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Abstract
This doctoral work discusses three projects which jointly consider assessment, improve-

ment, and the underlying measurement of contextualized statistical literacy. The central

role of statistical literacy has been discussed extensively in the statistics education

literature [1–15], emphasizing its importance as a learning outcome and in promoting

a citizenry capable of interacting with the world in an informed and critical manner.

However, little is known about the influence on student learning outcomes associated

with student perceptions about context choices (e.g., application domain) in classroom

examples, assessment tasks, etc. Therefore, research which can inform and improve the

practice of statistics education is of paramount importance.

The first project in this work assessed the level of contextualized statistical literacy

- statistical literacy vis-a-vis contexts with personal relevance or significance to the

students. Specifically, the context of the ongoing COVID-19 pandemic was considered.

Towards this goal, an isomorphic assessment of an existing research-based instrument was

developed and piloted. Data from the pilot study were analyzed to compare psychometric

properties of the original and the modified assessment, as well as to consider test-takers’

responses to these assessments in relation to various respondent demographics, survey

responses, and item characteristics.

The second project employed statistical methods for causal inference to analyze data

from a curricular experiment. This experiment was designed and implemented with the

aim of improving the level of contextualized statistical literacy. It was conducted in

a coordinated undergraduate introductory statistics course taught at a large research
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university on the east coast of the United States. Pre-test and post-test scores were

collected using the assessment instruments discussed in the first project.

The third project was an application of the Cognitive Diagnostic Modeling (CDM)

framework. In addition to being one of the first applications of CDM to statistics

education, statistical problem-solving being an inherently more complex cognitive task [16]

makes this work a novel contribution. The project outlined the cognitive skills underlying

statistically literate behavior as measured by the assessment instruments in the first

project. Specifically, data from the pilot study were analyzed to investigate whether a

context familiarity skill plays a role in respondents’ ability to answer items pertaining to

relevant contexts correctly. A Q-matrix specifying the skills needed to answer each item

correctly was developed in order to analyze data using CDM models.

This work contributes to methodological advances which can support future statistics

education research, through a substantive topic of statistical literacy. It demonstrates

1) the development of an isomorphic assessment, 2) design and implementation of a

randomized curricular experiment, 3) estimation and interpretation of causal effect of

a curricular treatment on the intended outcome measured through a research-based

assessment, and 4) application of CDM to a problem in statistics education including the

formation of a Q-matrix. This work can inform both research and practice in statistics

education, thereby benefiting students of statistics.
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Chapter 1 |
Introduction

The importance and role of statistical literacy in our society as well as statistics education
has been discussed extensively in the statistics education literature [1–15]. Guiding
documents which inform researchers and practitioners alike, such as the GAISE College
Report [18], Consortium for the Advancement of Undergraduate Statistics Education
(CAUSE) Research Report [19], International Handbook of Research in Statistics Educa-
tion [1], and GAISE PreK-12 Report [20], highlight this importance vis-a-vis cognitive
outcomes, curriculum, teaching practices, and assessments. The American Statistical As-
sociation discusses ‘(to) build a statistically literate society’ as one of its objectives under
the strategic goal of statistics education [21]. In parallel, the PARIS21 partnership [22]
among global organizations including United Nations, European Union, Organisation
for Economic Co-operation and Development, International Monetary Fund, and the
World Bank also considers statistical literacy to be a focus of its work. Even though
definitions of statistical literacy vary in some aspects [23], mainstream conceptualizations
of statistical literacy agree that it comprises of a skillset which an individual would benefit
from applying to contexts outside of a classroom, a skillset which would allow people to
engage with contexts relevant to them from a data-driven point of view. Further, the
literature also converges on a firm belief that statistical literacy plays a critical role in
promoting a citizenry that is more capable of understanding the world around them,
making evidence-based decisions, making sense of statistical insights pertaining to topics
relevant to their professional and personal life [24]. This is also critical at a societal level
as highlighted by the ongoing COVID-19 pandemic [25,26].

Naturally, given the importance of statistical literacy in education as well as the society
[25], research about statistical literacy ranges from conceptualizations and definitions,
assessment among various populations, and efforts to improve the level of statistical
literacy. Previous research has considered ways of improving statistical literacy [27–32].
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Additionally, recommendations for teaching practices which can improve statistical literacy
have been discussed in guiding documents such as the GAISE college report [18, 33]
and the GAISE PreK-12 Report [20]. The GAISE college report [18] recommended
integrating “real data with a context and a purpose” into statistics instruction. This
nudged the community to bring more real datasets into the classroom and teach through
examples that may be relevant to students. There is some evidence that this helped
students develop a sense for how statistics is relevant to their lives and improve their
engagement with and interest in statistics [34]. The statistics education community
is not unfamiliar with discussions surrounding the role of contexts in statistics and
its instruction. [35] highlighted that there is no statistics without context. With this
in mind, this dissertation poses the following three questions. First, are students of
statistics able to make sense of statistical insights encountered in their day-to-day lives,
especially pertaining to relevant topics? Second, does including relevant contexts in
curricular materials cause a differential gain in students’ statistical literacy outcomes?
And third, can we apply a diagnostic framework to an assessment of statistical literacy
to measure the role of context? These three questions have been turned into specific
research questions (RQs) which as listed in Section 1.2.2.6.1 as well as in the chapter
which addresses one or more of them. This work contributes to the literature by working
with research-based assessments as recommended by [36].

These research questions interact with methodological questions pertaining to as-
sessment development, experimental design, and measurement. The remainder of this
chapter is divided into two parts. Section 1.1 considers broader questions pertaining to
statistics education research which informed our broader inquiry and Section 1.2 delves
deeper into the questions of measurement models and a specific framework - Cognitive
Diagnostic Modeling - which was investigated in this work.

A portion of the development of the argument in this introduction is repeated in later
chapters.

1.1 Statistics Education Research
The field of statistics education research, though relatively young, is expansive and
continues to expand further. An early reflection on the growing field of statistics education
is found in [37]. This report summarized the findings from the roundtable organized by
the International Association for Statistical Education, including discussions regarding
the interaction between research and practice in statistics education. [3] advanced this
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discussion and focused on both practice and research in statistics education, highlighting
the interaction between the two and advocating for more research-driven practices. In
the same year, [38] summarized statistics education projects funded by the National
Science Foundation in the recent years then, underlining the research areas those projects
interacted with and how they satisfied the first GAISE college report [39]. At the
turn of that decade, [40] analyzed work published in Statistics Education Research
Journal (SERJ), one of the primary venues for publication of statistics education research,
during the previous decade (specifically, years 2002-2009). In addition to the background
of authors, intended audience, and types of works, they summarized research areas
covered by these articles. Reasoning about/understanding of important statistical ideas
was the most frequent topic of inquiry. Teaching and Learning related questions were
second-most frequent. This analysis concluded with key recommendations encouraging
interdisciplinary as well as foundational research.

The report [19] summarizing recommendation from the American Statistical Asso-
ciation’s research retreat focusing on statistics education research can be considered
seminal in driving research in this area. This report discussed seven key areas of research
- Cognitive Outcomes, Affective Constructs, Curriculum, Teaching Practice, Teacher
Development, Technology, and Assessment. In addition to a helpful literature review,
three components were detailed for each of these areas. 1) research priorities, including
specific research questions, central to advancing our knowledge, 2) implications and
benefits of answering these research questions, and 3) measurement and assessments
tools needed for this research. [41] continued this discussion by summarizing important
research-driven developments in statistics education. This work spotlighted several insti-
tutional efforts and an international initiative by UNESCO (United Nations Educational,
Scientific and Cultural Organization). It concluded with a call for conducting research
with the potential impact at the forefront. The International Handbook of Research in
Statistics Education [1] was another publication instrumental in driving the field, and
remains so till date. This handbook discussed foundational topics in statistics education.
In addition to solidifying the scope of statistics education research, chapters in this book
underscored the importance of conducting holistic research.

In addition to the overarching discussions and recommendations in these reports
and other publications, [42] summarized research focused on teaching and learning of
statistics, outlining its interaction with teaching practices. Recently, [43] outlined key
developments and gaps in statistics education research within client disciplines.

In the remainder of this section, we focus on two specific topics within the statistics
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education literature which are most pertinent to the present work.

1.1.1 Role of Contexts in Statistics Education

Considerable amount of work has discussed the value of contexts in statistics education
and powerful ways of introducing contexts which are familiar to the students into the
curriculum [26,44–48]. [45] highlighted the centrality of contexts to statistics education as
well as statistical literacy. [46] laid out the design for an entire course that focuses on real
data that can develop statistical modelers and thinkers. [47] posited statistical habits of
mind important for learners as well as teachers, the first of them being the role of context
in every stage of statistical inquiry. [49] conducted a study which found that contexts
played an important role in 10th graders’ development of inferential reasoning. [44] is a
library of datasets and examples which facilitates the inclusion of real datasets into a
variety of courses. Finally, [50] synthesized the discussions regarding and highlighted the
value of guided inquiry exercises - exercises where multiple questions are built atop the
same context. Research has also investigated the relationship between including contexts
in curricular materials and students’ engagement with and interest in statistics - as well
as student outcomes.

Concurrently, studies focusing on measuring and improving statistical literacy among
students at various levels have also been conducted [27–32, 51–59]. However, even
though previous work has measured statistically literate behavior outside of a classroom
setting [60,61], there is limited work proposing research-based assessments of statistical
literacy [62–64]. The present work contributes to the literature on assessment of statistical
literacy, specifically in relevant contexts.

1.1.1.1 Transfer

Assuming that applying statistical literacy skills to new contexts would involve a knowl-
edge transfer [65–67], we distinguish statistical literacy skills from the the ability to apply
those skills to topics relevant in our lives, and define contextualized statistical literacy.
Such a transfer, though it is central to the purpose of statistical literacy, is not encoded
in the definition of statistical literacy. Contextualized statistical literacy is statistical
literacy as it pertains to relevant contexts, where relevant contexts are conceptualized as
ones that are societally relevant at a given time and people would have engaged with
and thought about on their own. The key contribution of this work is in creating an
instrument to measure contextualized statistical literacy using an existing research-based
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assessment of statistical literacy allowing us to examine respondents’ statistical literacy
skills when they are required to apply those in relevant contexts.

As underscored by [68], the terms near and far transfer are relative and the distance of
transfer implied in those terms is open to interpretation. [69] discusses distance vis-a-vis
the similarity to problems encountered during instruction. [70] highlight that distance
of transfer is an intuitive notion and discuss it as a matter of similarity and familiarity.
Near transfer is across contexts students can be expected to be familiar with because
they have encountered similar contexts before during instruction or practice. Whereas
far transfer involves transfer across contexts which may not be similar, on the surface,
to anything students have encountered before. According to [67], any application of
statistical literacy skills can be considered to be a transfer problem. However, when
considering contextualized statistical literacy, the question of distance of transfer is
not straightforward. On one hand, encountering statistical constructs in new contexts
increases the distance of transfer. On the other hand, though, irrespective of whether
or not these relevant contexts have been introduced in the classroom before, since we
conceptualize relevance as familiarity and engagement outside of the classroom, it can
be considered to be nearer transfer for a respondent of an assessment of contextualized
statistical literacy. When considering this transfer, we must also be also mindful of
possible suspension of sense-making [71, 72] whereby familiarity with the context maybe
foregone in favor of focusing on the underlying statistical idea. In statistical problem
solving, suspension of sense-making can lead to two possible issues. First, it can limit
the benefit of introducing familiar context. Second, in responding to items which require
an interpretation in-context to choose the correct answer, such suspension can further
increase cognitive load.

1.1.1.2 Isomorphic Assessment

To measure the transfer of statistical literacy skills to relevant contexts, we created an
isomorphic version of an existing research-based assessment of statistical literacy. An
isomorphic question or item is identical to a base item in structure (concept, phrasing,
as well as distractors) and differs only in the context, continuing to measure the same
underlying construct [73–75]. Isomorphic items can also be visualized as items with
a common base template differing only in context [68]. [76] and [77] refer to these as
structural isomorphs to highlight that this framework itself does not guarantee that
respondents’ cognitive processes in answering these tasks will be comparable. Isomorphic
tasks have been studied extensively in the physics education literature [78–83]. Some
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work has also been conducted in the computer science education domain [74,84]. It is
worth noting that there is limited work in the statistics education research literature
which studies isomorphs. Most of the aforementioned studies deployed isomorphs to
gauge learning and understand common misconceptions, and designed the study in such
a way that each respondent solved all of the two or more isomorphic problems at different
time points in a random order. [78] study was the only exception where each respondent
was assigned to one of the two versions of the assessment. Previous work using isomorphic
tasks finds that transfer across such tasks is difficult in most circumstances even if only
incidental features are switched. There is some evidence, e.g. [79], that more practice
on the base topics improves performance as discussed by [67]. The findings in [85] are
valuable given the objective of this work. Their work studied transfer across contexts
which cross the disciplinary boundaries in which the construct is situated. They studied
the effects of algebraic training on contexts within mathematics as well as in physics to
find that training in mathematics facilitated transfer to physics but not the other way
around. Even though every context in a statistics problem is external to the discipline
itself, this work is important to consider because it provides some evidence of facilitating
transfer where contextual information has been provided. This would indicate that
familiarity with relevant contexts should improve student performance on statistical
literacy tasks as compared to an isomorph based on potentially unfamiliar tasks barring
any suspension of sense making [71,72].

These studies of transfer using isomorphic tasks deploy a variety of types of assessments.
However, very few of them use research-based assessments. [84] discuss the importance of
developing assessment instruments which undergo rigorous process of collecting reliability
and validity evidence, and for researchers to adopt these for further research. [86], in
outlining ‘a practical approach to validation’ of research-based assessments support
the value and importance of this in step 4 - ‘Identify candidate instruments and/or
create/adapt a new instrument’ - with a reminder to first look for previously developed
instruments. We chose the Basic Literacy in Statistics (BLIS) assessment [17,64] because
of it’s sole focus on statistical literacy and the extensive research conducted to gather
reliability evidence and develop a validity argument for its intended use. We created
a modification of the BLIS assessment using isomorphic tasks. We refer to the new
version as ‘M-BLIS’ hereafter, especially when highlighting comparisons with the original
BLIS assessment. Chapter 5.1 describes the development of M-BLIS, and the design and
analysis of a study comparing the original and the isomorphic assessment instruments.
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1.1.2 Randomized Experiments in Statistics Education Research

As recommended by [87], randomized assignment has been discussed in statistics class-
rooms, starting with introductory curriculum, to highlight its importance in researchers’
ability to draw causal inferences. The role of randomized experiments in educational
research [88–90] and educational policy evaluations [91–93] has been discussed in the
literature. However, controlled experiments can be difficult to conduct in educational
settings [1, 40, chap. 3]. Randomization at the student-level can lead to interference [94]
requiring randomization at the classroom or school level. Such studies can be resource-
intensive due to the requirement of a large number of sections or classrooms as well as
teacher training. Very few designed randomized experiments are conducted in statistics
education research with a few notable exceptions. [95] randomized students to control and
experimental sections to investigate the effect of simulation-based inference curricula. [96]
randomly assigned separate mini readings at the student-level to examine the effects of
teaching using tools that may be considered to be fun on student learning. [97] imple-
mented a quasi-experimental design wherein two semesters of a given course enrollment
were assigned treatment or control to measure the effects of teaching statistics with a
critical pedagogy. [98] studied the effect of teaching through Shiny apps by assigning one
of the two enrolled course sections into the treatment group.

One of the goals of the present work was to utilize research-based assessments to
measure the outcomes of interest, as encouraged in [19]. Three of the four experiments
discussed above implemented a similar strategy. [95] used the ARTIST (Assessment
Resource Tools for Improving Statistical Thinking) topic scales [99] for specific topics of
interest. [96] used two scales measuring attitudes towards statistics - SATS-36 (Survey
of Attitudes Toward Statistics, [100]) and SAM (Statistics Anxiety Measure, [101]) and
considered pre-test and post-test scores. [97] also gathered pre-test and post-test data
on the CAOS (Comprehensive Assessment of Outcomes in Statistics, [102]) and CLES
(Constructivist Learning Environment Survey, [103]) scales. Whereas, [98] used course
assignments created by the instructional team.

In this work, we conducted a randomized curricular experiment framed to investigate
the causal relationship between teaching through relevant contexts and statistical literacy
measured using a research-based assessment in an effort to make an evidence-based
contribution to the statistics education research literature. It is important to note that a
randomized experiment, in the context of this work, differs from a teaching experiment
( [104]; used in [105] and [106]) or a design experiment [107]. Chapter 3 discusses the
design of the curricular experiment and analyses of data collected from it.
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1.1.3 Causal Inference in Statistics Education Research

The research questions in Chapter 3 are framed as causal questions, which is a con-
tribution of the present work. Causal conclusions can play a critical role in informing
educational practices through a rigorous investigation of ideas that may or may not
affect learning [89]. However, examples of research drawing causal conclusion based on
well-designed studies are scarce in statistics education literature. Of the experiments
discussed above, [95] was the only study which established a causal effect of the treatment
(curriculum type) on the learning outcomes. Their work analyzed the data using a
multivariate analysis of covariance (MANCOVA) model. [108] used observational data
to investigate the relationship between constructivist strategies in the classroom and
students’ attitudes towards statistics. They discuss using a causal comparative design,
however, they warn against drawing causal conclusions due to the analytical strategies
used. [109] also conducted an observational study to assess the effect of instructors
and instructional practices on student attitudes. The randomized experimental design
employed in this work allows for causal interpretation. We analyze data using a multilevel
modeling strategy with covariate adjustment. Outside of statistics education literature,
some methodological discussions have highlighted the importance and usage of causal
inference in educational studies. [110] discussed a method for estimating the causal
effect of time-varying instructional treatments. [111] and [92] discussed the importance
and implementation of causal-inference-based conclusions in the context of large-scale
assessments in education. [112] conducted an extensive survey of various causal inference
methodologies and highlight education as an important application area. [113] discussed
the role of and ways to improve causal inference in educational research. The present work
provides one possible framework for conducting causal analyses for statistics eduction
research, providing a prototype for similar work in the future.

In this work, causal effects are estimated under the potential outcomes framework
[114,115]. In this framework, the overall goal is to model the causal effect of a treatment
(denoted with W) on an intended outcome or response variable (denoted with Y). In this
study, the treatment W is the random assignment of a modified curricular component
that incorporates relevant contexts (at section level) and outcome Y is the gain score
which is the change in statistical literacy score from pre-test to post test (at student level).
For a particular unit, the causal effect of treatment is the difference in outcomes that
would have been observed if a unit was in the treatment group, Yi(1), and the outcome
if it was in the control group, Yi(0). Yi(1) captures the gain score for a student enrolled
in a treated section - a section receiving the modified curricular component, and Yi(0)
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captures the gain score for a student enrolled in a control section - a section receiving
the original curricular component intended for the course. These outcomes are referred
to as the Potential Outcomes [114,115]. The unit-level causal effect is τi = Yi(1)− Yi(0)
- a difference between the gain score that would be observed if student i was enrolled
in a treated section and the gain score that would be observed if the same student
was enrolled in a control section. Each unit has a potential outcome under each of the
treatment statuses, and in theory, it is observable. However, we only observe one of
them. Classical methods of causal inference assume what is termed the Stable Unit
Treatment Value Assumption (SUTVA) by [116]. SUTVA holds that the outcome of the
ith unit depends only on its own treatment status; Yi(W) = Yi(Wi). Further, SUTVA
states that there is only one version of the treatment. Interest often lies in estimating
the Average Treatment Effect (ATE), which is defined as τ = n−1∑

i τi. The estimation
of τ is not straightforward for designs where the treatment is not randomized at the
unit-level. However, as discussed in Section 1.1.2, this is typical for educational studies.

1.2 Measurement in Educational Research
Educational assessments are designed to evaluate test-takers’ abilities or skills vis-
a-vis specific educational outcomes of interest. Such abilities are latent, and well-
designed assessment instruments allow for the measurement of such abilities. The
process of measuring these latent constructs involves measurement models. These models,
despite their statistical underpinnings, are different from other statistical models in
that the estimation of the parameters of such models is an essential part of fine-tuning
the measurement itself. For example, the assessment of statistical literacy discussed
in Chapter 2 assumes that the items on those instruments accurately capture the
manifestations of the latent skill - statistical literacy. Any measurement models used
to analyze response data from these assessments can and should be used to calibrate
the measurement instrument itself. Therefore, a measurement model takes the input of
response data - responses of test-takers on items included in the assessment instrument
being deployed. One of the outputs of such models, among others, is a simultaneous
estimate of the level of latent ability/skill for each test taker and the level needed to
answer a given item correctly. The latency of underlying constructs being measured
by these instruments and models is an inherent challenge as well as an opportunity
for estimation procedures such as the EM algorithm to be applied to these estimation
problems. We begin by reviewing two important measurement models in educational
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psychology before introducing the framework deployed in the present research. It is
important to remember that measurement models in educational psychology are primarily
developed to inform test development and calibration. Therefore, their usage purely for
retrofitting to existing assessment data should be treated with care.

1.2.1 Measurement Frameworks

Much of the introduction to Classical Test Theory (CTT) and Item Response Theory
(IRT) frameworks presented here is based on [117]. When discussing the following
measurement models, we assume that we are working with an assessment that only
includes multiple-choice type items which are scored dichotomously (correct or incorrect).

1.2.1.1 Classical Test Theory (CTT)

Under the Classical Test Theory (CTT), total observed score on an assessment is
modeled, relating an individual’s total score (response variable) to the same individual’s
value/location on the latent continuum for the construct of interest. The observed score
is typically the raw total number of correct responses. The simplest version of a CTT
model is the true score model specified as

Xi = τi + εi, (1.1)

where Xi is the observed total score for individual i, τi = E(Xi) - the expectation
over repeated administrations of the same instrument to individual i, and εi is the error
term. However, the “true” score is interpreted as the trait score or the measurement
of the latent trait of interest for the individual. Three key assumptions of CTT focus
on the correlations between trait scores errors. They specify that - 1) errors from a
given assessment instrument are uncorrelated with the underlying trait scores on the
same instrument, 2) errors from a given assessment instrument are uncorrelated with the
underlying trait scores on on a different instrument, and 3) errors from a given assessment
instrument are uncorrelated with errors from a different instrument. It is important to
note that gain scores, which may be used as an outcome variable to investigate the effects
of a new curricular or pedagogical strategy, violate these assumptions since errors on the
pre-test and the post-test may be correlated.

In our application, CTT would try to estimate a respondent’s level of statistical
literacy based on their total score on BLIS or MBLIS, depending on the type of statistical
literacy of interest.
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1.2.1.2 Item Response Theory (IRT)

Item Response Theory (IRT) is a measurement model that uses responses to items (or
questions) on assessments to perform a measurement of a latent and continuous variable
i.e. respondent’s ability in terms of whatever the assessment claimed to measure, for
example, statistical literacy. This framework was a paradigm shift from CTT in that
instead of modeling the total score as a manifestation of a true score, responses on
individual items were modeled. The similarity, however, is in the treatment of the latent
ability or construct as a continuous measurement. In an IRT model, the person ability
parameters are measured along the same continuum as the item difficulty parameters.
The simplest IRT model - the 1PL (one parameter logistic) model - models the probability
of a given individual i answering a dichotomized item j correctly solely based on the
distance between person i’s ability level (θi) and item j’s difficulty level (δj), both
measured along the same dimension of interest. Therefore,

P (xij = 1|θi, δj) = eα(θi−δj)

1 + eα(θi−δj) , (1.2)

where α is a discrimination parameter that captures how well an item discriminates
between respondents with different ability levels. In a 1PL model, α is a constant,
assuming that all items on an assessment instrument discriminate equally well among
respondents at all ability levels. When α = 1, the 1PL model is then the Rasch model.
A 2 parameter (2PL) model estimates item discrimination parameters in addition to
difficulty/ability. Finally, a 3PL model includes a parameter for guessing.

