study focuses on responses to
an open question on how students would conduct a test to determine a significant linear

association with provided data. Students were asked several other questions before this to
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prompt them to explore the provided data and give conjectures about the relationship, but

the focus of this study will be on their responses to the question regarding determining a
significant linear association. This question in particular is relevant to the research
question posed, as it will reveal whether students recognize the need for inference to
address whether there is a significant linear relationship. If students have gained the
appropriate knowledge from their courses, they should be able to describe the correct
procedure used in this scenario. Ideally, students would also convey their conceptual
knowledge about inferential techniques (i.e., describe the null hypothesis, interpret how
the p-value would allow them to draw conclusions), but asking more pointed survey
questions regarding interpreting results from a hypothesis test may lead students toward
choosing that method based on the wording of the questions rather than their knowledge

alone.

To mitigate the effect of biases in the writing of the question toward a specific
curriculum, the data and contextual information were pulled from the ARTIST
(Assessment Resource Tools for Improving Statistical Teaching) database, with the sub-
questions altered to elicit open-ended responses. Information on the data context and sub-

questions presented to students in the survey can be seen in Figure 12,

Interview

Interviews were carried out with a smaller set of students from those who took
both the pre and post survey. These interviews were carried out virtually via Zoom in
light of the ongoing COVID-19 pandemic. Students who were interviewed were asked to

revisit their survey responses and then carry out the methods they described in their
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Does the outdoor temperature have a significant impact on the cost of your electric
bill? A random sample of 25 electric bills across the USA was taken, and the table
of data below lists the average temperature of a month and the amount of the
electricity bill for that month from those 25 bills. The regression equation is: Bill
Cost = 86.2 - 0.233*Temperature. Below is that table and a scatterplot of the data
with the regression line superimposed.

Temp Bill Temp |  Bill Temp| Bill
51 | §7169 | 34 | §77.93| 45 | §7382
61 | §7264 | 32 | §7781| 39 | §7441
74 | $6662| 41 | $7443| 35 | $76.24
77 | $7070| 43 | $78.87 | 30 | $s8080
78 | §6849 | 57 | $69.48| 49 | §77.64
T4 | §6788| 66 | §70.89 | &8 | $687F0
59 | $6866 | T2 | $70.8% | Té | $7023
48 | §7623| 72 | $71.39
44 | $8513 | 70 | $68.31

26 — »

bill

75 —

66 —|

temp

How could you test whether or not there is evidence to suggest there is a *
significant linear relationship between the cost of an electric bill and the average
temperature that month? Give details to any methods you might use to test this.

Your answer

Figure 12. Background information and survey question analyzed in this study.
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survey to determine if there is a significant linear relationship. The data were available

for students to analyze in TinkerPlots, a virtual graphing calculator, and Excel,
representing the software that students used in both the CATALST and traditional

courses. Students had remote control access to the interviewer’s computer through Zoom

to give them access to interact with the software tools.

Revisiting the survey question aims to provide a deeper perspective of students
understanding of conducting a hypothesis test for the slope of a regression line that could
not be captured by the survey. To elicit ideas about their understanding of statistical
inference, students were asked to explain how they would solve this problem and the
underpinning concepts to someone who has never taken a statistics course. In order to
determine if students recognized the distinction between the purposes of descriptive
statistics and a hypothesis test, students were also asked if they could simply use the
correlation value to determine if a relationship is significant. The semi-structured nature
of this interview also allows for asking pointed follow-up questions in order to gain a
better perspective of students’ conceptual knowledge about hypothesis testing. Students
who gained the appropriate knowledge in their courses should be able to carry out the test
with the relevant software appropriately. They should also be able to interpret the results
and p-value of their test in order to come to an appropriate conclusion based on their

work.

Participants

This study examines students from two sections of a 10-week, second term

introductory statistics course. This course is targeted at non-statistics majors, most of
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whom come from social science backgrounds. While some students in the course may

have had some experience with statistics from high school or other courses in their

department, this is the students’ primary exposure to statistics in college.

Of the two sections studied, one used the CATALST curriculum and had 23
students enrolled, while the other used a traditional curriculum and had 31 students
enrolled. The CATALST section was taught by the author, and the traditional section was
taught by another colleague who has worked with the CATALST curriculum previously.
While the students are not guaranteed to be representative of students from each curricula
or control for every confounding variable like instructor differences, the choice of these
sections was made in order to limit these confounders. These two sections were chosen
for the comparison due to the instructors holding similar teaching philosophies and
leveraging in-class group work despite the differing curricula. Additionally, each section
spent an equal time in-class on linear regression content, with four class sessions devoted

to this topic.

A pre-survey was administered before students began this section of the course
and once the topic was completed. Both sections administered the survey to students as
an in-class assignment, with students receiving credit for completing the survey, not
necessarily getting answers correct. Thus, all students were required to take the survey to
receive in-class credit, but any non-consenting students who completed this assignment
were not included in this study. For the CATALST section, 18 of the students consented
to the study and participated in both surveys. For the traditional section, 17 consenting

students participated in both surveys.
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Students from each course were subsequently invited to participate in interviews.

The selection of interviewed students was done purposefully based on their survey
responses to obtain a pool of students with a wide variety of conceptions for conducting a
statistical te