Three key assumptions are underlying an IRT model - 1) unidimensionality of the
underlying construct being measured, 2) conditional independence of a person’s responses
to individual items given the ability level, and 3) that the data follow the functional form
specified by the model. Multidimensional IRT (MIRT) modeling framework has been
developed and discussed in the literature [118] for problems where the model cannot be
assumed to provide a sufficiently accurate representation of the two or more dimensions
which may be contributing to the responses.

In case of our application, the 1PL model will estimate individual’s level of statistical
literacy (ability) as well as the level of statistical literacy needed to answer each item
correctly (difficulty) by modeling responses to individual items separately.
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1.2.2 Cognitive Diagnostic Modeling (CDM)

Educational assessment data are often analyzed under the CTT or the IRT framework.
These frameworks provide information about test takers’ ability locations along a contin-
uum. These analyses can be most helpful for test development or in instances where the
underlying construct of interest has been condensed to one continuum. However, if the
investigator’s purpose is to provide tools for finer-grained feedback to students or tailor
curricular and assessment decisions based on estimated student abilities, CTT or IRT
estimates may not provide sufficient information about specific cognitive skills. CDM is a
measurement framework which relies on expert-specified multidimensional discrete skills
to diagnose mastery or the lack of it based on assessment responses. This framework can
offer refined information on individual skill profiles in terms of mastery or non-mastery
of important skills using statistical analysis of assessment responses. This methodology
has some roots in Latent Class Analysis.

A cognitive diagnostic model assesses test takers’ ability vis-a-vis latent cognitive skills
(LCSs) which are required to answer test questions. The inputs into this model are 1), a
dichotomous item-response matrix based on observed responses (Xij ; i = 1, 2, ..., I persons,
and j = 1, 2, ..., J items) and a binary Q-matrix [119] (Qjk; j = 1, 2, ..., J ; k = 1, 2, ..., K)
specifying whether skill k is needed to answer item j. The model has two key components.
The first component is the Item Response Function (IRF) specifying the probability
for person i to answer item j correctly depending on the skills needs for the item and
possessed by the person. The second component is the Joint Attribute Distribution
(JAD) specifying the joint distribution of all skills specified in the Q-matrix. Through
a variety of parameters estimated from this model, the key focus is three quantities -
1) skill distribution i.e. the proportion of respondents with a given skill, 2) skill class
distribution i.e. the proportion of respondents possessing a specific combination of all
skills, and 3) individual skill profiles i.e. which skills does a given respondent possess.

The aim of a cognitive diagnostic model is to ensure that the test can provide
diagnostic feedback on their strengths and weaknesses on these skills. In general, it can
be beneficial to think of LCSs as attributes [120] because in their broad capacity, CDMs
are also utilized for psychological health assessments. [121] mention that an “attribute
may include procedures, heuristics, strategies, skills, and other knowledge components.”
In those cases, a diagnosis of whether an individual possesses a certain attribute or not
can be useful for diagnostic purposes. However, for the purpose of this work which
focuses on an assessment of statistical literacy, we will continue to use the term skill. As
mentioned earlier, the inputs into this model are 1), a dichotomous item-response matrix
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based on observed responses (Xij; i = 1, 2, ..., I persons, and j = 1, 2, ..., J items) and
a binary Q-matrix [119] (Qjk; j = 1, 2, ..., J ; k = 1, 2, ..., K) specifying whether skill k is
needed to answer item j.

General framing of a CDM assumes that the Q-matrix specifies mastery or non-
mastery of a skill. In part, this modeling framework was conceptualized exactly for this
reason - to propose an alternative to Item Response Theory (IRT) type frameworks
where the latent skill (ability) is measured along a continuum. We now present details of
G-DINA [122] - the Generalized Deterministic Input, Noisy “And” gate model. This is
a generalization of the DINA [123] - the Deterministic Input, Noisy “And” gate model.
Several other commonly used models can also be derived from G-DINA as special cases
and we introduce them as well. One of them, the A-CDM (Additive CDM) will also
be used in this paper. However, it is important to note that two additional general
frameworks for diagnostic modeling are also available and discussed in the literature. [124]
introduced the General Diagnostic Model (GDM) and [125] introduced the Loglinear
Cognitive Diagnostic Model (LCDM). Both these models express log-odds of correct
responses in terms of a linear function of required skills. The original form of the
GDM focused on main effects of each skills, whereas LCDM included skill interactions
as well. All these frameworks fall under the general umbrella of Cognitive Diagnostic
Models. [125, 126] discuss equivalence relationships between models across the three
generalized frameworks.

1.2.2.1 Notation

We begin by clarifying the notation used for all CDMs discussed in the present work.
These notations are critical because they have been updated for additional clarity and
consistency vis-a-vis the original works discussing the models.

• N people/test-takers/respondents indexed by i = 1, 2, ..., N

• J items on the assessment indexed by j = 1, 2, ..., J

• X[NXJ ] is the dichotomous observed item response matrix with Xij denoting the
correctness of person i’s response on item j. Xij = 1 indicates a correct response
and Xij = 0 an incorrect one.

• ηij denotes the latent item response of person i on item j. ηij are unobserved.

• K skills/attributes indexed by k = 1, 2, ..., K
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• Q[JXK] is the expert-specified dichotomous matrix indicating whether skill k is
required to answer item j correctly.

• αc[K] specifies the cth configuration of skills or a skill profile and is a vector of
length K. There are a total of 2K possible skill profiles i.e. c = 1, 2, ..., 2K

• ai[K] is individual i’s skill profile which is a vector of length K.

• παc is the joint attribute distribution i.e. joint probability of any skill profile αc.

• γ capture the modeling parameters to include δs from the item response function
(Equation 1.3) and λs from the joint attribute distribution (Equation 1.2.2.2.3). γ′

refers to parameter estimates from the previous EM iteration.

1.2.2.2 Types of models

In this section we describe some of the important CDMs. We begin with a generalized
model and then describe other important models while also showing how they are special
cases of the general model. We discuss the estimation details only for G-DINA because
as discussed in [122] and [127], all other models discussed here can be arrived at through
matrix transformation of parameters of the general model.

1.2.2.2.1 G-DINA model

In this section we briefly describe the Generalized Deterministic Input, Noisy “And”
gate (G-DINA) model [122]. This model is a generalization of the popularly used DINA
model [123] - Deterministic Input, Noisy “And” gate - which includes a ‘deterministic
input’ i.e. the ideal item response is deterministic, ‘noisy’ probability of correct response,
and an ‘And’ gate specifying that this model is non-compensatory and all skills specified
by the Q-matrix are required to answer a given item correctly. G-DINA generalizes this
non-compensatory constraint to incorporate the relationship between presence of skills
in all possible combinations, and considers general specifications of both the IRF as well
as the JAD. This model is also generalized to encompass a variety of link functions in
describing the probability for a person i with skill profile αc to succeed on item j and can
be easily manipulated to derive other widely used CDMs such the DINA (Deterministic
Input, Noisy “And” gate) model [123,128], the DINO (Deterministic Input, Noisy “Or”
gate) model [129], or the additive CDMs. Details of these generalizations are discussed
in [122] and [127]. These papers also discuss the relationships between a large variety of
CDMs and G-DINA.
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[122] proposed a generalized DINA model generalized to incorporate a general
specification for the relationships between mastery or non-mastery of a skill required
to answer an item correctly and the responses on the items themselves. The canonical
form of G-DINA uses the identity link. In our presentation, we modify and clarify some
of the notation without any loss of information. The estimation procedure expands on
the details provided in [122] and [127] to layout the derivations of an EM algorithm for
parameter estimation. Examinees are assumed to be independent in this model.

1.2.2.2.2 Item response function (IRF)

The IRF shown in Equation 1.3 specifies the probability that individual i with attribute
profile αc (ai = αc) answers item j correctly as a function of main and all interaction
effects of possessing any of the skills specified in the Q-matrix. The g is the link function
which is identity in the canonical form. However, the derivations using log or logit function
are also straightforward. When proposing G-DINA, [122] use a reduced attribute vector
for each item j, Kj. Despite the role of the Q-matrix in conceptualizing the CDM
framework, the G-DINA model specification does not explicitly utilize the Q-matrix. The
preemptive subsetting of attributes also leads to additional assumptions of skill ordering.
However, this can be avoided by multiplying the appropriate row of the Q-matrix. This
approach clarifies the notation better, is generalized completely, and does not affect the
estimation procedure in any way. Equation 1.3 specifies the IRF.

g[P (Xij = 1|ai = αc)] = δj0 +
K∑
k=1

δjk(Qjk × αck) +
K∑

k′=k+1

K−1∑
k=1

δjkk′(Qjk × αck)(Qjk′ × αck′)+

...+ δj12...K

K∏
k=1

(Qjk × αck),

(1.3)

where δj0 is the intercept term for item j,
δjk is the main effect due to having mastered the kskill on its own,
δjkk′ is the interaction effect due to having mastered subsets of 2 skills jointly,
and δj12...K∗j

is the interaction effect of all skills required for item j.

1.2.2.2.3 Joint attribute distribution (JAD)

The joint attribute distribution πc specifies the probability distribution for attribute
profile αc. This is a function of λs, which are the structural parameters of the JAD. In its
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simplest specification under the assumption of independence of attributes, the parameter
space includes separate probabilities of possessing each skill. In the simple case,

πc =
K∏
k=1

λk
αc

k [1− λk]1−α
c

k , (1.4)

where αck = 1 indicates that under skill profile αc, the kth skill is mastered. The
parameter λs in this case are the probabilities of mastering each skill -

λ = [P (αc1 = 1), ..., P (αck = 1), ..., P (αcK = 1)]. (1.5)

Another example of a simple parametrization is the saturated model. The saturated
model has 2K values and 2K − 1 parameters - ν = [π1, ..., π2K−1]T - one for each possible
combination of K skills minus one, capturing the joint probability of each skill profile.
These are also known as the mixing proportion parameters and have a constraint that they
must sum up to 1 -∑2K

c=1 πc = 1. Hence the 2K − 1 parameters instead of 2K . Additionally,
more complex attribute distributions and their implications are also discussed in the
literature.

1.2.2.2.4 DINA model

DINA - the Deterministic Input, Noisy "And" gate model - was introduced by [130] and
is a widely used CDM. DINA stipulates that individual i can answer question j correctly
only if the individual possesses all the skills specified as per Qj - the jth row of the
Q-matrix. This is a non-compensatory model i.e. a respondent who lacks any of the
skills required for a given item cannot compensate for that deficiency in any other way.
For respondent i and item j, the latent dichotomous response ηij can be written as,

ηij =
K∏
k=1

[aik]Qjk , (1.6)

where ηij is the latent/unobserved response, ai is person i’s skill composition and Qj

is item j’s skill requirement. Both aik and Qjk are binary quantities specifying whether
person i possesses skill k or not, and whether item j needs skill or not, respectively.
Therefore,
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ηij = 1 if person i possesses all skills required for item j

(can have more but not fewer) ,

ηij = 0 otherwise. (1.7)

However, ai are not observed for any individual. Therefore, we have to account for
the possibility that ηij does not reflect whether individual i has truly mastered or not
mastered the skills required for item j. We define slippage as the instance in which the
observed response Xij is incorrect even if the individual has all the required skills, and
define guessing as the inverse where Xij is correct even if the individual does not have
the requisite skills. Therefore,

Guessing: gj = P (Xij = 1|ηij = 0); j = 1, 2, ..., J, and (1.7)

Slippage: sj = P (Xij = 0|ηij = 1); j = 1, 2, ..., J. (1.8)

The guessing parameter for item j, gj , is the probability that an individual who does
not have all the skills required for item j will still answer it correctly. The slippage
parameter for item j, sj, is the probability that an individual who does possess all
the skills required for item j will give an incorrect answer. DINA is a special case of
G-DINA where all but the highest level of interaction is set to zero. In the G-DINA
IRF in Equation 1.3, the intercept term, δj0, is the guessing parameter gj and the last
term, δj12...K , which is the coefficient of an interaction between all skills is 1 − sj, the
probability of answering an item correctly if all required skills are possessed. [125] discuss
the constraint that (1− sj) > gj i.e. an examinee who has mastered all required skills
has a higher probability of answering item j correctly than the examinee’s probability of
answering correctly if all the required skills are not mastered. However, this constraint is
not necessarily incorporated into the estimation procedure.

In Equation 1.11, ai was presumed known. However, since skills among individuals
are unobserved, we introduce skill profiles or classes α to specify the combination of skills
possessed by an individual. In cases where an individual can possess any combination
of the K skills, there are 2K possible αs. This is assumed to be the case for DINA
and is referred to as the saturated skill distribution. The saturated model has 2K − 1
parameters in the Joint Attribute Distribution (JAD) - ν = [π1, ..., π2K−1]T - one for each
possible combination of K skills minus one, capturing the joint probability of each skill
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profile. Additionally, more complex attribute distributions and their implications are
also discussed in the literature. Resultantly,

P (Xij = 1|ai = α,gj, sj) = (1− sj)ηijg
(1−ηij)
j (1.9)

There are a total of 2 ∗ J + 2k − 1 parameters in a DINA model with one guessing
gj and one slippage sj parameter for each of the J items, and 2k − 1 probabilities of
skill profiles, αs, with the constraint that they must add up to 1. Estimates of these
parameters are utilized for further estimating three quantities - 1) skill distribution for
each latent skill, 2) distribution of each of the 2k skill classes or profiles, and 3) individual
skill profiles.

We assume local independence (Xij|ai) |= Xij′∀i i.e. conditional on an individual’s
skill profile, their responses on all the items are independent of each other. Additionally,
test-takers are assumed to be mutually independent of each other. Provided all this
information, we treat Xijs to be Bernoulli and write the following:

P (Xi|ai = α,gj, sj) =
J∏
j=1

P (Xij = 1|ai = α,gj, sj)Xij [1− P (Xij = 1|ai = α,gj, sj)](1−Xij).

(1.10)

1.2.2.2.5 DINO model

The Deterministic Input, Noisy "Or" gate model, or DINO, is another popular CDM.
This is the compensatory counterpart of the DINA model where the “Or” gate specifies
that the probability of answering an item correctly is based on whether at least one
of the skills required for that item has been mastered. Mastering each additional skill
increases the probability of a correct answer. [129] introduced this model and discussed
that this model is most effective in psychological assessments in which diagnosis may
depend on the presence or absence of individual attributes. We write the unobserved
response ωij as,

ωij = 1−
K∏
k=1

(1− aik)Qjk , (1.11)

capturing the two groups of respondents - those with at least one of the required
skills and those with none of them. DINO also estimates the slippage (sj) and guessing
(gj) parameters, similar to DINA, through the item response function,
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P (Xij = 1|ai = α,gj, sj) = (1− sj)ωijg
(1−ωij)
j . (1.12)

DINO model can be derived from G-DINA by writing the IRF in Equation 1.3 as
g[P (Xij = 1|ai = α)] = δj0 + δjk(Qjk × αk) where the intercept term, δj0, is still the
guessing parameter gj, and the δjk = −δjk′k′′ = ... = (−1)K+1δj12...K last term, δj12...K .

1.2.2.2.6 A-CDM model

The A-CDM or Additive CDM [122] can be thought of as the main effects model in
which all interaction terms in G-DINA IRF in Equation 1.3 are set to zero. In this model,
mastering each of the required skills for item j increases the probability of success on
that item. Th IRF is written as,

g[P (Xij = 1|ai = α)] = δj0 +
K∑
k=1

δjk(Qjk × αk) (1.13)

When identity link is applied to Equation 1.13, this model is known as the A-CDM.
When g(.) is a logit link, this model is known as the Logistic Linear Model (LLM) [131],
and if g(.) is a log link, the model becomes Reduced Reparametrized Unified Model
(R-RUM) [132].

1.2.2.3 Parameter estimation

Estimation of CDM parameters has been discussed at some length in [128] for the DINA
model (Section 1.2.2.2.4) and [122] for the G-DINA model (Section 1.2.2.2.1). Maximum
likelihood estimates (MLE) of the parameters and covariance of the estimators based
on inverse of the Hessian matrix evaluated at the MLE would involve the unobserved
individual skill profiles. The expectation-maximization (EM) algorithm [133] would be
an effective tool for such an estimation situation. The EM algorithm involves taking an
expectation of the complete data loglikelihood (lcomp) over the missing data in the E-step
i.e. the expectation step. The complete data loglikelihood assumes that individual skill
profiles, ais, are known. The maximization step, known as the M-step, maximizes results
from the E-step over the parameters. The algorithm iterates until convergence. Since ais
are assumed to be known, we do need to sum over all possible skill profiles in lcomp. For
the G-DINA model, the complete data loglikelihood is as follows:
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lcomp(γ) = log
N∏
i=1

L(Xi|ai = αc)P (αc) (1.14)

= log
N∏
i=1

(
P (αc)

J∏
j=1

L(Xij|ai = αc)
)

(1.15)

= log
N∏
i=1

(
P (αc)

J∏
j=1

P (Xij = 1|ai = αc)Xij

(
1− P (Xij = 1|ai = αc)

)1−Xij
)
(1.16)

=
∑
i

logP (αc) +
∑
i,j

(
Xij logP (Xij = 1|ai = αc) + (1−Xij) log

(
1− P (Xij = 1|ai = αc)

))
(1.17)

[128] claim to implement an EM algorithm to estimate DINA model parameters.
However, derivations presented in this work take a direct differentiation of the observed
data loglikelihood with respect to the DINA parameters, without the expectation step
from the EM. The observed data likelihood (lobs), sometimes referred to as the marginal
loglikelihood would include a sum over all possible skill profiles ai can take because the
skill profiles are not observed.

lobs(γ) = log
N∏
i=1

2K∑
c=1

L(Xi|ai = αc)P (αc) (1.18)

= log
N∏
i=1

J∏
j=1

2K∑
c=1

(
P (αc)L(Xij|ai = αc)

)
(1.19)

= log
N∏
i=1

J∏
j=1

2K∑
c=1

(
P (αc)P (Xij = 1|ai = αc)Xij

(
1− P (Xij = 1|ai = αc)

)1−Xij
)
(1.20)

=
∑
i,j

log
2K∑
c=1

(
P (αc)P (Xij = 1|ai = αc)Xij

(
1− P (Xij = 1|ai = αc)

)1−Xij
)

(1.21)

=
∑
i,j

log
2K∑
c=1

( K∏
k=1

λk
αc

k [1− λk]1−α
c

kP (Xij = 1|ai = αc)Xij

(
1− P (Xij = 1|ai = αc)

)1−Xij
)

(1.22)

[122] take a similar approach with G-DINA. However, this work obtains parameter es-
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timates by maximizing the marginal loglilkelihood directly with respect to the unobserved
skill profiles. Unlike an EM, the properties of this algorithm, particularly pertaining
to the expected convergence, are not outlined in these works. However, it appears to
provide a closed-form solution and would be certainly easier to implement than EM
would be. According to [122], standard errors for parameter estimates of G-DINA are
calculated using the multivariate delta method.

[127], in laying out the R package GDINA, specify that parameters are estimating
using an EM algorithm. Further, [127] specify a solution for the E-step which can be
matched by taking an expectation of the complete data loglikelihood in Equation 1.17
with respect to the G-DINA parameters. However, the M-step is not outlined in [127]
and its solution is difficult to derive in closed form.

1.2.2.4 Model comparison

Studies have investigated best-fitting CDMs by fitting multiple models to single datasets,
or to subsets separated by countries, classrooms, or even at item-by-item basis [134–136].
[135] analyzed English as Second Language (ESL) grammar test performance using the
Examination for the Certificate of Proficiency in English (ECPE) data by fitting a full
LCDM model as a first step. Consequently, various CDMs were fit at the item-level
to determine best fit based on Root Mean Squared Error (RMSE), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) for each item. [134] fit DINA,
DINO, NIDO, C-RUM models to TOEFL reading and listening data to determine best
model fit using comparable measures as [135]. [136] also fit a variety of CDMs as well as
IRT models at the country-level and item-level in analyzing the Trends in International
Mathematics and Science Study (TIMSS) 2007 data to find the empirically best-fitting
model based on a variety of model comparison metrics.

These models search for different model across the spectrum - parsimonious models
(DINA, DINO), main effects models (A-CDM, LLM, R-RUM), and a saturated G-DINA,
or even IRT models. Since each of these models may have varying underlying assumptions
and differ in substantive interpretations, such model comparisons that rely solely based on
empirically finding best fits based on model diagnostics such as AIC, BIC, loglikelihood,
or other absolute measures. We need to ask the questions - which assumptions and
modeling choices can we make most sense of for the given application? This is the same
issue with the ‘finding the best q-matrix’ algorithm.

On the other hand, [137] compared model fits under a variety of Q-matrix and model
mis-specifications through extensive simulation studies. [138] considered item-fit under the
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G-DINA model and [139] proposed a two-step likelihood ratio test (LRT) for item-level
model comparison under G-DINA as well. [140] introduced a framework for dimensionality
assessment that considers whether the number of attributes specified in the Q-matrix is
appropriate. [141] discussed a Bayesian method for estimating the Q-matrix using priors
that capture expert knowledge. Each Q-matrix entry is considered to be a bernoulli
and the probability of success is informed by a logistic regression where predictors are
expert knowledge about the items. This method can validate which of the underlying
attributes may be predicted by experts and which residual remain unexplained. In the
same vain as algorithmically discovering the most suitable Q-matrix, [120] proposed a
method for validation of an empirical Q-matrix. This work built on the discrimination
index for DINA specified in [142]. To calculate this index, two groups of respondents are
compared - those with a correct unobserved latent outcome (ηij = 1) and those with the
incorrect outcome (ηij = 0). These two groups can be thought of as respondents with all
the required skills for item j and respondents without those skills. A correctly specified
Q-vector for item j will maximize difference between success probabilities for the two
groups - the discrimination index.

In this work, we focus on developing a fully expert-specified Q-matrix and fitting
only those models which are substantively applicable to the problem at-hand. We also
argue that model comparisons should consider underlying assumptions and substantive
interpretations when choosing the ‘best fitting’ model.

1.2.2.5 Extensions

The CDM framework is expansive, and a variety of models and their extensions have
been discussed in the literature. We highlight some of the work to capture key features
available methodology. Additional developments such as random-effects approach to
modeling DINA parameters [143], differential item functioning (DIF) detection using
CDM [144], incorporating predictors [145,146], and working with missing data [147] have
also been discussed. Here, we focus on three specific categories of developments.

1.2.2.5.1 Methods Focusing on the Q-matrix

All models discussed here are based on a dichotomous Q-matrix specifying whether
mastering the kth skill is required for answering item j correctly. The Ordered Category
Attribute Coding (OCAC) framework in [148] explored the notion that skills contributing
to assessment responses may be specified at or of interest at more than two levels.
These multiple levels need not be mastery levels. They may be interpreted as levels of
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mastery, various steps along the learning path of a skill, or nested learning outcomes. [148]
proposed models which can incorporate expert-specified mixed skill types (binary versus
categorical) or an incomplete Q-matrix where levels of a given skill are discovered through
response data.

[149] distinguished between expert-defined and data-defined polytomous attributes
where a data-defined attribute or skill is discovered through data. However, such
discovered skills are not helpful for assessment design since items cannot be designed
with the purpose of assessing those levels. Expert-defined polytomous attributes can
allow for such test design. This method works with Specific Attribute Level Mastery
(SALM) items, building on the OCAC framework proposed by [148]. SALM items are
targeted to measure specific levels of attributes. The proposed pG-DINA (polytomous
G-DINA) model incorporates M-level attribute(s). Since the number of item parameters
increase quickly for this specification, the method assumed that each respondent is either
above or below a certain level of mastery. Above the threshold level, an individual is
considered to have required mastery to answer the corresponding item(s) correctly. The
Q-matrix denotes the level (say m) of each skill needed to answer correctly. However,
the framing of the problem turns the skill into a dichotomous specification, allowing for
the remainder of the model to match a G-DINA.

[150] also proposed a method to incorporate polytomous attributes into the DINA
model. As a further extension, the Continuous Conjunctive Model (CCM) proposed
by [151], while continuing to assume a dichotomously specified Q-matrix, estimated
examinees’ mastery of a skill along a continuum. However, this model did not include
any item parameters and instead focused on estimating ability profiles based on response
patterns.

1.2.2.5.2 IRT-based Cognitive Diagnosis

When considering latent abilities along a continuum, it is important to trace back the
origins of CDM and how they are tied to IRT. [121] used the term IRT-Based Cognitive
Diagnostic Models and described a method that was a building block of the current form
of CDM. In this IRT-based version, a regression is estimated with item difficulties as the
response and the rows of the Q-matrix as the explanatory variables. The overall goal is
to estimate a classification of respondents into skill classes, probabilities of occurrence of
skill classes, and attribute-specific mastery level. Ability scores from IRT are triangulated
with unusual scoring patterns. These scores are estimated separately through fitting IRT
models on other large datasets for the given assessments, and not as part of the CDM
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estimation.
In the Special Issue 4 of Journal of Educational Measurement (Volume 44), [152]

discussed a selection of IRT-based approaches to skill diagnosis for continuous latent
traits. All of these models are based on continuous attributes only and do not include
any binary or categorical skills. Fischer’s LLTM (Linear Logistic Test Model) [153,154]
modeled a skill θ for each individual which can be thought of as a weighted average of
proficiency levels on all sub-skills needed to answer an item correctly. The Compensatory
Multidimensional IRT (MIRT-C) [155] was essentially a 3 parameter (3PL) IRT with
the ability and discrimination parameters being K-dimensional to reflect an individual’s
mastery over / an item’s discriminatory power vis-a-vis each skill needed to respond to
an item correctly. The non-compensatory (equivalent of “And” in DINA) version used a
2PL IRT [156] instead of a 3PL in [155]. Similar to the non-compensatory version, the
probability of person i responding to item j correctly, given that the item needs a subset
of the K total skills, is dependent on the person’s mastery over the given skills and the
item’s difficulty and discriminatory power vis-a-vis those skills. The Multicomponent
Latent Trait Model (MLTM) [157–159] included an additional term for the probability of
a person succeeding on a specific skill needed for a given item. Therefore, there are two
multiplicative components in this model. First, a component capturing the possibility
that the person can successfully execute all skills needed for an item and can, hence, try to
answer the question correctly as a result. The second component captures guessing which
has to occur in case the respondent fails on one of the required skills. The probability of
success on an individual skill is modeled as a 1PL IRT. Finally, the General Component
Latent Trait Model (GLTM) [157, 158] is a combination of an LLTM and an MLTM
wherein the top level model is MLTM with the difficulty parameter in the 1PL broken
down into sub-sub-skills which contribute to the difficulty of a given skill k.

1.2.2.5.3 Continuous Responses

So far we have discussed CDMs for dichotomously graded assessment responses. However,
various situations can lead to continuous responses. For example, survey responses may
record endorsement of or agreement with a statement along a continuum which can
include a likert scale. Item responses may be graded on a detailed partial scoring scheme.
Probability testing frameworks ask respondents to indicate probabilities of each answer
choice being the correct one. Finally, time taken to complete an assessment can also be
considered a response variable for a CDM, requiring an extension of existing methods. [160]
proposed C-DINA (Continuous DINA), an extension of the DINA model for continuous
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response. In this framework, response variable follows a lognormal distribution which is
considered most appropriate when response is response time. [161] further extended this
method to G-DINA, the C-G-DINA.

Recent works have incorporated speed of responding to an assessment into the CDM
framework in various ways. [162] proposed a method to incorporate response times into
the DINA model to improve classification of skills and skill profiles. [163] incorporated
response times in adaptive testing scenarios where the total test time is limited. [164]
combined response times with response accuracy to measure fluency in using required
skills to answer test questions. [165] discussed a framework for using response times in
addition to item responses when modeling random guessing behaviors. Finally, [150]
proposed the Joint Differential Speed DINA (JDS-DINA) model to incorporate variable
cognitive processing speeds with polytomous attributes to support better feedback and
testing strategies.

1.2.2.6 Applications of CDM

The fraction-subtraction dataset introduced by [166] is the canonical application of
CDM discussed extensively in the literature. The original dataset includes N = 2144
responses on J = 20 items involving subtractions of fractions. Eight attributes (K = 8)
were described by [166] and formalized into a Q-matrix by [167]. This dataset or
a subset of it has been analyzed to introduce methodological developments of CDM
in [122,128,141–143,151,168,169], to name a few. [126] observed that the repeated use
of two datasets - the fraction-subtraction data (46% in articles found by [170]) and the
Examination for the Certificate of Proficiency in English (ECPE) data - is a double-edged
sword. The advantage is that this allows for maintaining comparability across methods.
However, this may have limited wider applications of the methodology to problems from
other areas.

Beyond the use of these traditional datasets, CDM has been applied to other math-
ematics and language testing situations. The Trends in International Mathematics
and Science Study (TIMSS) Assessment data from 1999, 2007, or 2011 have been
analyzed by [136, 145, 146, 171, 172]. Other applications to mathematics testing in-
clude [147, 173], both of which use data from the Program for International Student
Assessment (PISA). Applications of CDM to language or readings tests have been
conducted extensively [123, 134, 135, 174–182]. [183] applied CDM to an assessment
of orthographic processing of language. All these applications have spanned various
geographical areas.
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Even though applications of CDM focus extensively on mathematics and language
testing, [170] also found papers where the construct of interest pertained to mental
health or civic education. It is important to note that [170] only focused on articles in
which applied data analysis was the focus of the work. [129] discussed applications of
CDM to the measurement of psychological disorders. [184] discussed an application in
physics education. There is no commentary in the literature on the complexity involved
in developing Q-matrices across disciplines.

1.2.2.6.1 Application to Statistics Education

Based on our understanding of the literature, an application of cognitive diagnostic
modeling to statistics education, and specifically the measurement of statistical literacy,
would be a novel contribution. In addition to the disciplinary novelty, there is limited
published work discussing cognitive underpinnings of statistical problem solving for a
specific assessment instrument. [69] considered the cognitive load of statistical problem
solving in the context of transfer distance. [16] outlined the thought process involved in
statistical problem-solving, identifying that the synthesis of context and statistical ideas
sets it apart from mathematical problem solving. Previous work has mapped cognitive
skills to statistics learning under Bloom’s taxonomy ( [185]; revised [186]). [187] related
the statistical literacy, reasoning, and thinking framework to the taxonomy, identifying
statistical literacy [8] to be at the lowest level of the cognitive load hierarchy. [188]
related stages of their Problem Solving Approach to levels of the taxonomy. [5] argued
that statistically literate behavior is an outcome of joint knowledge and dispositional
factors, reminding the reader that such behavior requires something beyond cognitive
skills. With this view, we argue that the present work makes a contribution to the
literature by applying CDM to statistics education and by developing a Q-matrix for
statistical literacy measured using research-based assessments.

The remainder of this dissertation is organized as follows. Chapter 2 addresses the
first two research questions: (RQ1) Can an isomorphic instrument measure the same
underlying construct as the original if all isomorphic items are dependent on relevant
contexts? (RQ2) Do students perform comparably on both these assessments? It discusses
the development and pilot of the isomorphic assessment instrument designed to measure
contextualized statistical literacy. Chapter 3 discusses the design, implementation, and
results of the curricular experiment designed to address the following three research
questions: (RQ3): does introducing relevant contexts in a statistics classroom cause
a differential gain in statistical literacy outcomes? (RQ4): does taking an assessment
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of contextualized statistical literacy as a pre-test cause a differential gain in statistical
literacy outcomes? (RQ5): does the interaction between contexts incorporated into
the classroom and type of statistical literacy assessment cause a differential gain in
statistical literacy outcomes? Finally, Chapter 4 discusses the development of a Q-matrix
and analyses of data from the pilot study in Chapter 2 using the Cognitive Diagnostic
Modeling framework. It answers the following two research questions: (RQ6): Over
and above the component skills identified as important for answering questions on the
assessment for statistical literacy, does a latent ‘context familiarity’ affect the probability
of correctly answering the items? (RQ7): Can the modified assessment of contextualized
statistical literacy (MBLIS) provide feedback on the same statistical skills as BLIS?
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Chapter 2 |
Examining the Role of Context in
Statistical Literacy Outcomes us-
ing an Isomorphic Assessment In-
strument1

2.1 Introduction
The importance and role of statistical literacy has been discussed extensively in the
statistics education literature [1–14]. Guiding documents which inform researchers
and practitioners alike, such as the GAISE College Report [18], Consortium for the
Advancement of Undergraduate Statistics Education (CAUSE) Research Report [19],
International Handbook of Research in Statistics Education [1], and GAISE PreK-12
Report [20], highlight this importance vis-a-vis cognitive outcomes, curriculum, teaching
practices, and assessments. The American Statistical Association discusses ‘(to) build a
statistically literate society’ as one of its objectives under the strategic goal of statistics
education [21]. In parallel, the PARIS21 partnership [22] among global organizations
including United Nations, European Union, Organisation for Economic Co-operation
and Development, International Monetary Fund, and the World Bank also considers
statistical literacy to be a focus of its work. Even though definitions of statistical literacy
vary in some aspects [23], mainstream conceptualizations of statistical literacy agree that
it comprises of a skillset which an individual would benefit from applying to contexts
outside of a classroom, a skillset which would allow people to engage with contexts

1This chapter, including the associated Appendix B, has been submitted as an article to the Statistics
Education Research Journal (SERJ).

28



relevant to them from a data-driven point of view. Further, the literature also converges
on a firm belief that statistical literacy plays a critical role in promoting a citizenry that
is more capable of understanding the world around them and making evidence-based
decisions in their private and public lives. Under this premise, our work asks the following
question: Are students of statistics able to make sense of statistical insights encountered
in their day-to-day lives, especially pertaining to relevant topics? Such an ability is
considered to be an important marker of a statistically literate citizen [24].

2.1.1 Role of Context and Transfer

Considerable amount of work has discussed the value of contexts and powerful ways
of introducing contexts which are familiar to the students into the curriculum [26,44–
47]. Concurrently, studies focusing on improving statistical literacy among students
at various levels have also been conducted [27–32]. However, even though previous
work has measured statistically literate behavior outside of a classroom setting [60,61],
there is limited work proposing research-based assessments of statistical literacy [62–
64]. Assuming that applying statistical literacy skills to new contexts would involve a
knowledge transfer [65–67], we distinguish statistical literacy skills from the ability to
apply those skills to topics relevant in our lives, and define contextualized statistical
literacy. Such a transfer, though it is central to the purpose of statistical literacy, is
not encoded in the definition of statistical literacy. Contextualized statistical literacy
is statistical literacy as it pertains to relevant contexts, where relevant contexts are
conceptualized as ones that are societally relevant at a given time and people would have
engaged with and thought about on their own. The key contribution of this work is in
creating an instrument to measure contextualized statistical literacy using an existing
research-based assessment of statistical literacy allowing us to examine respondents’
statistical literacy skills when they are required to apply those in relevant contexts.

As underscored by [68], the terms near and far transfer are relative and the distance of
transfer implied in those terms is open to interpretation. [69] discusses distance vis-a-vis
the similarity to problems encountered during instruction. [70] highlight that distance
of transfer is an intuitive notion and discuss it as a matter of similarity and familiarity.
Near transfer is across contexts students can be expected to be familiar with because
they have encountered similar contexts before during instruction or practice. Whereas
far transfer involves transfer across contexts which may not be similar, on the surface,
to anything students have encountered before. According to [67], any application of
statistical literacy skills can be considered to be a transfer problem. However, when
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considering contextualized statistical literacy, the question of distance of transfer is
not straightforward. On one hand, encountering statistical constructs in new contexts
increases the distance of transfer. On the other hand, though, irrespective of whether
or not these relevant contexts have been introduced in the classroom before, since we
conceptualize relevance as familiarity and engagement outside of the classroom, it can
be considered to be nearer transfer for a respondent of an assessment of contextualized
statistical literacy. When considering this transfer, we must also be also mindful of
possible suspension of sense-making [71, 72] whereby familiarity with the context maybe
foregone in favor of focusing on the underlying statistical idea.

2.1.2 Isomorphic Assessment

To measure the transfer of statistical literacy skills to relevant contexts, we created an
isomorphic version of an existing research-based assessment of statistical literacy. An
isomorphic question or item is identical to a base item in structure (concept, phrasing,
as well as distractors) and differs only in the context, continuing to measure the same
underlying construct [73–75]. Isomorphic items can also be visualized as items with
a common base template differing only in context [68]. [76] and [77] refer to these as
structural isomorphs to highlight that this framework itself does not guarantee that
respondents’ cognitive processes in answering these tasks will be comparable. Isomorphic
tasks have been studied extensively in the physics education literature [78–83]. Some
work has also been conducted in the computer science education domain [74,84]. It is
worth noting that there is limited work in the statistics education research literature
which studies isomorphs. Most of the aforementioned studies deployed isomorphs to
gauge learning and understand common misconceptions, and designed the study in such
a way that each respondent solved all of the two or more isomorphic problems at different
time points in a random order. [78] study was the only exception where each respondent
was assigned to one of the two versions of the assessment. Previous work using isomorphic
tasks finds that transfer across such tasks is difficult in most circumstances even if only
incidental features are switched. There is some evidence, e.g. [79], that more practice
on the base topics improves performance as discussed by [67]. The findings in [85] are
valuable given the objective of this work. Their work studied transfer across contexts
which cross the disciplinary boundaries in which the construct is situated. They studied
the effects of algebraic training on contexts within mathematics as well as in physics to
find that training in mathematics facilitated transfer to physics but not the other way
round. Even though every context in a statistics problem is external to the discipline
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itself, this work is important to consider because it provides some evidence of facilitating
transfer where contextual information has been provided. This would indicate that
familiarity with relevant contexts should improve student performance on statistical
literacy tasks as compared to an isomorph based on potentially unfamiliar tasks barring
any suspension of sense making [71,72].

These studies of transfer using isomorphic tasks deploy a variety of types of assessments.
However, very few of them use research-based assessments. [84] discuss the importance of
developing assessment instruments which undergo rigorous process of collecting reliability
and validity evidence, and for researchers to adopt these for further research. [86], in
outlining ‘a practical approach to validation’ of research-based assessments support
the value and importance of this in step 4 - ‘Identify candidate instruments and/or
create/adapt a new instrument’ - with a reminder to first look for previously developed
instruments. We chose the Basic Literacy in Statistics (BLIS) assessment [17,64] because
of it’s sole focus on statistical literacy and the extensive research conducted to gather
reliability evidence and develop a validity argument for its intended use. We created
an isomorphic version of BLIS, i.e., M-BLIS hereafter, to answer the following research
questions: (RQ1) Can an isomorphic instrument measure the same underlying construct
as the original if all isomorphic items are dependent on relevant contexts? (RQ2) Do
students perform comparably on both these assessments? This chapter describes the
development of M-BLIS, and the design and analysis of a study comparing the original
and the isomorphic assessment instruments.

2.2 Methodology
This section discusses the development of M-BLIS, design of the pilot study, and statistical
methods used to analyze data from the study. Section 2.2.1 details the process of creating
M-BLIS, including the choice of relevant contexts and parameters considered when
developing isomorphic items. Additionally, it provides examples of modified tasks. We
then outline (Section 2.2.2) the expert review process and the pilot study conducted at a
large public research university in the eastern United States. Data from the pilot study
are analyzed with the two research questions (RQs) outlined above. Finally, Section 2.2.3
describes the analytical methods.
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2.2.1 Assessment Modification

Once BLIS was chosen as the instrument for measuring statistical literacy, it was modified
to include isomorphic items. These isomorphic items were intended to depend on ‘relevant
contexts’ - contexts which are societally relevant at the time and test-takers would have
engaged with on their own outside of, and apart from, class. Various topic options
such as climate change, immigration, race-related issues, and the COVID-19 pandemic
were considered. The pandemic impacted the life of all individuals, presenting a unique
opportunity for research in the form of a topic everyone could engage with and find
relevant. We acknowledge the devastating effects of the pandemic and the psychological
impact this may have on individual test-taker’s performance. If a test-taker’s performance
is adversely affected by their emotional reaction to a given context (e.g., due to traumatic
hardship or death of a loved one), we have limited ability to separate out the effect of
the emotional reaction from their conceptual understanding. We must also consider the
ethics of compelling a test-taker to look at statistics about a potentially sensitive topic
such as the number of deaths due to the pandemic. Having said that, this issue is not
unique to the COVID-19 pandemic. There is a broader question of whether and how to
incorporate potentially sensitive topics on assessments while balancing the competing
goals of encouraging students to look at relevant societal issues from a statistical lens
on one hand, and the ethical and measurement-related issues arising as a result of the
sensitive topic affecting test-takers differentially on the other hand. For the purpose of
this work, we decided to proceed with the COVID-19 pandemic as the broader context
with a clear intention of excluding any statistics pertaining to severe illness, loss of
life or livelihood, and other serious health effects including but not limited to mental
health. While mortality and hospitalization during the COVID-19 pandemic were almost
certainly engaging contexts, the strong negative association for students who may have
endured such trauma or loss would likely evoke an emotional response. Such contexts
were avoided mainly as a matter of compassion. Additionally, though, such contexts
could have prevented the respondent from completing the assessment to the best of their
ability. Two competing requirements of improving engagement and reducing emotional
impact were balanced during the process of creating the isomorphic assessment. Contexts
such as sleep length among college students, dental care choices, flight cancellations,
restaurant visit frequency, and air pollution, all during the COVID-19 pandemic, were
incorporated.

Each item went through extensive considerations. Before looking for data and reports
from which contexts and statistics were sourced, following were noted for each item
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on BLIS: type(s) of variable(s), parameter(s) of interest, type of sample, type of study
(observational versus experimental), and whether creation of the item required access
to raw data or summary statistics or neither. These considerations are presented in
the modified test blueprint (Table A.2). Additionally, keywords were considered in an
attempt to find a context which could match the original item as closely as possible.
Table 2.1 demonstrates an item for which an alternative study with a highly comparable
context was found. The original item was based on a real but not widely relevant context.
This item may be considered one of the purest forms of an isomorph in M-BLIS. The
bolded text highlights common words across the two versions, excluding singulars or
plurals.

Original item stem Modified item stem
Dogs have a very strong sense of smell
and have been trained to sniff various
objects to pick up different scents. An
experiment was conducted with a dog
in Japan who was trained to smell bowel
cancer in stool samples. In a test, the
dog was presented with five stool sam-
ples; one from a cancer patient and four
from healthy people. The dog indi-
cated which stool sample was from the
cancer patient. This was repeated a total of
38 times. Out of the 38 tests, the dog cor-
rectly identified the cancer sample 37 times.
A hypothesis test was conducted to see
if this result could have happened by
chance alone. The alternative hypothe-
sis is that the dog correctly identifies
cancer more than one fifth of the time.
The p-value is less than .001. Assum-
ing it was a well-designed study, use a
significance level of .05 to make a deci-
sion.

Dogs have a very strong sense of smell
and have been trained to sniff various
objects to pick up different scents. A
pilot experiment was conducted with
dogs in Germany who were trained to
smell COVID-19 in saliva samples. In the
test, one dog was presented with 115
saliva samples; 21 from COVID-19 patients
and 94 from healthy people. The dog in-
dicated which saliva samples were from
the COVID-19 patients. Out of the 21
COVID-19 positive samples, the dog cor-
rectly identified 20 of them. A hypoth-
esis test was conducted to see if this
result could have happened by chance
alone. The alternative hypothesis is
that the dog correctly identifies COVID-
19more than half the times. The p-value
is less than .001. Assuming it was a
well-designed study, use a significance
level of .05 to make a decision. Source:
Research article.

Table 2.1. Real from real data to Real from relevant data
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Each original item was also categorized based on the scale discussed in the GAISE
College Report [18]: Naked data, Realistic data, Real data, Real data from a real study.
This is reflected in the table caption. This categorization served a dual purpose. The
first and broader purpose of considering this categorization was to analyze whether any
observable effect is associated with with the degree of change from the original data
category to the modified category (real data from a relevant study). Secondly, it allowed
us to understand which isomorphs needed to go beyond simply replacing context-specific
words. For example, the item in Table 2.2 was based on naked data in the original BLIS.
However, given the purpose of this work, the change had to go beyond a simple isomorph.
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Original item Modified item
The distribution for a population of mea-
surements is presented below.

For scientific credibility, journal articles are re-
viewed by other scientists before publication.
This process is called peer-review. Researchers
collected data to study how the pandemic has af-
fected the peer-review timelines for six Ecology
journals. The plot below shows the distribu-
tion of number of days taken by all reviewers to
review papers assigned to them.

A sample of 10 randomly selected values
will be taken from the population and the
sample mean will be calculated. Which of
the following intervals is MOST likely to
include the sample mean?

A sample of 10 randomly selected papers will
be taken from this population and the sample
mean will be calculated. Which of the following
intervals is MOST likely to include the sample
mean? Source: Research article.

• 6 to 7

• 8 to 9

• 9 to 10

• 10 to 11

• 0 to 10

• 10 to 20

• 20 to 30

• 40 to 50

Table 2.2. Naked to Relevant

In contrast, Table 2.3 demonstrates an item which was based on real data from a
real study, leading to an isomorph that retained the structure of the original item very
closely.
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Original item stem Modified item stem
The Pew Research Center surveyed a nation-
ally representative group of 1,002 American
adults in 2013. Of these adults, 21% have
had an email or social networking account
compromised. Identify the population about
which the Pew Research Center can make
inferences from the survey results and the
sample from that population.

The Pew Research Center surveyed a nation-
ally representative group of 12,648 U.S. adults
in November 2020. Of these adults, 62% said
they would be uncomfortable being among
the first to get the vaccine for COVID-19.
Identify the population about which the Pew
Research Center can make inferences from
the survey results and the sample from that
population. Source: Pew Research Center.

Table 2.3. Real from real data to Real from relevant data

For each modified item, the source link was provided at the end of the prompt. It
was added on a separate line with the word “Source” followed by a very short key phrase
identifying the source with a hyperlink. This was intended to underscore the authenticity
and credibility of the contexts presented in the item without distracting the test-taker
from the key task. During a think-aloud conducted prior to field testing, a respondent
explicitly stated that this added legitimacy to the questions in the student’s mind.

The stringent requirement to retain the structural integrity of item phrasing and the
statistical idea in the isomorph was loosened for two items. The modified context for the
item in Table 2.4 was powerful enough to compel such a concession.
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Original item stem Modified item stem
According to the National Cancer In-
stitute, the probability of a man in the
United States developing prostate can-
cer at some point during his lifetime is
.15. What does the statistic, .15, mean
in the context of this report from the
National Cancer Institute?

Consider an individual fitting the following descrip-
tion.

• 20-year-old female,

• lives alone near a university campus,

• is exposed to an average of 10 people each
week,

• has no underlying medical complications,

• is asymptomatic and unvaccinated,

• and follows CDC’s guidance.

According to the "19andMe" tool developed by
Mathematica, her probability of catching COVID-
19 through community transmission in a week is
.0024, as of March 30, 2021. What does the statis-
tic, .0024, mean in the context of this calculation
from Mathematica? Source: Online calculator.

Table 2.4. Context changed considerably

Finally, the item in Table 2.5 was a subject of lengthy discussions, some of which
included the expert reviewers. The implicit assumption of a coin being unbiased and
our intuition about 50% of them landing on heads benefitted the original item. However,
upon deliberation, it was agreed that it is extremely hard to find other phenomena which
have an unconditional 0.5 probability of occurrence which is understood intuitively, and
therefore the substantial change in wording was included.
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Original item stem Modified item stem
Two students are flipping coins
and recording whether or not the
coin landed heads up. One stu-
dent flips a coin 50 times and
the other student flips a coin 100
times. Which student is more
likely to get 48% to 52% of their
coin flips heads up?

Penn State University administrators surveyed all under-
graduate students to capture feedback from the entire
student body on several issues. As a result, they learned
that 86% of all students planned to return in fall 2020.
Despite knowing the proportion for all Penn State stu-
dents as a whole, several instructors surveyed their own
classes in order to be sensitive to the views of their stu-
dents. One instructor had a class with 50 students and
another instructor had a class with 100 students. Assum-
ing both classes were representative of the entire student
body at Penn State, which instructor was more likely
to find that 84% to 88% of their students would plan to
return in fall 2020? Source: Adapted from Penn State
News.

Table 2.5. Implicit assumption changed

In addition to the factors discussed above, we also considered peculiarities such as
the distance of the sample statistic from the parameter, scale of the p-value, whether a
small sample was required, and overall length (in characters) of the names of variables or
context description. The original assessment was unchanged from the version provided
in [17]. For items that involved a visualization, plots were created using the ggplot2
package [189] in R [190]. Even though some of the original visualizations were created
using a the plotrix package [191], same aesthetics and scales were maintained in the
modified visualizations.

2.2.2 Study Design

To investigate whether M-BLIS continues to measure the same underlying constructs and
whether students perform comparably on both assessments, we gathered data to generate
reliability evidence and develop a validity argument using methods recommended in
the Standards [192]. These included expert reviews, think aloud interviews, and a pilot
study, though they were adapted to be suitable for the development of an isomorphic
assessment instead of a new instrument.

Three expert reviewers looked at the modified instrument with the prompt, “Please
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consider each modified item vis-a-vis the original item and comment on whether they
are comparable in measuring the underlying learning outcome.” The instrument was
updated based on expert feedback for a pilot study. In the pilot instrument, six out of
the 37 total items were retained as anchors. This allowed us to equate scores under the
internal-anchor design discussed in [193].

This updated instrument was piloted in a study conducted at a large public research
university in the eastern United States. The pilot was designed to address the two
questions described above. (RQ1) How does the functioning of the isomorphic items
compare to the functioning of the original assessment? (RQ2) Is there evidence to suggest
that test-takers respond to the underlying statistical question differentially if the item
is based on a relevant context? To facilitate this investigation, we built two levels of
comparisons. First, consenting test-takers were randomly assigned to take either BLIS or
MBLIS. This gave us a baseline on the original assessment within the target population,
facilitating a comparison of results across the results from [17]’s field test and our pilot
study. This allowed us to answer the main research question - is MBLIS measuring the
same constructs as BLIS? To add another layer of comparison, five randomly chosen items
from the original assessment were retained as anchors. One of the randomly selected
item numbers was a part of a testlet leading to six anchor items. Resultantly, M-BLIS
featured 6 original and 31 modified items. Alternative criteria such as model-based
difficulty ranking and topic were considered for the determination of the anchor items.
However, a random selection was decided to be the best choice at the end.

The original instrument was developed specifically for an undergraduate introductory
statistics student learning under the simulation-based inference curriculum. Although
learning under a different framework (Lock5 curriculum instead of CATALST), the
undergraduate introductory statistics course at the aforemention university matched this
description, providing in its students an easy choice of group to use as pilot subjects.
The original instrument was studied as a mid-semester and end-of-semester evaluation.
Therefore, the pilot study deployed it as a post test in the aforementioned class.

Finally, an extensive survey was attached at the end of the assessment to learn
student demographics, their interest in and engagement with certain relevant topics such
as diversity questions, immigration, politics and governance, and their experience of
interacting with items pertaining to the pandemic (given only to M-BLIS respondents).
The last subset included questions such as whether responding to items regarding the
pandemic was discomforting to them and whether their ability to consider the statistical
question was affected by the contexts.
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The data collected from this pilot will be used to further validate M-BLIS. Learning
about differential performance across the two assessments within similar subgroups of
students will provide us with useful information on the performance of the modified
instrument. Further, item-by-item comparison across the instruments will allow us to
look more closely at the items which may perform differently. These findings will be
most instrumental in us developing the validity and reliability argument for M-BLIS.

2.2.3 Statistical Methodology

Data from the pilot study were analyzed with two key goals in mind. First, are the
two assessments (BLIS and M-BLIS) comparable in measuring underlying constructs?
Second, did the test-takers perform comparably on both the assessments? Though both
sets of analyses were conducted using the same student performance data, separating
out these two goals helps us discuss results accordingly.

To compare the two assessments themselves, we evaluated measures of reliability and
measures which can contribute towards a validity argument for the use of the instrument.
All the measures in this set are replicated based on the analyses in [17]. As a measure of
reliability, we consider the coefficient of alpha to compare internal consistency among
items. In order to check the assumptions of Item Response Theory (IRT) models which
contribute towards the validity argument, we conduct principal component analysis to
check two assumptions of the IRT models - unidimensionality and local independence.
Scree plots based on PCA allow us to comment on that. Single-factor confirmatory
factor analysis allow us to further comment on unidimensionality. Finally, we also fit
Rasch, 2PL, and PC models and look at item information curves from the best of these
models to learn whether item difficulties are comparable across the two assessments.
Test information functions and standard errors of measurement are also considered for
each instrument. On the validity side, we look at item parameters for partial credit
(PC) model with 32 items and 4 testlets, and item characteristic curves for each item
or testlet. It is important to note that even though we may occasionally compare our
results to the original study conducted in form of field test in [17], a separate set of
analyses where the pilot study is considered a replication of the original study will be
discussed in forthcoming work. For the purpose of this discussion, we limit ourselves to
analyses which consider whether the two instruments, as suggested by data from our
pilot, function comparably with each other in terms of the reliability measures and pieces
of the validity argument.

To compare student performance more directly, we analyzed data under the classical
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test theory (CTT) framework. Though we acknowledge the advantages of using the IRT
framework when analyzing assessment data, CTT was preferred due to the ease with which
the relationship between test-taker covariates and performance can be interpreted in the
models. Even though recent developments have introduced IRT models with covariates,
CTT-based models are also easier to interpret. We fit multiple linear regression models -
with total scores as the response variable - to understand the differential performance
across two assessments. Type of assessment randomly assigned to a student was the key
explanatory variable of interest. We also included student demographics such as their
gender, whether they are an international student or not, and highest education of a
parent/guardian, as well as responses to pertinent survey questions. These analyses were
conducted using all responses, as well as the complete-only responses. In this paper, we
present the latter.

2.3 Results

2.3.1 Comparing Assessment Instruments

In this section, we address the first research question (RQ1): do the two instruments,
BLIS and M-BLIS, perform comparably?

2.3.1.1 Summary of Assessment Performance

First we summarize item-by-item performance to highlight key differences. Table 2.6
contains percentage of correct responses per item. The Difference column is calculated as
correctBLIS− correctM-BLIS. Table B.7 in the Appendix B tabulates selected-responses i.e.
percentages of respondents who chose each distractor. Shaded blue rows indicate anchor
items which are critical in comparing the two groups of respondents at baseline. Shaded
orange rows highlight items with difference values around or higher than an arbitrary
cutoff of 10%.

Item BLIS M-BLIS Difference BLIS context - GAISE

Q1 74.6 73.2 1.4 Real from real study
Q2 44.0 50.7 -6.7 Realistic
Q3 53.4 52.5 0.9 Real
Q4 83.5 86.2 -2.7 Real
Q5 81.3 84.7 -3.4 Realistic
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Item BLIS M-BLIS Difference BLIS context - GAISE

Q6 73.5 70.7 2.8 Realistic
Q7 35.6 41.1 -5.5 Real from real study
Q8 29.5 32.8 -3.3 Realistic
Q9 65.4 34.0 31.4 Realistic
Q10 56.3 39.2 17.1 Realistic
Q11 42.0 37.1 4.9 Real
Q12 58.3 48.8 9.5 Real from real study
Q13* 37.6 37.6 0.0 Real from real study
Q14 42.8 24.6 18.2 Naked
Q15 63.8 48.5 15.3 Realistic
Q16* 24.6 27.8 -3.2 Realistic
Q17* 46.1 46.8 -0.7 Realistic
Q18 45.9 45.4 0.5 Real from real study
Q19 40.8 38.4 2.4 Real from real study
Q20 37.9 34.3 3.6 Real from real study
Q21 16.5 16.3 0.2 Real from real study
Q22 58.5 61.0 -2.5 Realistic
Q23* 43.4 43.9 -0.5 Real from real study
Q24* 57.2 60.0 -2.8 Real from real study
Q25 55.5 61.6 -6.1 Real from real study
Q26 42.2 42.0 0.2 Real from real study
Q27 38.6 45.0 -6.4 Realistic
Q28 52.7 60.2 -7.5 Real from real study
Q29 52.0 48.9 3.1 Real from real study
Q30 48.3 45.5 2.8 Real from real study
Q31 86.4 83.9 2.5 Realistic
Q32* 48.0 43.6 4.4 Real from real study
Q33 64.4 62.0 2.4 Real from real study
Q34 70.4 65.2 5.2 Real
Q35 23.4 21.6 1.8 Real from real study
Q36 79.0 68.6 10.4 Real
Q37 57.8 54.3 3.5 Real from real study
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Item BLIS M-BLIS Difference BLIS context - GAISE

Table 2.6: Difference in proportion of respondents cor-
rectly answering each item

Anchor items: All anchor items (13, 16, 17, 23, 24, 32) had a difference of less than
5% in the proportion of respondents who chose the correct answer. On four of the five
remaining items, two of which formed a testlet (items 23-24), the M-BLIS group had a
higher percentage of respondents choosing the correct answer. On item 32 , students in
the BLIS group performed better. However, authors must note here that there was an
inconsistency in the presentation of item 16 across the two versions. Aside from this item
16 , the distribution of selected responses was comparable across the two assessments,
providing evidence of the two randomized groups being comparable at baseline.

Isomorphic items: Excluding the anchor items, 22 out of the remaining 31 items
witnessed better performance on BLIS. Further, the items with the highest absolute
difference were ones where the BLIS saw better performance. The items where students
performed better on M-BLIS are unevenly distributed in terms of topic coverage. The
latter half of the assessment was based on inferential statistics and it appears as though
BLIS was easier for those topics. This gives us an early indication that items with
relevant context may have been more difficult to answer. Having said that, about half the
differences were less than 5%, suggesting that the instruments may be more comparable
than suggested by the extreme difference values.

Six items had absolute differences close to or higher than 10%. Respondents performed
better on BLIS on all of these items. Five out of these six items pertained to graphs
and descriptive statistics, and the sixth was based on regression and correlation. The
difficulty levels of these items, according to [17]’s analysis, were well-distributed. Two of
these six items were discussed in Section 2.2.1. The BLIS item which was naked (Table
2.2) and the item where length was changed considerably to accommodate a pertinent
relevant context (Table 2.4) were both in this group. Further, the item which changed
from naked to relevant saw an incorrect option being chosen more frequently than the
correct one, even though this observation must be treated with care since the direction
of the skewness was reversed.

Item 10 warrants a closer look not only because of the high difference in proportion,
but also because of the contexts. The BLIS context for this item was ‘number of hours
of sleep for college students,’ whereas the M-BLIS context was ‘an index capturing
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the strictness of lockdown policies implemented by various countries’ governments in
response to the COVID-19 pandemic.’ This is also true, with a higher difference value,
for item 9. The BLIS context was ‘self-reported confidence about success of students in
an introductory statistics class,’ and the M-BLIS context was ‘rating from Vietnamese
citizens indicating how overwhelming the official news regarding the pandemic has been
for them.’ In contrast, though, four other items (5, 6, 8, and 35) also featured contexts
specific to college students on BLIS and the differences are much smaller for those items.

Finally, we looked at two specific items of interest. Of the five testlets included in
this instrument, only one shared a learning outcome - items 29 and 30. Item 29 required
a respondent to choose the correct null hypothesis and 30 required them to select the
alternative hypothesis for the same stem. Table 2.7 tabulates performance on these two
items.

BLIS M-BLIS
Correct_30 Incorrect_30 Correct_30 Incorrect_30

Correct_Q29 40.9 11.1 35.1 13.8
Incorrect_Q29 7.4 40.6 10.4 40.7

Table 2.7: Performance on testlet items

In the original study, the author decided to treat items 29 and 30 as a testlet because
majority of the students either got both questions right or both of them wrong. Since
this observation holds true for M-BLIS as well, we treat our data as a 36-item-scale (with
one testlet) for the remaining analyses.

2.3.1.2 Reliability Evidence and Evidence for Validity Argument

The expert reviews contribute to the evidence used to develop a validity argument for
the intended use of M-BLIS. A large proportion of expert comments entailed a change
in the structure of the original instrument itself. These comments ranged from minor
changes in wording to discussions regarding whether the item is measuring the construct
it claims to. However, any comment which would have led to a change in the original item
was marked as out of scope for the purpose of this work. Of the 31 items (six anchors)
under consideration, 12 were unchanged and 16 received minor wording and presentation
changes. The language and presentation of one item and all its distractors was updated
significantly. Two items were topics of lengthy discussions. They were almost completely
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rewritten based on expert reviews. One of these two items is presented in Table 2.5
and discussed subsequently. The other isomorph that underwent a significant change
based on expert reviews shared a key characteristic with the item in Table 2.5. The
context in that item also had a binary outcome which could be intuitively assumed to be
equiprobable. In both these cases, the original context of our choice was retained while
rephrasing the item stem. The resulting instrument based on these changes was deployed
in the pilot study discussed in Section 2.2.2.

The coefficient alpha indicates internal consistency among test items. In Table 2.8,
alpha36 is the raw coefficient alpha with the single testlet, predicted32 is the predicted
coefficient alpha for the 32-item instrument using the Spearman-Brown formula, and
alpha32 is the actual coefficient alpha for scores with the other 4 testlets. Scores for the
other four testlet (excluding items 29-30 discussed in Table 2.7) include partial scoring.
The small differences between the 36 and 32 item scales, as well as across the predicted
and calculated values for the 32-item scale, indicate that local independence is not a
concern among testlet items. These metrics were chosen in order to compare our results
with those discussed in [17].

BLIS M-BLIS

alpha_36 0.78 0.77
predicted_32 0.76 0.75
alpha_32 0.78 0.76

Table 2.8: Raw and predicted coefficient alpha values

IRT analyses conducted to develop a validity argument make assumptions of unidi-
mensionality in the assessment scale and local independence among items. Results of
principle Component Analysis (PCA) are summarized as scree plots in Figure 2.1. The
left panel displays scree plots for the 36-item scale and the right panel displays equivalent
plots for the 32-item scale with 4 testlets. The two plots within each panel are very
similar, effectively hiding the grey dots for BLIS. However, this is encouraging evidence
indicating that the two assessment versions are performing comparably.

The eigenvalues level-off after the first factor providing support to the hypothesis that
the assessment instruments both consist of a single factor. We do not observe any clear
differences between the 36 and 32 item assessments. All the scree plots show evidence of
unidimensionality in the instruments. Acceptability of the local independence assumption
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was checked using single-factor confirmatory analyses. Results indicated that including
testlet scores is acceptable to meet the local independence assumption.

Figure 2.1. Scree plots of eigenvalues from PCA

Three IRT models were fit to these data - Rasch model, a 2 parameter logistic (2PL)
model, and a partial credit (PC) model. The Rasch and 2PL models were based on
36-item scale, whereas the PC model was based on the 32-item scale incorporating partial
grading on the four testlets. Table 2.9 summarizes three model fit measures i.e. the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Log
Likelihood (LL). Based on these indices, the PC model seems to perform the best on
both assessments, though the differences in values are fairly small. Therefore, the PC
model will be used for the remainder of the analyses.

BLIS M-BLIS
Rasch 2PL PC Rasch 2PL PC

AIC 27771.08 27171.91 26358.63 26902.39 26246.05 25607.35
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BLIS M-BLIS
Rasch 2PL PC Rasch 2PL PC

BIC 27936.04 27492.91 26523.58 27065.99 26564.41 25770.95
LL -13848.54 -13513.95 -13142.31 -13414.20 -13051.03 -12766.67

Table 2.9: Model summaries for IRT models
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Figure B.2 and Figure B.3 in Appendix B display item information curves. These
curves indicate that the instruments contain items which give us information across the
ability levels, thereby differentiating test-takers across all ability levels. When comparing
the two assessments we notice that there are a few more items on the modified instrument
measuring students at higher ability levels that those on the original scale. The test
information function and standard error (SE) of measurement curves in Figure B.4 and
Figure B.4 (Appendix B) support this observation. Overall test information for M-BLIS
is highest at a slightly higher ability level than the it is for the original instrument. For
BLIS, the SE is slightly lower at lower ability levels, giving slightly more information
at lower abilities. For M-BLIS, SE is comparable at the extremes, indicating that it is
giving equally little information at the highest or lowest abilities.

Finally, difficulty rankings based on the PC model and item characteristic curves are
considered for validity evidence. Table B.8 in Appendix B displays difficulty estimates
based on the PC model. They range from -2.02 to 1.78 for BLIS and from -1.98 to 1.78
for M-BLIS. Even though both assessments display comparable ranges of difficulty spread
evenly on either both side of zero, the distribution of difficulties is slightly uneven on
either side of zero. Half of the 32 items/testlets on the original instrument have difficulty
estimates lower than zero. This division is 14 under zero and 18 above for the modified
instrument. In line with earlier results, the five items which are most distant in terms of
difficulty rankings when BLIS and M-BLIS are compared, are the same items which had
higher than 10% difference in Table 2.6. Further, the two items with highest difficulty
(consistent across the two instruments) are the two items for which respondents chose an
incorrect option most frequently according to Table B.7 in Appendix B. These findings
are also supported in the item characteristic curves seen in Figure B.6 and Figure B.7
also in the Appendix B. However, these items have negative correlations with the total
score without accounting for the given item. This reverse discrimination indicates a
possible flaw in the item and warrants further investigation.

2.3.2 Comparing Student Performance

(RQ2): did respondents perform comparably on the two assessment instruments BLIS
and M-BLIS? In this section, we address the second research question by exploring the
relationship between assessment performance and assessment type. We also incorporate
various test-taker attributes to further understand this relationship. Figure 2.2 shows
a distribution of total score by assessment. Assessments are scored as one point per
correctly answered question with a highest possible total of 37 points. The grey bars
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represent scores on the M-BLIS and yellow bars represent scores on BLIS.

Figure 2.2. Comparison of total score (out of 37)

More students scored higher on BLIS. Figure B.1 in the Appendix B plots the two
histograms in separate panels, highlighting the slight right skew in the scores on M-BLIS.
Overall scores were comparable on both assessments, as suggested by the numerical
summaries in Table 2.10. However, a two-sided t-test for the difference in mean scores
led to a p-value of 0.005 indicating a significantly lower score on M-BLIS.

Instrument n Mean Median SD IQR

BLIS 638 19.31 19 5.98 8.75
M-BLIS 615 18.38 18 5.78 9.00

Table 2.10: Summary statistics of total scores

Before looking at results from statistical models which consider the difference between
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BLIS and M-BLIS scores accounting for covariates, univariate summaries of important
variables were considered to identify any categories with a small n (Table B.1 - Table B.6
in Appendix B). For all tables, non-responses were removed. There were less than (1%)
missing values in any of the variables. Some categories of the gender variable and the
group of students who expected to get an F in the class were the only groups with less
than (1%) frequency. Bivariate frequencies of all these variables crossed with assessment
type were also considered. They ascertained that the these variables have comparable
distributions across the BLIS and M-BLIS groups.

Four survey questions were considered important for the statistical models in an effort
explore whether they were related to assessment performance. A set of survey questions
explicitly asked the respondent about their interaction with COVID-related contexts as
well as whether the contexts interacted with their assessment-taking experience. Before
including the survey responses into an inferential model, we summarize them. Table 2.11
tabulates percentage responses to three statements “I have actively looked for information
on this topic (COVID-19) in the last 6 months.” (Engagement), “I would like to gain
data-driven insights into this topic (COVID-19).” (Statistical interest), “I think this
topic (COVID-19) is relevant to our lives” (Relevance), each with “Yes”, “Maybe”, or
“No” alternatives, based on the assessment type.

Engagement Statistical interest Relevance
Instrument Yes Maybe No Yes Maybe No Yes Maybe No

BLIS 0.84 0.07 0.08 0.63 0.19 0.18 0.93 0.05 0.02
M-BLIS 0.84 0.07 0.09 0.58 0.21 0.21 0.94 0.03 0.03

Table 2.11: Survey questions regarding COVID-19 pan-
demic

Frequencies of responses are well-distributed across the two assessments on questions
pertaining to the COVID-19 pandemic. The interest question (middle portion of the
table) is the only one where some difference in proportion is observed for those selecting
Yes, when separated by assessment type. However, the difference looks small enough.

Table 2.12 shows responses to the question “Did the context affect your ability to
answer the statistical question?” This question will also be included in the models.

Context affecting ability Frequency

No difference 0.471
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Context affecting ability Frequency

Made it easier 0.495
Made it harder 0.034

Table 2.12: Self-reported effect of context on ability to
respond to the statistical question

Finally, linear regression models were fit to explain the relationship between total
scores and type of assessment. Additional variables were included to understand how
the effect of assessment type on total score changed in the presence of other test-taker
characteristics and their survey responses. This classical test theory-based approach
towards analyzing assessment data was preferred due to its focus on the explanatory
variables. Following a test for difference in means, various additive as well as interactive
linear regression models incorporating a subset or all of the variables tabulated in
Appendix B were fit. The adjusted R2 for all models was in the proximity of 20%. We
believe that for assessment data collected in an educational setting, this explanatory
power is typical given the plethora of sources of variation. The final model discussed
in this paper is per Equation 2.1 and the results presented in Table B.9 (Appendix B).
This model includes all the covariates and had the highest adjusted R2. For the results
presented in Table B.9, the base categories of the explanatory variables are marked with
an asterix (*) in the univariate tables in Appendix B.

E(Total score) = β0 + β1 ∗ instrument + β2 ∗ international + β3...β6 ∗ grade+

β7∗prior STAT+β8...β10∗class+β11...β14∗gender+β15...β22∗highest parent education+

β23...β24∗COVID engagement+β25...β26∗COVID interest+β27...β28∗COVID relevance+

β29∗topic familiarity+β30∗topic interest+β31∗context easier+β32∗context harder
(2.1)

Including all covariates and survey responses to the model increased the adjusted
R2 value to 25%. We also considered a model with all the variables in Equation 2.1
interacting with instrument type. Almost all the interaction terms had high p-value with
very little gain in the R2 value (less than 1%), and therefore, they were not given further
consideration. Results from this model are presented in Table B.10 in Appendix B.
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No matter the model, instrument type was found to be related to the total score with
a lower score on the modified assessment. For the model in Equation 2.1, the p-value
for instrument type was 0.003. After accounting for the variation in scores explained
by the instrument type, this models showed evidence of a relationship between some
of the covariates and survey responses, and total score. The strongest relationships, as
indicated by small p-values, were with 1) grade expectations B, C, or D (base category
‘A’; estimates -4.57, -6.88, -8.77 respectively; p-values 0.0000), 2) fourth year or higher
students (base category ‘First year students’; estimate 1.77; p-value 0.08), 3) ‘Maybe’
being interested in learning about COVID-19 through a statistical lens (base category
‘Not’ interested; estimate 1.22; p-value 0.03), and 4) ‘Maybe’ considering COVID-19 to
be relevant to one’s life (base category ‘Not’ relevant; estimate -3.59; p-value 0.02).

Diagnostic plots for these regression models are presented in the Appendix B. Since
most of the explanatory variables we chose were categorical, scatter plots of the response
variable or the residuals with the explanatory variables were not considered. The
histogram of residuals looks fairly normal, with slight more density on the positive side.
The scatterplot of fitted values versus residuals indicates a definitive pattern suggesting
that there is an omitted variable bias in the results we are seeing. It may be reasonable
to expect that additional variables at both test-taker and item level may be able to
explain further variation. This may include racial and ethnic background, observed
course performance, item text characteristics etc. Finally, the residual plots ascertained
that heteroskedasticity is not a concern for these models.

2.4 Discussion
This work demonstrates two important things. First, that a carefully designed isomorphic
assessment can allow for reliable measurement of statistical literacy in specific contexts.
Second, that a year into the COVID-19 pandemic (as of April 2021) students who
were finishing-up a semester of college-level introductory statistics scored lower on a
pandemic-specific assessment of statistical literacy as compared to another version with
a variety of non-pandemic contexts. This lower score indicates that context matters!

These analyses inform two distinct questions at hand and what we learn from one
informs the other. On the topic of isomorphic assessments, we set out to investigate
whether the M-BLIS measures the same underlying constructs as BLIS and in the same
way, or not. The reliability and validity analyses indicate that this is true for most
items. Though, for the items where we notice a difference in factor loading or the item
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information curves, the differences are noticeable. Based on these, we can conclude
that a carefully constructed isomorphic assessment can measure the same underlying
constructs while exposing the test taker to statistical literacy concepts through the lens of
a variety of application areas. For the items which indicate serious difference, our future
work will look at factors such as reading difficulty as measured by a lexicon score that
comprises of linguistic difficulty as well as length of text, whether the student is a native
speaker of American english or not, whether they have prior statistics interest or not, and
whether they are interested in studying the pandemic through a statistical lens or not.
Responses will be analyzed to investigate which, if any, item or test-taker characteristics
may be driving the differences in scores on the items with high differences in proportion
of correct responses. The second question of interest to us was a comparison of student
performance. These analyses were conducted assuming that scores on BLIS and M-BLIS
are equatable under the internal-anchor design [193]. Various CTT-based analyses using
multiple linear regression indicate that assessment type is an important predictor of total
score no matter which other characteristics are included and whether the model includes
any interactions or not.

2.4.1 Limitations

In general, the less portable items on BLIS required either raw quantitative data, data from
a randomized experiment, or data that led to visualizations with peculiar characteristics
such as strong right skewness. Concessions were made in case of three items where
for one item the parameter of interest was switched from mean to proportion, and an
observational study was discussed instead of a randomized experiment in one other. As
seen in the example in Table 2.2, reverse skewness was accepted for one item. However,
the lack of open availability of raw datasets is a hurdle that will need to be addressed
more systematically in creating future isomorphs.

Additionally, balancing the competing goals of maximizing engagement and minimizing
emotional impact lead to the inclusion of some topics which may not be most relevant
to the lives of of our target population for the study - college students, in this case -
and exclusion of some topics which may be directly related to them. For example, one
of the modified items referred to pre- and during pandemic performance of elementary
school students on standardized tests. This issue is confounded by the expectations of
the ‘college student’ audience which is typical to an educational research study, though
that may not need to be the case for the general purpose of the research. The choice of
the test population can bias the choice of relevant contexts.
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The item in Table 2.5 was a subject of lengthy discussions, some of which included
the expert reviewers. The implicit assumption of a coin being unbiased and our intuition
about 50% of them landing on heads benefitted the original item. It was also based on
an infinite population. However, upon deliberation, it was agreed that it is extremely
hard to find other phenomena which have an unconditional 0.5 probability of occurrence
which is understood intuitively, and therefore the substantial change in wording was
included. The original item was an interesting case because students are assumed to be
so familiar with fair coins that the frequency of their ‘encounters’ with the context might
actually outweigh the other dimensions of engagement/relevance we are seeking in this
study. This item may or may not be considered a true isomorph.

Authors must also acknowledge that even though we use anchor items to compare
the two sets of respondents at baseline, we have to account for possible ordering effect.
These identical items could function differently across BLIS and M-BLIS, especially since
they may appear out-of-context on an assessment based entirely on one specific topic -
the COVID-19 pandemic.

Finally, survey questions were asked at the end of the assessment. Therefore, we
didn’t expect that students’ performance on the assessment would have been affected by
these. However, responses to the survey questions may have contained some cognitive
bias based on whether they had just seen an entire assessment based on COVID-19 or
not.

2.4.2 Implication for Future Work

Since the instruments are observed to function comparably, we argue that isomorphic
assessment can be created to assess statistical literacy in various pertinent contexts. Even
though it may be quite tedious create them, these instruments can be invaluable tools
in getting respondents to consider statistics through a contextual lens that is relevant,
and continue to measure how curricular strategies may affect literacy levels. Therefore,
future research can be directed towards two purposes. 1) measurement of statistical
literacy in various disciplinary or societal contexts using isomorphs of BLIS, and 2) using
these isomorphic versions to assess performance of experimental curricular or pedagogical
strategies. However, additional work exploring the transfer and cognitive processes
behind statistical problem solving will also be essential to our understanding the role of
contexts.

The pilot study was intended to study psychometric properties of M-BLIS in com-
parison with BLIS to determine whether the BLIS and M-BLIS are psychometrically
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isomorphic, and whether they measure the same constructs even when the context is
changed. To draw reliable conclusions, it was essential that we have the ability to compare
results from our study to the field test conducted during the development of the original
assessment. To achieve this, it was important to ensure that the BLIS items remained
identical to that test, and therefore, M-BLIS was based on that version. At no point
did we change any details in the original assessment in an effort to ensure comparability
across the original work [17] and our pilot study. Resultantly, the results from this paper
are specific to one definition and assessment of statistical literacy. Future research should
study the role of contexts using other assessment instruments.

Differential student performance on BLIS and M-BLIS with a low p-value on inferential
results indicates that the context in which a statistical question is posed affects assessment
responses. Our respondents made sense of statistical questions differently based on
whether the context behind the numbers was relevant to them or not. In reference to the
discussion in Section 2.2.1 regarding sensitive contexts, this finding also has implications
for teaching practices. If additional research finds that the sensitivity of the topic may
have contributed to the lower scores on M-BLIS, an argument can be made to favor
inclusion of such topics on curricular materials instead of including them in grade-affecting
assessments [194].

From a context point of view, two things are worth noting. First, as discussed
in Section 2.3.1, some of the BLIS items pertaining to college students saw better
performance even though the examples were realistic. This may suggest that relevance
itself may be hypercontextualized for different subgroups. Secondly, it was interesting to
note in Table 2.11 that there was a certain percentage of students who, no matter which
assessment they took, indicated after completing the assessment that they had engaged
with the COVID-19 pandemic by seeking out information, believed it was relevant to
their lives, yet would not be interested in gaining data-driven insights into the pandemic.
Granted, this study ran about 13 months into the pandemic and there may have been
pandemic fatigue. However, this was at the end of a semester during which they had
taken an introductory statistics class, making this an interesting phenomena warranting
further investigation.

2.5 Conclusion
For a statistically literate individual, the ability to marry one’s understanding of statistical
constructs and the context-at-hand is assumed. In fact, as there is no statistics without
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context [35], statistical literacy is also inherently contextualized. However, the transfer of
statistical skills to new contexts is non-trivial and this work further examines how contexts
may factor into test-takers’ responses to a research-based assessment of statistical literacy.
Parallel to the discussion in [72] in the context of mathematics education, statistics
education, too, is a way for us to develop citizens who can make sense of quantitative
information in contexts that matter to them. Towards that goal, this work will allow
researchers to better understand how students of statistics showcase statistical literacy
skills in the context of relevant topics, and inform instructional practices which can
maximize such transfer in the future.
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Chapter 3 |
Effects of Teaching Through Rel-
evant Contexts on Statistical Lit-
eracy: Evidence from a Curricu-
lar Experiment

3.1 Introduction
Statistical literacy as a goal of statistics education has been discussed extensively in the
literature [3–5,7–11,13–15]. These discussions converge on the belief that a statistically
literate citizen can make sense of statistical insights pertaining to topics relevant to their
professional and personal life [24]. This is also critical at a societal level as highlighted
by the ongoing COVID-19 pandemic [25, 26]. Previous research has also considered ways
of improving statistical literacy [27–32]. The geographical diversity among researchers
on this list is noteworthy. Additionally, recommendations for teaching practices which
can improve statistical literacy have been discussed in guiding documents such as the
GAISE college report [18,33] and the GAISE PreK-12 Report [20]. The GAISE college
report [18] recommended integrating “real data with a context and a purpose” into
statistics instruction. This nudged the community to bring more real datasets into the
classroom and teach through examples that may be relevant to students. There is some
evidence that this helped students develop a sense for how statistics is relevant to their
lives and improve their engagement with and interest in statistics [34]. The statistics
education community is not unfamiliar with discussions surrounding the role of contexts
in statistics and its instruction. [35] highlighted that there is no statistics without context.
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Bringing these ideas together, we ask the following question in this work: Does including
relevant contexts in curricular materials cause a differential gain in students’ statistical
literacy outcomes?

3.1.1 Role of Contexts in Statistics Education

Considerable amount of work has discussed the value of contexts in statistics education
and powerful ways of introducing contexts which are familiar to the students into the
curriculum. [45] highlighted the centrality of contexts to statistics education as well as
statistical literacy. [46] laid out the design for an entire course that focuses on real data
that can develop statistical modelers and thinker. [47] posited statistical habits of mind
important for learners as well as teachers, the first of them being the role of context
in every stage of statistical inquiry. [49] conducted a study which found that contexts
played an important role in 10th graders’ development of inferential reasoning. [44] is a
library of datasets and examples which facilitates the inclusion of real datasets into a
variety of courses. Finally, [50] synthesized the discussions regarding and highlighted the
value of guided inquiry exercises - exercises where multiple questions are built atop the
same context. Research has also investigated the relationship between including contexts
in curricular materials and students’ engagement with and interest in statistics - as well
as student outcomes.

For this work, we wanted to specifically investigate the role of relevant contexts in
statistical and scientific problem solving. 5.1 conceptualize relevant contexts as ones
that are societally relevant at a given time and people would have engaged with and
thought about on their own. Further, they define contextualized statistical literacy
as statistical literacy pertaining to relevant contexts. We use both the Basic Literacy
in Statistics (BLIS) instrument developed by [17] and its modified version (M-BLIS)
developed by 5.1 to measure statistical literacy as an outcome of the study. Based on the
work discussed in 5.1, we treat the scores from the two assessments (BLIS and M-BLIS)
to be psychometrically equivalent in our data analyses. When thinking about relevant
contexts and the ways in which people’s familiarity and prior engagement may play
into the training and subsequent outcomes, we must also be also mindful of possible
suspension of sense-making [71,72] whereby familiarity with the context may be foregone
in favor of focusing on the underlying statistical idea.
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3.1.2 Randomized Experiments in Statistics Education Research

As recommended by [87], randomized assignment has been discussed in statistics class-
rooms, starting with introductory curriculum, to highlight its importance in researchers’
ability to draw causal inferences. The role of randomized experiments in educational
research [88–90] and educational policy evaluations [91–93] has been discussed in the
literature. However, controlled experiments can be difficult to conduct in educational
settings [1, 40, chap. 3]. Randomization at the student-level can lead to interference [94]
requiring randomization at the classroom or school level. Such studies can be resource-
intensive due to the requirement of a large number of sections or classrooms as well as
teacher training. Very few designed randomized experiments are conducted in statistics
education research with a few notable exceptions. [95] randomized students to control and
experimental sections to investigate the effect of simulation-based inference curricula. [96]
randomly assigned separate mini readings at the student-level to examine the effects of
teaching using tools that may be considered to be fun on student learning. [97] imple-
mented a quasi-experimental design wherein two semesters of a given course enrollment
were assigned treatment or control to measure the effects of teaching statistics with a
critical pedagogy. [98] studied the effect of teaching through Shiny apps by assigning one
of the two enrolled course sections into the treatment group.

One of the goals of the present work was to utilize research-based assessments to
measure the outcomes of interest, as encouraged in [19]. Three of the four experiments
discussed above implemented a similar strategy. [95] used the ARTIST (Assessment
Resource Tools for Improving Statistical Thinking) topic scales [99] for specific topics of
interest. [96] used two scales measuring attitudes towards statistics - SATS-36 (Survey
of Attitudes Toward Statistics, [100]) and SAM (Statistics Anxiety Measure, [101]) and
considered pre-test and post-test scores. [97] also gathered pre-test and post-test data
on the CAOS (Comprehensive Assessment of Outcomes in Statistics, [102]) and CLES
(Constructivist Learning Environment Survey, [103]) scales. Whereas, [98] used course
assignments created by the instructional team.

3.1.3 Causal Inference in Statistics Education Research

The three research questions stated for this project are framed as causal questions, which
is an important goal of the present work. Causal conclusions can play a critical role in
informing educational practices through a rigorous investigation of ideas that may or may
not affect learning [89]. However, examples of research drawing causal conclusion based
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on well-designed studies are scarce in statistics education literature. Of the experiments
discussed above, [95] was the only study which established a causal effect of the treatment
(curriculum type) on the learning outcomes. Their work analyzed the data using a
multivariate analysis of covariance (MANCOVA) model. [108] used observational data
to investigate the relationship between constructivist strategies in the classroom and
students’ attitudes towards statistics. They discussed using a causal comparative design,
however, they warn against drawing causal conclusions due to the analytical strategies
used. [109] also conducted an observational study to assess the effect of instructors and
instructional practices on student attitudes. Outside of statistics education literature,
some methodological discussions have highlighted the importance and usage of causal
inference in educational studies. [110] discussed a method for estimating the causal
effect of time-varying instructional treatments. [111] and [92] discussed the importance
and implementation of causal-inference-based conclusions in the context of large-scale
assessments in education. [112] conducted an extensive survey of various causal inference
methodologies and highlight education as an important application area. [113] discussed
the role of and ways to improve causal inference in educational research. The present work
provides one possible framework for conducting causal analyses for statistics eduction
research, providing a prototype for similar work in the future.

Even though an approach such as the potential outcomes framework [114,115] can be
utilized to estimate causal effects, a model-based estimate is more appropriate for the
present study since the treatment was not randomized at the unit-level. As discussed
in Section 3.1.2, such a design choice is typical for educational studies. Data from the
experiment are analyzed using a multilevel modeling strategy with covariate adjustment.
The randomized experimental design employed in this work allows for causal interpretation
of the coefficient of the treatment assignment. Using this approach, we address the
following three research questions (RQs) in this chapter. (RQ3): does introducing relevant
contexts in a statistics classroom cause a differential gain in statistical literacy outcomes?
(RQ4): does taking an assessment of contextualized statistical literacy as a pre-test cause
a differential gain in statistical literacy outcomes? (RQ5): does the interaction between
contexts incorporated into the classroom and type of statistical literacy assessment cause
a differential gain in statistical literacy outcomes?
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3.2 Methodology

3.2.1 Sample

To address the stated RQ3, a randomized experiment was conducted in a co-ordinated
undergraduate introductory statistics course at a large public research university in eastern
United States. This course was taught under the Lock5 simulation-based inference (SBI)
curriculum. This study was conducted during Fall 2021. During that semester, four
faculty members taught five lecture sections. Each lecture section was divided into four
or eight lab sections. Faculty members (instructors for the course) were supported by 12
graduate teaching assistants (GTAs) who conducted two (2) laboratory sessions (labs)
each. Both labs assigned to a given GTA included students from the same lecture section.
Every lab enrolled 80 students each, providing an initial sample size of 1960 students.
GTAs were supported by one undergraduate learning assistant (LA) assigned to each
section. This course offered an elegant framework for the randomization.

3.2.2 Tools

In this section, we discuss the several tools used to measure important variables. The
intervention in this study took the form of modified lab activities and assignments
(Treatment 1: W ). The content of this modification is further discussed in Section 3.2.4.
A lab session was a 50-minute class period conducted following each lecture and before
the next lecture. The lab included a problem-solving worksheet providing an opportunity
for the students to apply ideas learned in the previous lecture to data collection, analysis,
and interpretation exercises. Every student was required to sign-up for a lab section
during which the GTA and the LA were available to support students’ learning. A typical
lab session began with a brief review of content lead by the GTA. For the remainder of
the lab, students were encouraged to work in small groups or on their own, and reach
out for support as needed. The lab quiz was a formative assessment including multiple
choice or numerical-entry questions based on the exercises included in the lab worksheet.
The lab worksheet and quiz were identical across all sections, making it the most suitable
aspect of the curriculum to modify for this research. Even though it was not an important
component of this research study, lab quizzes played the dual role of contributing to the
final grade as well as providing frequent and low-stakes opportunities for students to
understand their performance in the course.

The response variable for this study - gain score on statistical literacy assessment -
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was measured using one of the two instruments discussed in Section 3.1. Each of these
instruments had 37 items, each graded dichotomously for one point each. Therefore,
the response variable i.e. the gain score can take whole number values between -37
and 37. Each student was randomly assigned to one of the two instruments (BLIS or
M-BLIS) (Treatment 2: S) 5.1 at the beginning of the semester and completed the same
assessment as a pre-test and a post-test. In addition to the response variable, these
assessments collected demographic data from the survey component as well as additional
information regarding the students’ interest in and engagement with relevant topics
which were critical to the design of the intervention.

3.2.3 Experimental design

For this experiment, half the GTAs in each lecture section were randomly assigned to
treatment. The author of this disseration was one of the GTAs and was assigned to
the treated group. Treated sections completed modified lab assignments. Therefore,
the treatment assignment (W ) was at lab section level. Such a design where curricular
intervention is applied at classroom-level instead of student-level is common in educational
studies as discussed in Section 3.1.2. It offers the advantage of avoiding interference [94]
of treatment effect either through the same instructor teaching treated and untreated
sections or through the mingling of treated and untreated students in the same classroom.
Due to constraints pertaining to the consent procedure as required by the Institutional
Review Board (IRB) protocol, student-level lab quiz scores were not available to the
researchers. Only summary information (mean, standard deviation, and five-number-
summary) at lab section-level was provided for this researchers. However, the primary
outcome (Y ) of interest for this study was statistical literacy score measured using either
BLIS or M-BLIS. Due to the random assignment of instrument type to each student,
we were able to investigate two parallel causal questions. First, the effect of including
relevant contexts on lab assignments on statistical literacy gain scores. Second, the effect
of taking an assessment of either statistical literacy or contextualized statistical literacy
at the beginning of the semester on the same gain scores.

3.2.4 Design of intervention

During the semester this study was conducted, the course included 25 graded lab
assignments based on course material. Each student was allowed to drop the lowest two
lab scores in their final grade. Each lab worksheet comprised of 3-6 lab activities designed
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to take approximately 40 minutes to solve. Due to a combination of administrative
reasons, specific requests from the instructional team, or requirement for raw multivariate
quantitative data, seven out of the 25 labs were modified. These seven included two
out of four subsections in the chapter on confidence intervals, and all five subsections
in the chapter on hypothesis testing. The modified lab activities were parallel tasks
aligned as closely as possible to the original activities. It was ensured that all modified
activities met identical learning goals and difficulty levels as the activities in the original
curricular material, thereby ensuring that students in both groups had an equal learning
opportunity, and that the treatment and control labs were comparable.

When modifying the seven labs mentioned above, two categories of activities were
retained identical to the original lab activities. 1) An activity that used data collected
from students in the course during the semester was unchanged. As discussed in the [18]
guidelines, data about students lead to high engagement. Therefore, we did not expect
any gains in engagement by replacing this with a relevant context. 2) Three activities in
the hypothesis testing chapter were setup based on naked [18] hypothetical datasets and
examples. The importance of the learning goals these activities met were considered to
supersede the importance of including relevant contexts, especially at an experimental
stage. In one case, the original lab example used blood pressure data. The modified
activity retained the original example with an addition of two lines mentioning the role
of blood pressure readings as indicators of health rates and the incidence of heart health
concerns among young adults. Such a modification was made to three activities. Each
time a relevant context was incorporated into an activity, a hyperlink directing the reader
to source information was included at the end of the description or common stem.

3.2.4.1 Choice of relevant topics

As discussed in Section 3.1, an important qualifier for a context to be relevant was whether
students had interacted with that topic outside of the classroom. To ensure that this was
the case for the curricular modifications performed in this study, the pre-test gathered
some data from respondents. A grid of survey questions asked students about their
engagement with nine contexts along three dimensions. Table 3.1 summarizes responses
to three statements 1) “I have actively looked for information on this topic in the last
6 months.” (Engagement), 2) “I would like to gain data-driven insights into this topic.”
(Statistical interest), and 3) “I think this topic is relevant to our lives” (Relevance).
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Engagement Statistical interest Relevance
Topic Yes Maybe No Yes Maybe No Yes Maybe No

COVID-19 0.86 0.05 0.09 0.62 0.21 0.16 0.97 0.02 0.01
College student-life 0.74 0.11 0.15 0.69 0.18 0.13 0.96 0.03 0.01
Education 0.76 0.06 0.18 0.69 0.13 0.17 0.98 0.01 0
Diversity 0.47 0.17 0.36 0.61 0.22 0.16 0.92 0.05 0.03
Climate science 0.47 0.15 0.38 0.62 0.19 0.19 0.85 0.11 0.04
Immigration 0.33 0.16 0.51 0.52 0.25 0.24 0.78 0.15 0.06
Mental & physical health 0.75 0.07 0.19 0.79 0.11 0.1 0.98 0 0.02
Politics & governance 0.68 0.13 0.19 0.58 0.16 0.26 0.89 0.07 0.04
Healthcare advances 0.54 0.12 0.35 0.64 0.18 0.18 0.92 0.06 0.03

Table 3.1: Survey questions regarding various contexts

Based on this information, we focused on the topics with the highest proportion
of engagement (COVID-19 pandemic, Education, Mental and Physical Health, and
College-student life). Contexts at the intersection of multiple topics, such as COVID-19
vaccination rates among college students, were. The remaining five topics were also
included where applicable. However, they appeared less frequently than the four topics
mentioned above. Some examples of modified contexts included in the experimental labs
include,

• a bill in congress about making college tuition-free in the US,

• diversity index and vaccination rates for states in the US,

• energy production generated from renewable sources,

• academic distress and status as a first-generation college-student,

• approval for interracial marriages, and

Another important consideration in determining whether the context was relevant or
not was the ‘current’-ness. Although all the contexts described above and considered in
the study can be considered relevant at a societal level, in order to emphasize this to the
students, attempt was made to find data collected within no more than 3 years prior
to the study and the year of data collection was recorded explicitly in the document
provided to the students.
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3.2.4.2 Example

An example of a lab activity is demonstrated in Table 3.2. This was the last lab in the
hypothesis testing chapter and was designed to help students develop and practice their
understanding of type I and type II errors.

Original item stem Modified item stem
We are testing a new drug with poten-
tially dangerous side effects to see if it
is significantly better than the drug cur-
rently in use. If it is found to be more
effective, it will be prescribed to millions
of people.

In April 2021, FDA and CDC recommended a pause on the
Johnson & Johnson COVID-19 Vaccine in the US due to
a potentially dangerous side effect. Follow-up analysis was
conducted to determine if it is significantly better to administer
the vaccine than not. If the vaccine was found to be safe and
effective in preventing COVID-19, it would be administered
to millions of people. (Source: CDC)

Now we are testing to see whether tak-
ing a vitamin supplement each day has
significant health benefits. There are
no (known) harmful side effects of the
supplement.

The National Institutes of Health in the US considered evidence
to determine whether taking a vitamin C supplement each
day significantly reduced the time to recovery in COVID-19
patients who are NOT severely ill. There are no (known)
harmful side effects of the supplement. (Source: NIH)

Table 3.2. Example lab activity

For each of the two scenarios, students were required to interpret both errors in the
context of the problem and comment on which error would be considered to be worse
than the other.

3.2.5 Causal inference methodology

This experiment was conducted with the intention of inferring the causal relationship
between inclusion of relevant contexts in the curriculum (treatment or intervention 1,
W ) and statistical literacy change score from beginning to the end of the semester
(outcome Y ) (RQ3). Educational literature contains some discussions regarding using
gain scores as an outcome versus using post-test scores with pre-test scores adjusted
for in the model. Gain scores have been discussed as more reliable [195–197]. Gain
scores were also substantively more interesting. Even though errors on pre-test and
post-test may be correlated, potentially violating model assumptions, gain scores were
chosen as the outcome for this study. For the present work, the causal effect is the
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difference between the statistical literacy change score that would have been observed
if a student was assigned to complete lab exercises based on relevant contexts and the
change score for the same score if the student was assigned to the control group. Due to
the hierarchical nature of this experiment, we pursued the multilevel modeling approach
to causal inference which can allow for interpretation of the causal effect under the
potential outcomes framework [198, 199]. We started with a simple model (Equation 3.1)
which estimated the parameter for the effect of the treatment (W , at section-level) and
specified random effects for the four instructors and the 24 lab sections to account for
the variability within them.This model matched the nested data structure most closely.

∀i = 1, 2, ..., n (students), j = 1, 2, ...,m (lab sections), and k = 1, 2, ..., l (instructors),

ykji ∼ N (αkj[i], σ2
y)

αkj ∼ N (αk +Wjθ, σ
2
αk)

αk ∼ N (α0, σ
2
α),

(3.1)
where,
ykji is the outcome for student i taught by instructor k and enrolled in lab section j,
αkj is the true mean gain score for section j from instructor k’s lecture section across all
students,
θ is the causal effect at section level based on treatment assignment W , and
αk captures the random effects at the instructor level (need to modify model to capture
section-level random effect).

Next, person-level pre-treatment covariates were added to the mixed effects or hier-
archical linear model (HLM) to estimate the causal effect in the presence of important
covariates. No lab section-level or instructor-level covariates could be added on account
of design choices which led to perfect collinearity across covariates and the random effects.
Visual summaries were considered before inferential results to assess covariate balance
across the treatment and the control group. Checking this balance informed our under-
standing of whether any of the covariates were essential to adjusting for pre-treatment
differences across the two groups. Equation 3.2 shows the full model with varying-
intercepts for instructors and lab sections in addition to fixed effects for person-level
covariates, in addition to the treatment effect coefficient.
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∀i = 1, 2, ..., n (students), j = 1, 2, ...,m (lab sections), and k = 1, 2, ..., l (instructors),

ykji ∼ N (αkj[i] + Xkj[i]β, σ
2
y)

αkj ∼ N (αk +Wjθ, σ
2
αk

)

αk ∼ N (α0, σ
2
α),

(3.2)
where,
ykji is the outcome for student i taught by instructor k and enrolled in lab section j,
β are coefficients on student-level covariates such as statistical literacy pre-test score,
and demographics and survey questions collected on the pre-test,
αkj is the true mean gain score for section j from instructor k’s lecture section across all
students,
θ is the causal effect at section level based on treatment assignment W , and
αk captures the random effects at the instructor level (need to modify model to capture
section-level random effect).

Even though it was not the primary goal of this study, the randomization of BLIS and
M-BLIS across all study participants could be treated as a secondary treatment variable.
It is conceivable that students completing an assessment of statistical literacy based on
relevant contexts (M-BLIS) may approach statistics differently during the course learning
period in comparison to those who complete the same assessment with other mixed
contexts at the beginning of the course. Therefore, we fit models in Equation 3.1 and
Equation 3.2 separately for the BLIS and the M-BLIS group, and then modified them to
replace W with assessment type (S) as the treatment variable (RQ4). Additionally, we
also considered an interaction between the two treatment variables (W and S) for each
of the two models (RQ5).

3.3 Results
In this section, we discuss findings from the models presented in Section 3.2.5. Corre-
sponding descriptive analyses are also presented alongside the inferential results. Even
though the course enrollment was 2000 students, the final analytical sample size was
n = 265 due to attrition at several levels. Each student was randomly assigned to
complete either BLIS or M-BLIS for both the pre-test and the post-test. The number of
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students who consented to participation and attempted the assessment were as follows:
1,015 completed pre-test (496 BLIS responses and 519 MBLIS responses) and 1,085
completed post-test (546 BLIS responses and 539 MBLIS responses). For the purpose
of this study, only full assessment responses were considered. Removing incomplete
responses resulted in 715 responses on the pre-test (357 BLIS, 358 MBLIS) and 937
responses on the post-test (483 BLIS, 454 MBLIS). However, only 305 of these responses
could be matched across pre- and post-test based on a unique six-digit alphanumeric ID
since assessment responses were anonymized. Finally, students were required to select
their lab section in the survey component of the assessment. Since the treatment was
applied at lab-section level, it was considered crucial to ensure that the matched pre-post
test responses were in the same section. 40 students did not meet that criterion, resulting
in a sample size of 265.

3.3.1 Mixed Effects Models

As discussed in Section 3.2.5, the first goal was to consider the causal effect for the two
possible treatment variables - lab modification at lab section-level (RQ3) and type of
assessment at individual student-level (RQ4), as well as the their interaction (RQ5).
Table 3.3 and Figure 3.1 summarize the distribution of the response variable (gain score
on statistical literacy) vis-a-vis the treatment variables.

Mean Median SD IQR

Control 1.63 1 5.01 7
Treated 1.50 1 5.14 8
BLIS 1.70 2 5.26 7.50
M-BLIS 1.42 1 4.87 7.75

Table 3.3: Summaries of gain scores

Mean and median gain scores across the treated and control groups were very close
to each other. Their spreads were also comparable, with slightly higher scores in the
control group. When looking at the type of assessment as a treatment variable, mean and
median scores were higher on BLIS than M-BLIS. However, further analyses accounting
for the varying spreads provided additional information regarding the possible difference
since the range was approximately 6 points lower for gain scores on M-BLIS. As per 5.1,
the overall scores on M-BLIS were lower than BLIS. Figure 3.1 considers the interaction
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Figure 3.1. Boxplot of gain score for both treatments

between the two treatment variables. The medians were similar across all four subgroups,
with slight variations in spreads. Sample sizes were comparable across subgroups - 65
(Control) and 69 (Treatment) in the BLIS group and 65 in both M-BLIS groups.

For this study, we stipulated that the variation at instructor as well as lab-section
level would be important to account for. However, since they could be considered to be
a random sample of instructors and lab groupings, we were not interested in their fixed
effects. Figure C.1 (Appendix C) shows distribution of gain scores by instructor and
Figure C.2 (Appendix C) by lab section. Both plots suggest that there would be benefit
to including random effects for both these pre-treatment covariates. Having said that,
the small sample sizes within lab sections (noted within parantheses under the section
number) are important to keep in mind.
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3.3.1.1 Causal effects without covariates

Table 3.4 displays estimates from the model specified in Equation 3.1. Treatment effects
were estimated from three separate models with the following treatment variables: 1)
modified lab section (W ) - RQs3, 4) assessment type (S) - RQ3, and 5) an interaction
between W and S - RQ5.

Model 1 - W Model 2 - S Model 3 - W*S
Estimate t-value Estimate t-value Estimate t-value

Intercept 1.64 2.81 1.66 2.88 1.33 1.90
Treatment effect - Treated -0.20 -0.31 0.67 0.73
Treatment effect - M-BLIS -0.25 -0.40 0.63 0.72
Treatment effect - Treated*M-BLIS -1.75 -1.40

Table 3.4: Causal effects

Due to the difficulty in determining degrees of freedom for hierarchical linear models,
t-values are used to comment on the strength of evidence against the null hypothesis of
no treatment effect. Using the cutoff value of 2 for the t-value, we do not have sufficient
evidence to claim that individual treatment effects were different from zero for either
RQ3 or RQ4. Though lower than 2, the interaction term in Model 3 had a t-value of
−1.4 suggesting further investigation of the relationship between the interaction of the
two treatments and gain scores. Though this evidence was weak, it was stronger than
Models 1 and 2. The residual variance after accounting for random effects was very close
across the three models.

3.3.1.2 Causal effects with covariates

As discussed in Section 3.2.5, the model without covariates was extended to include
various individual-level pre-treatment covariates. Figures C.3 - C.9 (Appendix C) capture
the relationships between gain scores and these variables. Other than the indicator for
whether a student has previous statistics training, all other categorical variables showed
some differences in gain scores across categories, either in their medians or spreads. The
scatterplot of pre-test scores and gain scores (Figure C.9 in Appendix C) indicated higher
variance in gain score for higher pre-test scores.

Five options were provided for the question ‘What gender do you identify as?’ (Figure
C.3 in Appendix C) They were Woman (1), Man (2), Transgender (3), Prefer to self-
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specify (4), and Prefer not to disclose (5). In the the final analytical sample, nobody
selected option (3), and options (4) and (5) were selected by one person each. Due to
the single observations, those two observations were removed from the data used for the
analyses presented in Section 3.3.1.2.

Information about “the highest level of education received by a parent/guardian in
the household" was collected at a more granular level than what is presented in Figure
C.8 (Appendix C). However, 9 total categories of educational level were collapsed into 3
for ease of interpretation. Each of the final three categories includes either incomplete or
complete education at the given level. For example, ‘College education’ includes ‘Some
college, no degree’, an ‘Associate’s’, or a ‘Bachelor’s’.

Love plots were plotted for the two treatment variables (Figures 3.2 and 3.3) to look
at covariate balance across the treatment and the control group. This is an important
step in causal analyses and allows us to determine a-priori whether including a variable
in the model is essential to adjusting for pre-treatment differences across the two groups
or not. Pre-test scores was the only quantitative variable, and therefore, the mean
difference is standardized for that variable. For all other variables, raw differences are
displayed. When considering the main experimental treatment (modified lab sections -
W ), categories of the gender variable had most extreme mean differences. Though at
the middle-school level, [53] had found gender-based differences in statistical literacy
on a separate instrument. Whereas, for the instrument type as a treatment variable
(S), pre-test score had the highest absolute mean difference along with specific levels
of certain categorical variables showing mean differences slightly above 0.1. It is worth
noting, though, that for the scale of the response variable, these differences are relatively
small.
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Figure 3.2. Love plot for modified lab as treatment
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Figure 3.3. Love plot for instrument type as treatment

Table 3.5 shows estimates from the model specified in Equation 3.2. Once again, we
fit three separate models, each of them including a distinct treatment effect specification.
However, the covariates as well as the random effect specifications (instructors and
lab-sections) were identical for all models.

Model 1 - W Model 2 - S Model 3 - W*S
Estimate t-value Estimate t-value Estimate t-value

Intercept 4.55 2.37 4.98 2.60 4.56 2.26
Treatment effect - Treated -0.16 -0.25 0.67 0.71
Treatment effect - M-BLIS -0.58 -0.90 0.31 0.35
Treatment effect - Treated*M-BLIS -1.67 -1.28
Gender: Woman 0.31 0.41 0.24 0.33 0.29 0.39
Class: 2nd Year 0.44 0.52 0.53 0.63 0.58 0.67
Class: 3rd Year 0.92 0.81 0.98 0.88 0.90 0.80
Class: 4th or higher 0.72 0.48 0.66 0.44 0.71 0.47
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Model 1 - W Model 2 - S Model 3 - W*S
Estimate t-value Estimate t-value Estimate t-value

Previous STAT: Yes -0.10 -0.14 -0.03 -0.04 -0.01 -0.02
International student: Yes 0.49 0.26 0.17 0.09 0.34 0.18
Expected course grade: B -1.02 -1.48 -1.04 -1.52 -0.93 -1.33
Expected course grade: C or lower -3.09 -1.52 -2.94 -1.46 -3.21 -1.57
Parent ed: High school 1.50 1.07 1.09 0.77
Parent ed: Graduate education 0.06 0.10 0.11 0.16
Pre-test score -0.18 -2.25 -0.19 -2.33 -0.20 -2.42

Table 3.5: Causal effects - with covariates

After accounting for covariates, none of the treatments showed strong evidence against
the null of no treatment effect. Similar to previous analyses, we used a t-value of 2 as a
reference. The pre-test score had a high t-value with negative estimates across all the
models suggesting that higher the pre-test score, lower the gains. Given the nature of
the relationship between pre-test scores and gain scores, this seems appropriate. When
looking at students’ self-reported expected course grades at the beginning of the semester,
those who were expecting a grader lower than A (B, C, or D) showed some evidence of
lower gains than those expecting an A. With a baseline at those students whose parent
or guardian with the highest education had college education, those who’s parents had
only highs school education showed weak evidence of higher gains. However, due to a
singularity in fitting, this covariate was dropped from the second model.

Finally, an interaction model which included all variables specified in Model 3.2 with
the addition of an interaction with the treatment status was considered. Parameters were
estimated for such a model with both treatment variables - W and S. The RQ of interest
was: does the treatment cause a differential change in gain score across subgroups? All
groups with small sample sizes (n ≤ 10) were excluded from this comparison. We focused
on treatment effects which reversed in direction across the treatment and the control
group and had a t-value in the vicinity of or higher than 1.5 for the reversal to show
some evidence of differential effect. For the lab modification treatment (W ), none of
the effects satisfied these criteria. However, when treating instrument type (S) as a
treatment variable, two effects were worth noting. 1) Over and above those who identified
as men, women’s gain scores were lower on BLIS (estimate -0.86 with t-value -0.77) than
on M-BLIS (estimate 2.27 with t-value 1.5). 2) Over and above those who had college
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education as highest level of parental education, students with a parent/guardian who
went to graduate school had a higher gain score on BLIS (estimate 1.25 with t-value
1.30) than on M-BLIS (estimate -2.58 with t-value -1.89).

3.4 Discussion
This investigation of whether the inclusion of relevant contexts into teaching materials
affects statistical literacy levels makes two key contributions despite the inconclusive
results. First, the design of the study allows for rigorous causal analysis in a statistics
education research study. Second, using research-based assessments to measure outcomes
facilitates comparison with other similar studies which may be conducted in the future.

The broad benefits of this study can be long-term and impact statistics education
practices more broadly. It is an implicit assumption that students develop an ability to
apply learnings from the course to important contexts encountered in their lives outside
the classroom as well as contexts impacting the world around them. This assumes
knowledge transfer [65–67] and warrants further study to investigate the nature and the
extent of this transfer. Further, as discussed in Section 3.1.1, there has been great push
in the statistics education community to bring real data into the classrooms. However,
real data need not always be relevant. Connecting contextualized statistical literacy to
the types of data included in the course materials will provide us insight into whether
this ability can be further improved, informing future statistics educators.

3.4.1 Limitations

There was three ways in which the design of the intervention may have limited the
effects observed in the study. First, this study was conducted during first fully in-person
semester following the COVID-19 pandemic. Resultantly, students were not required to
attend the lab sessions during which they could receive support from the TA and LA, as
well interact with students within their section. This could have led to interference due
to students working with fellow classmates from other lab sections. Second, since only a
subset of the lab activities was modified for the treatment, that may have limited the
effect size. Finally, it is worth noting that the modification of lab activities to include
relevant contexts was only a small part of the curriculum. All other components of the
course including the unmodified labs, lecture materials, common homework assignments,
and exams were unchanged. Over the course of past several years, the instructional
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team for this course had undertaken concerted efforts to make this course relatable and
relevant to students. This could have potentially limited the size of the treatment effect.

On the outcome side, [17] discussed the validity of BLIS as a mid-term and end-term
assessment. M-BLIS was only deployed as a post-test in 5.1. Therefore, the use of these
assessments as a pre-test in the present study should be treated with care. However,
the design of BLIS is such that none of the items are invalid as a pre-test. Relatedly,
gain scores have two key limitations which should be considered. First, gain scores lead
to boundary effects for respondents who perform either very well or very poorly on the
pre-test. The low gain scores of respondents with high pre-test scores are due to the
upper bound and may get interpreted as low effects of the treatment. Figure C.9 displays
the gain scores on the Y-axis and pre-test scores on the X-axis for the present study. The
weak negative correlation (r = −0.13) captures the overall direction of this limitation.
Second, using gain scores as the response variable requires that only those respondents
who responded to both the pre-test and the post-test can be used in final analyses. This
may lead to loss of information. However, for the present study, the correlation between
pre-test and post-test scores for matched responses was r = 0.55, also captured in Figure
C.10. In such a situation where pre-test and post-test scores are moderately correlated,
the matched samples may offer an opportunity for reliable inference of causal effects,
even though the sample may no longer be representative.

Finally, the final dataset in this study is approximately 10% of the enrollment in
the course. Even though Missingness At Random is assumed for the attrition, that is
unlikely to be the case. Section 3.3 outlines the stages of attrition. Therefore, it is
difficult to estimate whether larger retention could have lead to different results despite
the comparable group sizes in the current dataset. We also acknowledge the limited
generalizability of these results since the experiment was conducted at a single institution
and in a single course. However, this is typical of educational studies and future work
will be aimed at multi-site studies.

3.4.2 Implications for research

Future researchers interested in investigating the impact of teaching through contexts
relevant to students must consider several important aspects. First, the list of topics this
intervention worked with was pre-specified by the researcher. It would be worthwhile
to build this list using open-ended responses from students themselves to include topics
students report as engaging and relevant. Second, student engagement with topics can
differ based on the component of the course in which they are incorporated. Future work
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should consider the possible differential effect of modifying other parts of the curriculum
and assessments. Finally, contextualized statistical literacy is one possible measure of
someone’s ability to make sense of statistics pertaining to relevant contexts. However, it
is possible to conceive of other ways of assessing the transfer of classroom learning to
topics relevant to individuals. With the larger goal of promoting a statistically literate
citizenry, other methods of measuring the abilities deserve merit as well.

On the methodological side, this study establishes the feasibility of and a framework for
conducting studies which can allow for causal claims to be made in educational research.
Such a pursuit is not without its challenges such as infeasibility of randomized assignment
at an individual-level, buy-in from the administration, consent procedures required by
individual institutional review boards, and ensuring equal learning opportunity to the
experimental and control group. Many of these challenges can be addressed by conducting
such a study in an online setting. However, more research-based causal claims regarding
the effects of instructional ideas on important learning outcomes are critical to making
evidence-based teaching decisions. Therefore, future statistics education research should
consider conducing more randomized experiments or carefully designed observational
studies and drawing careful causal conclusions based on those.

3.4.3 Implications for teaching

5.1 comment on the negotiation vis-a-vis sensitive relevant contexts and the possible
advantage of including them on curricular material as opposed to assessment items.
Inclusion of such context in teaching materials can have an added advantage that
no matter the statistical literacy outcomes, the course materials encourage students
to consider topics relevant to the society from a statistical point of view. However,
additional considerations such as attitudes towards statistics and engagement with the
subject are also equally important. If future studies lead to findings consistent with this
work, contexts in a statistics classrooms should be chosen to optimize outcomes other
than statistical literacy.

3.5 Conclusion
[200] unequivocally asserted the mantra that not only should we assess what we value,
but we must also teach what we wish to assess. We need to first outline the learning
outcomes we value, create an assessment plan, and then, consequently, design curriculum
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to teach what we intend to assess. As discussed in Chapter 1, statistics educators value
students’ ability to become statistically literate citizens who can make sense of data-
driven information pertinent to their personal and professional lives. In Chapter 5.1, we
discussed a proposal to assess such an ability - contextualized statistical literacy - using
a research-based tool. The present work contributes to literature on the final step of this
cycle, designing teaching materials intended to improve statistical literacy and evaluate
its effects on the intended outcome. This work will allow researchers to further consider
the effects of incorporating relevant contexts into curricular materials. More importantly,
though, it will encourage more statistics education research that evaluates the effects of
curricular and pedagogical decisions on learning outcomes through rigorously designed
randomized experiments and appropriate causal inference methodology.
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Chapter 4 |
Application of Cognitive Diagnos-
tic Modeling to Statistical Liter-
acy

As discussed in Chapter 1, a cognitive diagnostic model assesses test takers’ ability
vis-a-vis latent cognitive skills (LCSs) which are required to answer test questions. The
inputs into this model are 1), a dichotomous item-response matrix based on observed
responses (Xij ; i = 1, 2, ..., I persons, and j = 1, 2, ..., J items) and a binary Q-matrix [119]
(Qjk; j = 1, 2, ..., J ; k = 1, 2, ..., K) specifying whether skill k is needed to answer item j.
The model has two key components. The first component is the Item Response Function
(IRF) specifying the probability for person i to answer item j correctly depending on
the skills needs for the item and possessed by the person. The second component is the
Joint Attribute Distribution (JAD) specifying the joint distribution of all skills specified
in the Q-matrix. Through a variety of parameters estimated from this model, the key
focus is three quantities - 1) skill distribution i.e. the proportion of respondents with
a given skill, 2) skill class distribution i.e. the proportion of respondents possessing a
specific combination of all skills, and 3) individual skill profiles i.e. which skills does a
given respondent possess.

The aim of a cognitive diagnostic model is to ensure that the test can provide
diagnostic feedback on their strengths and weaknesses on these skills. In general, it can
be beneficial to think of LCSs as attributes [120] because in their broad capacity, CDMs
are also utilized for psychological health assessments. [121] mention that an “attribute
may include procedures, heuristics, strategies, skills, and other knowledge components.”
In those cases, a diagnosis of whether an individual possesses a certain attribute or not
can be useful for diagnostic purposes. However, for the purpose of this work which
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focuses on an assessment of statistical literacy, we will continue to use the term skill. As
mentioned earlier, the inputs into this model are 1), a dichotomous item-response matrix
based on observed responses (Xij; i = 1, 2, ..., I persons, and j = 1, 2, ..., J items) and
a binary Q-matrix [119] (Qjk; j = 1, 2, ..., J ; k = 1, 2, ..., K) specifying whether skill k is
needed to answer item j.

In this chapter, we analyze data from the pilot study conducted in using cognitive
diagnostic models to address the following research questions. (RQ6): Over and above
the component skills identified as important for answering questions on the assessment
for statistical literacy, does a latent ‘context familiarity’ affect the probability of correctly
answering the items? (RQ7): Can the modified assessment of contextualized statistical
literacy (MBLIS) provide feedback on the same statistical skills as BLIS?

4.1 Methodology

4.1.1 Q-matrix

[126] discuss the limited availability of expert-specified Q-matrices and [141] pose this
requirement as a barrier to more widespread applications of cognitive diagnostic modeling.
While we acknowledge this limitation, this work took the opportunity to develop a Q-
matrix for measuring statistical literacy skills using BLIS and MBLIS was formed by the
research team. The full matrix is available in Appendix D. The final matrix included
seven statistical skills and one context-familiarity skill, as listed below.

1. CommunicateInterpret: Communicate/interpret statistical results.

2. Descriptive: Answer a statistical question based on descriptive statistics.

3. Inferential: Answer a statistical question based on inferential statistics.

4. Visualizations: Answer a statistical question based on visualizations.

5. Univariate: Answer a question based on univariate statistics/information.

6. Bivariate: Answer a question based on bivariate statistics/information.

7. StudyDesign: Understand study design in order to answer a statistical question.

8. ContextCOVID: Be familiar with the context - COVID-19 - an item pertains to.
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As a starting point to develop this matrix, we considered the definition of statistical
literacy which BLIS is based on - ‘Statistical literacy is the ability to read, understand,
and communicate statistical information.’ It was stipulated that every item on the
instrument would require the respondent to read and understand statistical information
to answer it correctly. An attempt was made to codify ‘read and understand’ in form of a
cognitive skill by considering textual length of item stem, whether numerical information
is presented in the stem or not, and whether calculation needs to be conducted in order
to consider answer choices. However, this skill was not included in the final Q-matrix
due to the lack of formal criteria. ‘Communication’ was interpreted as interpretation in
the context of this assessment. All items which required the respondent to choose the
‘correct’ interpretation statement from among answer choices was considered to require
this skill.

In the second step of developing the Q-matrix, topics and learning outcomes detailed
by the original assessment developer (Table A.1) were considered since they capture the
abilities of a statistically literate citizen as per this assessment instrument. Several key
features of items were noted based on this original blueprint. Any learning outcome
with the word ‘interpret’ in the description was considered in conjunction with the
‘communication’ criteria based on the definition discussed above to determine whether
the CommunicateInterpret skill is needed for the given item.

Relatedly, an important consideration in all interpretation tasks was whether the
respondent needed to interpret a descriptive quantity or results from an inferential
procedure. This criteria was broadened to capture skills 2 and 3 listed above - Descriptive
and Inferential. The ‘descriptive or inferential statistics’ broadly include ‘descriptive or
inferential procedures’ to clarify that a numerical or other output may not be presented
in the item. For example, an item that required an interpretation rejecting the null
hypothesis or the hypotheses themselves was considered to require the Inferential skill.
Items regarding samples and populations, variable types, and type of study design were
deemed to not require the mastery of either of these two skills so long as a statistical
procedure was not central to the question. On the other end of the spectrum, items
which required the respondent to consider an inferential procedure in tandem with a
descriptive statistics were considered to require both these skills.

Some items included visual information and the ability to work with such information
was considered an important skill. Even though determining whether or not each item
needed mastery of this skill was relatively easy, some items featured visual information
that is not a typical statistical visualization. For example, an item described confidence
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intervals as simple line plots and required the respondent to consider how the length of
this line will be affected by the confidence level. This item was considered to require the
said skill.

In the final stage of developing the Q-matrix, we took a close look at the modified test
blueprint (Table A.2) developed for MBLIS as well as the items themselves to consider
any additional skills may be required to answer it correctly. This led to the addition of the
Univariate, Bivariate, and StudyDesign skills. In the first draft of the Q-matrix, the skill
to answer a statistical question based on multivariate information was also considered.
However, only one item stem on MBLIS referred to a survey which collected information
on multiple variables, and a respondent was not required to consider any of the variables
themselves. Therefore, this skill was not retained in future drafts. Determination of
whether an item works with univariate or bivariate information was easy.

Finally, theStudyDesign skill considered whether a respondent needed to consider the
study design decisions in order to fully understand the question and answer it correctly.
Study design decisions include, but are not limited to, whether a random sample was
collected, whether random assignment was made, or whether repeated measures were
collected. Care was needed in determining whether aspects of study design mentioned in
item stem were relevant to the task and response choices themselves. Mastery of this
skill was only considered necessary for items in which design choices were directly tied to
answering the question.

Finally, the ContextCOVID skill was central to the investigation in this study. MBLIS
measures contextualized statistical literacy . Therefore, an underlying assumption is that
familiarity with the context to which an item refers is important in answering an item
correctly and thereby the assessment of whether a respondent is statistically literate in
that context. Since MBLIS was developed with the COVID-19 pandemic as the central
context, all isomorphic items were considered to require this skills. The six anchor items
and a seventh item which essentially remained unchanged are marked zero in the context
skill column.

4.1.2 Analytical approach

The MBLIS response data were analyzed under the CDM framework to investigate
the role of a context familiarity skill in responding to an assessment of contextualized
statistical literacy. The Q-matrix discussed in Section 4.1.1 proposed a measurement
framework for statistical literacy. Specifically, the first seven skills captured the statistical
aspects of statistical literacy and we wanted to understand how incorporating the context
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skill over and above those seven affected model estimates. In the first set of analyses
we inquired whether any difference is observed in the probability of answering questions
correctly if context familiarity is assumed to be required for those items. In the second
set of analyses, we focused on the estimates of skill prevalence, specifically the context
skill, to determine whether the measurement on context-specific assessment (MBLIS)
changes the estimates of skill prevalence. All analyses are conducting using the GDINA
package [127] in R.

4.1.2.1 Context Skill and Item Response Probabilities

We fit two DINA models (Section 1.2.2.2.4) to the MBLIS response data - one based on
a Q-matrix that included the context skill and another without that skill. DINA is a
non-compensatory model where the probability of answering an item correctly depends
on mastering all required skills as specified in the Q-matrix. The Item Response Function
(IRF) for this model is as follows:

P (Xij = 1|ai = αc) = δj0 + δj12...K

K∏
k=1

(Qjk × αck), (4.1)

where K = 8 for the model which includes the context skill and K = 7 for the other
model. Since the main research question of interest (RQ6) pertains to item response
probabilities, we focus on the δj12...K coefficient of the full interaction, and refer to it as
the AND δ. This coefficient is the change in probability of answering item j correctly over
and above the intercept for an individual who has all the required skills. This probability
is 1 − sj where sj is the probability of slippage specified in Equation 1.8. Therefore,
the AND δ is the probability that someone with all the requisite skills answers the item
correctly.

Our conceptual stipulation was that the context skill is needed in conjunction with
other statistical skills in order to answer a context-specific question correctly. The
non-compensatory DINA model accounts for this constraint. However, DINA does not
consider the effect of individual skills and even if an individual lacks one of the multiple
required skills, the individual is not considered to be equipped to answer the item correctly.
Therefore, we fit the A-CDM model (Section 1.2.2.2.6) which includes only the main
effects for each required skill in the IRF stated as
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P (Xij = 1|ai = αc) = δj0 +
K∑
k=1

δjk(Qjk × αck). (4.2)

This model was only fit to the data with the full Q-matrix - including the context
skill - to test for whether δj8 for the context skill was significantly different from zero ∀j.
Since the existing modeling framework does not allow for setting these coefficients to be
equal, we needed to conduct simultaneous tests for 30 coefficients, one for each eligible
item. Multiple testing was conducted with bonferroni correction using the standard
errors provided by the package, assuming normality. For significance level α = 5%,
the bonferroni adjusted αcorrected = 0.05/30 = 0.0017. The p-value in this case was
the probability that a randomly observed δj8 estimate would be as extreme as or more
extreme than the model estimate, given the standard error from the model, assuming
that δj8s follow a normal distribution. The p-values were compared to the αcorrected.

Finally, a full G-DINA fit was considered at the model-level. A fully saturated model,
or even a model with two-level or higher level interactions, is difficult to interpret, even
though it may be substantively interesting. Therefore, model fit summaries such as the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIS), and the value
of the loglikelihood (LL) were compared across all models to comment on the general
appropriateness of this modeling framework for the substantive problem at hand.

4.1.2.2 Context Skill and Skill Prevalence

To address the second question (RQ7), DINA models were fit to BLIS as well as MBLIS
data from the pilot study (Chapter 1). Comparing model fits across data from both
assessments allowed us to comment on whether the isomorphic instrument, MBLIS,
provided comparable measurement of statistical literacy. Model level comparisons were
not sufficient to achieve this goal. Therefore, estimated skill prevalence was compared.

Four DINA models were fit for this purpose. For each of the two datasets, one from
BLIS and one from MBLIS, parameters of DINA models with and without the context
skill were estimated. Skill prevalence is the estimated proportion of the sample which
has achieved mastery over the given skill. This proportion was estimated for each skill
under each of the four models. Standard errors for these proportions are required to be
bootstrapped and were, therefore, not evaluated at this stage.

84



4.2 Results

4.2.1 Context Skill and Item Response Probabilities

4.2.1.1 DINA models

First, we look at the AND δ from the DINA models to consider whether the model which
includes the context skill in the Q-matrix suggests different probabilities of responding
to MBLIS items correctly. In Table 4.1, rows shaded in blue mark the anchor items from
MBLIS plus an additional item - item 31. We note that the probabilities of answering
correctly are barely affected based on the choice of the Q-matrix. However, the two
highest differences across the probabilities are for anchor items - items which were
unchanged across the two versions of the assessment and did not include a context. These
were items 16 and 13, in descending order of absolute difference in probabilities.

Without context skill With context skill
Item AND δ SE AND δ SE

1 0.3737 0.0399 0.3710 0.0394
2 0.2117 0.0505 0.2109 0.0502
3 0.3286 0.0483 0.3260 0.0480
4 0.2508 0.0339 0.2526 0.0338
5 0.3005 0.0477 0.2852 0.0455
6 0.5406 0.0564 0.5550 0.0566
7 0.4462 0.0456 0.4509 0.0453
8 -0.0526 0.0475 -0.0465 0.0473
9 0.1206 0.0461 0.1201 0.0459
10 0.4527 0.0456 0.4512 0.0455
11 0.0742 0.0466 0.0745 0.0464
12 0.1310 0.0500 0.1266 0.0496
13 0.1342 0.0482 0.1046 0.0661
14 -0.0227 0.0415 -0.0231 0.0412
15 0.5281 0.0456 0.5207 0.0451
16 0.1325 0.0453 0.2819 0.0624
17 0.4905 0.0451 0.5161 0.0461
18 -0.0036 0.0505 -0.0043 0.0504
19 0.4630 0.0439 0.4647 0.0437
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Without context skill With context skill
Item AND δ SE AND δ SE

20 0.3546 0.0474 0.3562 0.0472
21 -0.0949 0.0333 -0.0953 0.0329
22 0.2120 0.0452 0.2121 0.0452
23 0.1841 0.0504 0.1846 0.0503
24 0.3577 0.0418 0.3574 0.0418
25 0.3868 0.0402 0.3834 0.0405
26 0.2761 0.0486 0.2746 0.0485
27 0.1992 0.0492 0.1984 0.0492
28 0.4929 0.0364 0.4935 0.0364
29 0.6004 0.0435 0.5984 0.0437
30 0.6934 0.0410 0.6934 0.0411
31 0.2747 0.0299 0.2867 0.0310
32 0.4390 0.0449 0.4380 0.0449
33 0.3966 0.0400 0.3966 0.0399
34 0.4348 0.0496 0.4286 0.0499
35 -0.1698 0.0384 -0.1702 0.0382
36 0.4809 0.0387 0.4762 0.0385
37 0.4120 0.0423 0.4122 0.0423

Table 4.1: DINA estimates and standard errors

4.2.1.2 A-CDM models

Next, we consider the main effect for the context skill under the additive CDM (A-CDM)
model to investigate whether its effect on the probability of answering an item correctly,
over and above the effect of all other required skills, has a small p-value. Table 4.2 shows
the main effect estimate, its standard error, and the bonferroni adjusted p-value. It is
important to note that since the anchor items and item 31 did not require familiarity
with COVID-19 pandemic related contexts, this δ was not estimated for those items.
Eleven eligible items have a p-value below the cutoff point, and items 12 and 28 have
p-values above but close to the cutoff point of 0.0017. For all these items, we consider
that the probability of answering them correctly may be influenced by mastery (or the
lack of it) of the context skill.
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Item Context main effect - delta Context main effect - SE p-value

1 0.3784 0.0683 0.0000
2 0.1180 0.0792 0.0681
3 0.4766 0.0695 0.0000
4 0.3095 0.0570 0.0000
5 0.2512 0.0524 0.0000
6 0.4047 0.0724 0.0000
7 0.1354 0.0618 0.0142
8 -0.0074 0.0771 0.4618
9 0.1201 0.0722 0.0481
10 0.2415 0.0695 0.0003
11 -0.0645 0.0768 0.2005
12 0.2076 0.0719 0.0019
13 NA NA NA
14 -0.0148 0.0709 0.4173
15 0.2506 0.0671 0.0001
16 NA NA NA
17 NA NA NA
18 -0.1038 0.0832 0.1061
19 0.2598 0.0665 0.0000
20 -0.0896 0.0652 0.0847
21 0.0012 0.0545 0.4912
22 0.1051 0.0723 0.0730
23 NA NA NA
24 NA NA NA
25 0.1292 0.0865 0.0676
26 0.2428 0.0723 0.0004
27 0.0154 0.0744 0.4180
28 0.2326 0.0797 0.0018
29 -0.0217 0.0763 0.3881
30 0.0015 0.0731 0.4918
31 NA NA NA
32 NA NA NA
33 0.2016 0.0797 0.0057
34 -0.0731 0.0793 0.1783
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Item Context main effect - delta Context main effect - SE p-value

35 -0.2069 0.0587 0.0002
36 0.3507 0.0708 0.0000
37 0.1706 0.0761 0.0125

Table 4.2: ACDM context skill main effect estimates and
standard errors

4.2.1.3 Model comparisons

Finally, we consider model diagnostics for all models discussed above as well as the fully
saturated G-DINA for MBLIS with the context skill in Table 4.3. Number of parameters
estimated for each model are also listed.

DINA model
w/o context w context ACDM w context GDINA w context

AIC 27345.69 27597.71 27197.37 27172.34
BIC 28234.44 29052.42 29164.99 32164.35
LL -13471.85 -13469.86 -13153.68 -12457.17
Parameters 201 329 445 1129

Table 4.3: Comparing various models for MBLIS

The model fits themselves do not look very different across the two models with
Q-matrices that depend on whether the context skill was included in the Q-matrix or not.
At the small scale of differences observed here, the DINA model which does not include
the context skill has a smaller AIC and BIC, and would therefore be considered to have a
better fit. However, towards the purpose of answering the first research question (RQ6),
the probability of answering an item correctly seems to be impacted by the context skill
when we assume an additive effect of each skill. This is not the case when a multiplicative
effect is considered under the assumption that all requisite skills must be mastered in
order to answer correctly.
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4.2.2 Context Skill and Skill Prevalence

We look at skill prevalence with a focus on the mastery proportion of skills for all four
models discussed in Section 4.1.2.2. Table 4.4 shows proportion of individuals who master
each skill based on their responses to each of the two assessment instruments. Since
these are not parameter estimates as per the model specification, and derived based on
other parameters, standard errors are not available.

BLIS MBLIS
No context skill With context skill No context skill With context skill

Skill 1 0.6483 0.6470 0.6098 0.7518
Skill 2 0.8298 0.8239 0.7391 0.8234
Skill 3 0.4465 0.4465 0.4643 0.4864
Skill 4 0.8035 0.8018 0.6515 0.6134
Skill 5 0.8837 0.9205 0.6847 0.9076
Skill 6 0.7340 0.7669 0.6729 0.8350
Skill 7 0.7671 0.7610 0.6762 0.6760
Skill 8 NA 0.9359 NA 0.7258

Table 4.4: Comparing skill prevalence across models

We must note that for BLIS, the original assessment instrument, the estimated
prevalence is robust for the first seven skills, no matter whether the context skill is
included in the Q-matrix or not. This indicates that the context skill does not affect the
prevalence of other skills. However, the high prevalence of the context skill on BLIS is a
critical reminder that the modeling framework may be detecting effects which may not
be interpretable or must be interpreted post-hoc as is the case with all latent models.
For MBLIS, which is the assessment of interest, skill prevalence estimates are different
across the two model fits. If mastering the context skill is considered essential for being
able to answer the 30 items correctly, the resulting model estimates higher prevalence of
all skills except the visualization skill. However, comparing the first and the last column
allows us to answer the second research question (RQ7) by observing that assuming that
the current form of the Q-matrix and model specification are accurate, the two groups of
students randomly determined to take either BLIS or MBLIS seem to have comparable
prevalence of statistical skills considered to contribute to statistical literacy.
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4.3 Discussion
This work demonstrates the feasibility as well as challenges of applying cognitive diagnostic
modeling to constructs in statistics education, specifically statistical literacy, by developing
an expert-specified Q-matrix that captures cognitive skills essential to correctly answering
tasks contributing to the construct. Though the results are inconclusive, this work is a
proof of concept that can encourage future work in this area. This work also underscores
the argument that statistics education research is an inherently interdisciplinary endeavor
[201] which must continue to bring together elements of cognitive theories, educational
psychology, research on learning and teaching, as well as statistical methodology.

This study can be a starting point for future research focused on measuring statistical
problem solving performance by explicitly considering the underlying cognitive skills.
The measurement of the role of context in this problem solving can be further elicited
by operationalizing the context in various different ways in an assessment. With the
understanding that measurement models must, ideally, be used not only to analyze data
from existing assessments but also to carefully design future assessments, similar work
can contribute to designing an assessment of statistical literacy which can specifically
measure the role of context familiarity.

This study analyzed data using available CDMs. However, extensions to this frame-
work may be considered wherein a combination of AND and OR requirements can be
specified to capture the skills which must be mastered for each item. For example, it is
conceivable that items on the assessment of contextualized statistical literacy could be
answered correctly if a test-taker has all requisite statistical skills (AND), and familiarity
with the context could affect the probability of success but is not essential to success
(OR). Alternatively, a framework in which mastery of one or more of the skills can
be specified along a continuum rather than as a dichotomous possibility could also be
beneficial.

4.3.1 Limitations

Findings from this modeling exercise are limited by the assumption that the Q-matrix
in Appendix D accurately captures the cognitive skills essential to the measurement of
statistical literacy as constructed by the assessment instruments. However, a CDM model
does not interpret the substantive meaning of an additional column such as the context
skill. This must be accounted for when interpreting results. Additionally, retrofitting
data from an assessment which is not developed for the specific diagnostic purpose nor
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based on the diagnostic analysis of the type conducted in retrofitting must be treated
with caution. Diagnostic modeling is most valuable in situations where a Q-matrix is
constructed a-priori, a test is developed to measure those particular skills, and then
feedback is provided to test-takers based on analyzing those data. Additionally, even
though the context skill column assumes that each isomorphic item based on a topic
pertaining to the COVID-19 shares a context, it may be possible to argue that each
different topic itself forms a different context and therefore, should be treated as such.

Additionally, as listed in Table 4.3, the sheer number of parameters in a CDM could
potentially reduce the reliability of the estimates.

4.3.2 Implications for research

As discussed in Section 4.1.1, the definition of statistical literacy used in this work
states: “Statistical literacy is the ability to read, understand, and communicate statistical
information.” Future work could incorporate a lexical score for reading load or a reading
comprehension score for each item stem and answer options to incorporate this dimension
of statistical literacy. Alternative framing of a Q-matrix for measuring statistical literacy
using other assessments will also be beneficial for considering the effect of context in
measurement and assessment of statistical literacy. However, the most critical research
opportunity is a closer look at the cognitive skills essential for a statistically literate
citizen.

This work specified the effect of context skill on probability of answering an item
correctly as either contributing to a full-interaction between all required skills or as an
additive coefficient. CDMs are specified in such a way that this coefficient is different
for each item. However, since the context is common across all items, a substantively
interesting model would be one where the context coefficient can be constrained to be
equal for all items where context skill is needed.
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Chapter 5 |
Conclusion

This work makes several methodological contributions despite some of the inconclusive
results. We demonstrate that a carefully designed isomorphic assessment can allow for
reliable assessment of statistical literacy in specific contexts. This assessment indicates
that context matters because a year into the COVID-19 pandemic (as of April 2021),
students completing a semester of college-level introductory statistics scored lower on a
pandemic-specific assessment of statistical literacy as compared to another version with a
variety of non-pandemic contexts. We illustrate through an example that a well-designed
randomized experiment can allow for drawing causal conclusions about the effects of a
curricular treatment in a statistics education research study. This study also underscores
the value of using research-based assessments to measure outcomes of interest. Finally,
we apply a measurement model to statistics education, developing a schema for the
cognitive skills underlying statistical literacy. The consistent theme of exploring the role
of relevant context in statistically literate behavior, through its assessment, measurement,
and improvement, also contributes to substantive research aimed at understanding the
role of context in not only statistical literacy, but also statistics education at-large.

Analyses of the pilot study in Chapter 5.1 inform two distinct questions at hand and
what we learn from one informs the other. On the topic of isomorphic assessments, we set
out to investigate whether the M-BLIS measures the same underlying constructs as BLIS
and in the same way, or not. We can conclude that a carefully constructed isomorphic
assessment can measure the same underlying constructs while exposing the test taker to
statistical literacy concepts through the lens of a variety of application areas. Future
work should look at various characteristics of the items as well as test-takers to further
understand differences in assessment performances. The second question of interest to
us was a comparison of student performance. These analyses were conducted assuming
that scores on BLIS and M-BLIS are equatable under the internal-anchor design [193].
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Various CTT-based analyses using multiple linear regression indicated that assessment
type ws an important predictor of total score no matter which other characteristics were
included and whether the model includes any interactions or not.

Results discussed in Chapter 3 allowed us to take a closer look at the implicit
assumption that students develop an ability to apply learnings from the course to
important contexts encountered in their lives outside the classroom as well as contexts
impacting the world around them. This assumes knowledge transfer [65–67] and warrants
further study to investigate the nature and the extent of this transfer. Further, the
statistics education community has been striving to bring real data into the classrooms.
However, real data need not always be relevant. Connecting contextualized statistical
literacy to the types of data included in the course materials provided us an insight into
whether this ability can be further improved, informing future statistics educators.

Finally, Chapter 4 was a first step towards future research focused on measuring
statistical problem solving performance by explicitly considering the underlying cognitive
skills. This work can be extended to conduct foundational research that identifies
cognitive skills required for statistical problem solving and operationalizes them through
assessment design and analyses of item response data using appropriate measurement
models. Specifically, this work can offer an insight into the role of context through the
use of state-of-the-art statistical methodology.

5.1 Limitations
This research is not without its limitations and we discuss those in this section. When
developing MBLIS, the less portable items on BLIS required either raw quantitative data,
data from a randomized experiment, or data that led to visualizations with peculiar
characteristics such as strong right skewness. Concessions were made in case of three
items where for one item the parameter of interest was switched from mean to proportion,
and an observational study was discussed instead of a randomized experiment in one
other. As seen in the example in Table 2.2, reverse skewness was accepted for one item.
However, the lack of open availability of raw datasets is a hurdle that will need to be
addressed more systematically in creating future isomorphs. Additionally, balancing
the competing goals of maximizing engagement and minimizing emotional impact lead
to the inclusion of some topics which may not be most relevant to the lives of of our
target population for the study - college students, in this case - and exclusion of some
topics which may be directly related to them. For example, one of the modified items
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referred to pre- and during pandemic performance of elementary school students on
standardized tests. This issue is confounded by the expectations of the ‘college student’
audience which is typical to an educational research study, though that may not need to
be the case for the general purpose of the research. The choice of the test population
can bias the choice of relevant contexts. The item in Table 2.5 was a subject of lengthy
discussions, some of which included the expert reviewers. The implicit assumption of a
coin being unbiased and our intuition about 50% of them landing on heads benefitted
the original item. However, upon deliberation, it was agreed that it is extremely hard to
find other phenomena which have an unconditional 0.5 probability of occurrence which
is understood intuitively, and therefore the substantial change in wording was included.
The original item was an interesting case because students are assumed to be so familiar
with fair coins that the frequency of their ‘encounters’ with the context might actually
outweigh the other dimensions of engagement/relevance we are seeking in this study.
Authors must also acknowledge that even though we use anchor items to compare the
two sets of respondents at baseline, we have to account for possible ordering effect. These
identical items could function differently across BLIS and M-BLIS, especially since they
may appear out-of-context on an assessment based entirely on one specific topic - the
COVID-19 pandemic. Finally, survey questions were asked at the end of the assessment.
Therefore, we didn’t expect that students’ performance on the assessment would have
been affected by these. However, responses to the survey questions may have contained
some cognitive bias based on whether they had just seen an entire assessment based on
COVID-19 or not.

We suggest caution in concluding the lack of causal effect of the treatment in Chapter
3 due to three aspects of the study design which may have limited the effects observed in
the study. First, this study was conducted during first fully in-person semester following
the COVID-19 pandemic. Resultantly, students were not required to attend the lab
sessions during which they could receive support from the TA and LA, as well interact
with students within their section. This could have led to interference due to students
working with fellow classmates from other lab sections. Second, since only a subset
of the lab activities was modified for the treatment, that may have limited the effect
size. Finally, it is worth noting that the modification of lab activities to include relevant
contexts was only a small part of the curriculum. All other components of the course
including the unmodified labs, lecture materials, common homework assignments, and
exams were unchanged. Over the course of past several years, the instructional team for
this course had undertaken concerted efforts to make this course relatable and relevant

94



to students. This could have potentially limited the size of the treatment effect. On the
outcome side, [17] discussed the validity of BLIS as a mid-term and end-term assessment.
M-BLIS was only deployed as a post-test in . Therefore, the use of these assessments
as a pre-test in the present study should be treated with care. However, the design of
BLIS is such that none of the items are invalid as a pre-test. Finally, the final dataset
in this study was approximately 10% of the enrollment in the course. Even though
Missingness At Random is assumed for the attrition and subgroup sizes within available
data were comparable, it is difficult to estimate whether larger retention could have lead
to different results. We also acknowledge the limited generalizability of these results since
the experiment was conducted at a single institution and in a single course. However,
this is typical of educational studies and future work will be aimed at multi-site studies.

Finally, findings from applying cognitive diagnostic modeling to data from assessments
of statistical literacy are limited by the assumption that the Q-matrix in Appendix D
accurately captures the cognitive skills essential to the measurement of statistical literacy
as constructed by the assessment instruments. However, a CDM model does not interpret
the substantive meaning of an additional column such as the context skill. This must
be accounted for when interpreting results. Additionally, retrofitting data from an
assessment which is not developed for the specific diagnostic purpose nor based on the
diagnostic analysis of the type conducted in retrofitting must be treated with caution.
Diagnostic modeling is most valuable in situations where a Q-matrix is constructed
a-priori, a test is developed to measure those particular skills, and then feedback is
provided to test-takers based on analyzing those data. Additionally, even though the
context skill column assumes that each isomorphic item based on a topic pertaining to
the COVID-19 shares a context, it may be possible to argue that each different topic
itself forms a different context and therefore, should be treated as such.

5.2 Implication for Future Work

5.2.1 Implications for research

Since BLIS and MBLIS instruments were observed to function comparably, we argue that
isomorphic assessment can be created to assess statistical literacy in various pertinent
contexts. Even though it may be quite tedious create them, these instruments can be
invaluable tools in getting respondents to consider statistics through a contextual lens
that is relevant, and continue to measure how curricular strategies may affect literacy
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levels. Therefore, future research can be directed towards two purposes. 1) measurement
of statistical literacy in various disciplinary or societal contexts using isomorphs of BLIS,
and 2) using these isomorphic versions to assess performance of experimental curricular
or pedagogical strategies. However, additional work exploring the transfer and cognitive
processes behind statistical problem solving will also be essential to our understanding
the role of contexts.

The pilot study was intended to study psychometric properties of M-BLIS in com-
parison with BLIS to determine whether the BLIS and M-BLIS are psychometrically
isomorphic, and whether they measure the same constructs even when the context is
changed. To draw reliable conclusions, it was essential that we have the ability to compare
results from our study to the field test conducted during the development of the original
assessment. To achieve this, it was important to ensure that the BLIS items remained
identical to that test, and therefore, M-BLIS was based on that version. At no point
did we change any details in the original assessment in an effort to ensure comparability
across the original work [17] and our pilot study. Resultantly, the results from this paper
are specific to one definition and assessment of statistical literacy. Future research should
study the role of contexts using other assessment instruments.

Differential student performance on BLIS and M-BLIS with a low p-value on inferential
results indicates that the context in which a statistical question is posed affects assessment
responses. Our respondents made sense of statistical questions differently based on
whether the context behind the numbers was relevant to them or not. In reference to the
discussion in Section 2.2.1 regarding sensitive contexts, this finding also has implications
for teaching practices. If additional research finds that the sensitivity of the topic may
have contributed to the lower scores on M-BLIS, an argument can be made to favor
inclusion of such topics on curricular materials instead of including them in grade-affecting
assessments [194].

From a context point of view, two things are worth noting. First, as discussed
in Section 2.3.1, some of the BLIS items pertaining to college students saw better
performance even though the examples were realistic. This may suggest that relevance
itself may be hypercontextualized for different subgroups. Secondly, it was interesting to
note in Table 2.11 that there was a certain percentage of students who, no matter which
assessment they took, indicated after completing the assessment that they had engaged
with the COVID-19 pandemic by seeking out information, believed it was relevant to
their lives, yet would not be interested in gaining data-driven insights into the pandemic.
Granted, this study ran about 13 months into the pandemic and there may have been
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pandemic fatigue. However, this was at the end of a semester during which they had
taken an introductory statistics class, making this an interesting phenomena warranting
further investigation.

Future researchers interested in investigating the impact of teaching through contexts
relevant to students must consider several important aspects. First, the list of topics this
intervention worked with was pre-specified by the researcher. It would be worthwhile
to build this list using open-ended responses from students themselves to include topics
students report as engaging and relevant. Second, student engagement with topics can
differ based on the component of the course in which they are incorporated. Future work
should consider the possible differential effect of modifying other parts of the curriculum
and assessments. Finally, contextualized statistical literacy is one possible measure of
someone’s ability to make sense of statistics pertaining to relevant contexts. However, it
is possible to conceive of other ways of assessing the transfer of classroom learning to
topics relevant to individuals. With the larger goal of promoting a statistically literate
citizenry, other methods of measuring the abilities deserve merit as well.

On the methodological side, the curricular experiment established the feasibility of
and a framework for conducting studies which can allow for causal claims to be made in
educational research. Such a pursuit is not without its challenges such as infeasibility of
randomized assignment at an individual-level, buy-in from the administration, consent
procedures required by individual institutional review boards, and ensuring equal learning
opportunity to the experimental and control group. However, more research-based causal
claims regarding the effects of instructional ideas on important learning outcomes are
critical to making evidence-based teaching decisions. Therefore, future statistics education
research should consider conducing more randomized experiments or carefully designed
observational studies and drawing careful causal conclusions based on those.

Finally, as discussed in Section 4.1.1, the definition of statistical literacy used in this
work states: “Statistical literacy is the ability to read, understand, and communicate
statistical information.” Future work on applying CDM to statistical literacy could
incorporate a lexical score for reading load or a reading comprehension score for each item
stem and answer options to incorporate this dimension of statistical literacy. Alternative
framing of a Q-matrix for measuring statistical literacy using other assessments will also
be beneficial for considering the effect of context in measurement and assessment of
statistical literacy. However, the most critical research opportunity is a closer look at
the cognitive skills essential for a statistically literate citizen.

This work specified the effect of context skill on probability of answering an item
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correctly as either contributing to a full-interaction between all required skills or as an
additive coefficient. CDMs are specified in such a way that this coefficient is different
for each item. However, since the context is common across all items, a substantively
interesting model would be one where the context coefficient can be constrained to be
equal for all items where context skill is needed.

The measurement of the role of context in this problem solving can be further elicited
by operationalizing the context in various different ways in an assessment. With the
understanding that measurement models must, ideally, be used not only to analyze data
from existing assessments but also to carefully design future assessments, similar work
can contribute to designing an assessment of statistical literacy which can specifically
measure the role of context familiarity.

This study analyzed data using available CDMs. However, extensions to this frame-
work may be considered wherein a combination of AND and OR requirements can be
specified to capture the skills which must be mastered for each item. For example, it is
conceivable that items on the assessment of contextualized statistical literacy could be
answered correctly if a test-taker has all requisite statistical skills (AND), and familiarity
with the context could affect the probability of success but is not essential to success
(OR). Alternatively, a framework in which mastery of one or more of the skills can
be specified along a continuum rather than as a dichotomous possibility could also be
beneficial.

Lastly, but most importantly, all of the methodological advances discussed here should
be applied more broadly to topics in statistics education research.

5.2.2 Implications for teaching

As the substantive focus of this research is statistics education, motivated by the goal
of educating students more effectively, its implications towards classroom decision are
critical to consider. Chapter 5.1 comments on the negotiation vis-a-vis sensitive relevant
contexts and the possible advantage of including them on curricular material as opposed
to assessment items. Inclusion of such context in teaching materials can have an added
advantage that no matter the statistical literacy outcomes, the course materials encourage
students to consider topics relevant to the society from a statistical point of view. However,
additional considerations such as attitudes towards statistics and engagement with the
subject are also equally important. If future studies lead to findings consistent with this
work, contexts in a statistics classrooms should be chosen to optimize outcomes other
than statistical literacy.
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The central goal of applying CDM to assessment data is improved ability to provide
feedback to students. Even though we do not report or discuss person-level parameter
estimates in Chapter 4, the modeling framework does provide them. An important
extension of this work would be to consider how it can be directed towards developing
a feedback mechanism that can offer instructors with the tools required to work with
individual students on understanding their own strengths and weaknesses, and developing
strategies to harness the strengths and improve on the weaknesses.

5.3 Conclusion
[200] unequivocally asserted the mantra that not only should we assess what we value, but
we must also teach what we wish to assess. We need to first outline the learning outcomes
we value, create an assessment plan, and then, consequently, design curriculum to teach
what we intend to assess. This dissertation discussed the value of context in statistically
literate behavior, and an assessment, measurement, and instructional tool towards that
purpose. As discussed in Chapter 1, statistics educators value students’ ability to become
statistically literate citizens who can make sense of data-driven information pertinent
to their personal and professional lives. In Chapter 5.1, we discussed a proposal to
assess such an ability - contextualized statistical literacy - using a research-based tool.
Chapter 3 contributed to the literature on the final step of the cycle, designing teaching
materials intended to improve statistical literacy and evaluate its effects on the intended
outcome. Chapter 4 looked at the underlying measurement structure upon which all
conclusions from the other two projects were based. For a statistically literate individual,
the ability to marry one’s understanding of statistical constructs and the context-at-hand
is assumed. In fact, as there is no statistics without context [35], statistical literacy
is also inherently contextualized. Parallel to the discussion in [72] in the context of
mathematics education, statistics education, too, is a way for us to develop citizens who
can make sense of quantitative information in contexts that matter to them. This work
will support future steps in the methodological research essential towards this goal.
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Appendix A|
Assessment Instrument - MBLIS

This appendix includes the blueprint for and final copy of MBLIS or Modified BLIS
measuring contextualized statistical literacy. Blueprint and final copy of the Basic
Literacy in Statistics (BLIS) assessment instrument is presented in [17] and available
upon request from the original author.

A.1 Blueprint for MBLIS
The original blueprint drawn and discussed by [17] includes the Topic and the Learning
Outcome for each item. For the purpose of this presentation, we re-create the original
blueprint which includes the learning outcomes before presenting the extended blueprint
created for MBLIS without the learning outcomes.
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Topic Item Learning Outcome

Data production

1 Understanding of the difference between a sample and population

2
Understanding that randomness cannot be outguessed in the short term but
patterns can be observed over the long term

3
Understanding that statistics computed from random samples tend to be
centered at the parameters

4 Ability to determine what type of study was conducted
5 Ability to determine if the variable is quantitative or categorical
6 Ability to determine if a variable is an explanatory variable or a response variable
7 Understanding of the difference between a statistic and parameter
8 Understanding that statistics vary from sample to sample

Graphs
9 Ability to describe and interpret a dotplot

10
Ability to describe and interpret the overall distribution of a variable as displayed
in a dotplot, including referring to the context of the data

11 Understanding the importance of creating graphs prior to analyzing data

Descriptive statistics

12 Ability to interpret a probability in the context of the data
13 Ability to interpret a mean in the context of the data
14 Understand how a mean is affected by skewness or outliers
15 Ability to interpret a standard deviation in the context of the data
16 Understanding of the properties of standard deviation

Empirical sampling distributions
17 Understanding of what an empirical sampling distribution represents

18
Understanding that an empirical sampling distribution shows how sample
statistics tend to vary
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Topic Item Learning Outcome

19
Understanding that simulated statistics in the tails of a sampling distribution
are not plausible estimates of a population parameter

Confidence intervals
20

Understanding that a confidence interval provides plausible values of the
population parameter

21
Understanding that a confidence interval for a proportion is centered at the
sample statistic

22
Understanding of how the confidence level affects the width of a
confidence interval

Randomization distributions
23

Understanding that sample statistics in the tails of a randomization
distribution are evidence against the null hypothesis

24 Understanding of how sample size affects the standard error

25
Understanding that a randomization distribution tends to be centered
at the hypothesized null value

Hypothesis tests

26 Ability to estimate a p-value using a randomization distribution
27 Understanding of the logic of a hypothesis test
28 Understanding of the purpose of a hypothesis test

29
Ability to determine a null and alternative hypothesis statement based on
a research question

30
Ability to determine a null and alternative hypothesis statement based on
a research question

31 Ability to determine statistical significance based on a p-value
32 Understanding that errors can occur in hypothesis testing
33 Understanding of how a significance level is used to make decisions
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Topic Item Learning Outcome

Scope of conclusion
34

Understanding that only an experimental design with random assignment can
support causal inference

35
Understanding of the factors that allow a sample of data to be generalized
to the population

Regression and correlation
36 Ability to match a scatterplot to a verbal description of a bivariate relationship
37 Ability to use a least-squares regression equation to make a prediction

Table A.1: Original BLIS blueprint [17]
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Item Testlet
BLIS example
type - GAISE

Variable type(s)
Actual data
need

Analysis need
Random
sample

Randomized
assignment

1 Real from real study Categorical Yes No Yes
2 Realistic Categorical No No
3 Real Quantitative Maybe Yes Yes
4 Real 2 Categorical Maybe No Yes
5 1 Realistic Categorical No No
6 1 Realistic Categorical No No
7 Real from real study Categorical Yes No Yes
8 Realistic 2 Quantitative Maybe Maybe Yes
9 Realistic Quantitative Maybe Yes
10 Realistic Quantitative Maybe Yes
11 Real 1 Categorical, 1 Quantitative No No Yes
12 Real from real study Categorical Yes No
13 Real from real study Quantitative Maybe Maybe Yes
14 Naked Quantitative Maybe Yes
15 Realistic Quantitative Maybe Maybe
16 Realistic Quantitative Maybe Maybe
17 Realistic Quantitative Maybe Yes Unspecified
18 2 Real from real study Quantitative Yes Yes Yes
19 2 Real from real study Quantitative Yes Yes Yes
20 Real from real study Categorical Yes No Yes
21 Real from real study Categorical Yes No Yes
22 Realistic Quantitative No Maybe Yes
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Item Testlet
BLIS example
type - GAISE

Variable type(s)
Actual data
need

Analysis need
Random
sample

Randomized
assignment

23 3 Real from real study 1 Categorical, 1 Quantitative Yes Yes Yes
24 3 Real from real study 1 Categorical, 1 Quantitative Yes Yes Yes
25 4 Real from real study 1 Categorical, 1 Quantitative Yes Yes Yes
26 4 Real from real study 1 Categorical, 1 Quantitative Yes Yes Yes
27 Realistic Categorical No No
28 Real from real study 1 Categorical, 1 Quantitative Maybe No
29 5 Real from real study 1 Categorical, 1 Quantitative Yes No
30 5 Real from real study 1 Categorical, 1 Quantitative Yes No
31 Realistic
32 Real from real study 1 Categorical, 1 Quantitative Yes No
33 Real from real study Categorical Yes Maybe
34 Real 1 Categorical, 1 Quantitative
35 Real from real study Categorical Maybe No Yes
36 Real 2 Quantitative Maybe Yes
37 Real from real study 2 Quantitative Maybe Yes

Table A.2: Extended blueprint for MBLIS
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A.2 MBLIS instrument
Item 1:

Item stem: The Pew Research Center surveyed a nationally representative group
of 12,648 U.S. adults in November 2020. Of these adults, 62% said they would be
uncomfortable being among the first to get the vaccine for COVID-19. Identify the
population about which the Pew Research Center can make inferences from the survey
results and the sample from that population.
Source: Pew Research Center.

• The population is all U.S. adults in November 2020. The sample is the 62% of
U.S. adults who said they would be uncomfortable being among the first to get the
vaccine for COVID-19.

• The population is the 12,648 U.S. adults surveyed. The sample is all U.S. adults in
November 2020.

• The population is all U.S. adults in November 2020. The sample is the 12,648 U.S.
adults surveyed.

Item 2:
Item stem: Penn State University administrators surveyed all undergraduate stu-

dents to capture feedback from the entire student body on several issues. As a result,
they learned that 86% of all students planned to return in fall 2020. Despite knowing the
proportion for all Penn State students as a whole, several instructors surveyed their own
classes in order to be sensitive to the views ot their students. One instructor had a class
with 50 students and another instructor had a class with 100 students. Assuming both
classes were representative of the entire student body at Penn State, which instructor
was more likely to find that 84% to 88% of their students would plan to return in fall
2020?
Source: Adapted from Penn State News.

• The instructor who surveyed 50 students because the percent that planned to
return was less likely to be exactly 86%.

• The instructor who surveyed 100 students because that instructor had more chances
to survey a student who planned to return.
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• The instructor who surveyed 100 students because the more students that were
surveyed would have increased the chance of approaching a result of 86% planning
to return.

• Neither instructor was more likely because student responses were random and
therefore you could not predict the survey responses.

Item 3:
Item stem: Researchers learned that college students were getting 30 more minutes

of sleep, on average, during weekdays of the first COVID-19 lockdown. To determine
whether this finding could be replicated, additional random samples of 25 college students
were taken and the average additional weekday sleep in each sample was recorded.
Assuming that nothing was wrong with the initial study, which of the following graphs is
the most plausible for the average additional sleep in each of the 20 samples?
Source: Research article.

• Graph A

• Graph B

• Graph C

• Graph D
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Item 4:
Item stem: Johnson and Johnson wanted to determine if their proposed vaccine

reduces the chance of developing mild COVID-19. Researchers at the company recruited
20,000 individuals into the Phase III clinical trial. Half (10,000) of the individuals were
randomly assigned to receive the actual vaccine dose and the other half to receive a
placebo. Then after 14 days, the percentage of mild COVID-19 cases for the individuals
who received the actual vaccine and for those who did not receive the actual vaccine
were reported. What type of study did the scientists conduct?
Source: JnJ study protocol.

• Observational

• Experimental

• Survey

Items 5 and 6 refer to the following situation:
Researchers at a university gathered data on the COVID-19 experience of individuals

in the U.S. One of the variables measured was sexual identity. These data were coded
using the following method: 1 = straight or heterosexual, 2 = bisexual, 3 = asexual, 4 =
pansexual, 5 = gay or lesbian, 6 = no label, 7 = undecided, and 8 = other label.
Source: Research article.
Item 5:

Item stem: What type of variable is this?

• Categorical

• Quantitative

• Continuous

Item 6:
Item stem: The researchers planned to see if sexual identity of an individual is a

predictor of their COVID-19-related psychological distress. Identify the response variable
in this study.

• Individuals in the US
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• Sexual identity

• Psychological distress

• Average psychological distress

Item 7:
Item stem: RAND Corporation surveyed a nationally representative sample of 2,387

U.S. adults during May - June 2020 to determine "What proportion of U.S. adults have
delayed or forgone getting dental care or going to the dentist due to the COVID-19
pandemic?" For the sample, 1,115 adults answered yes and 1,272 adults answered no.
Identify the statistic and parameter of interest.
Source: Research article.

• The statistic is the sample proportion of adults who answered yes (1115/2387=
.467) and the parameter is the 2,387 US adults who took part in the survey.

• The statistic is the 2,387 U.S. adults who took part in the survey and the parameter
is all U.S. adults.

• The statistic is the proportion of all U.S. adults who have delayed or forgone
getting dental care or going to the dentist due to the COVID-19 pandemic and the
parameter is the sample proportion of adults who answered yes (1115/2387= .467).

• The statistic is the sample proportion of adults who answered yes (1115/2387=
.467) and the parameter is the proportion of all U.S. adults who have delayed or
forgone getting dental care or going to the dentist due to the COVID-19 pandemic.

Item 8:
Item stem: In a study to investigate the impact of the COVID-19 pandemic on

the global airline industry, Researcher A took a random sample of 25 days during the
pandemic, and found that the mean number of flights (by large air carriers) canceled
was 1765.6. In another study, Researcher B took a random sample of 25 days during the
same period, and found that the mean number of flights (by large air carriers) canceled
was 2278.72. What is the best explanation for why the samples taken by Researcher A
and Researcher B did not produce the same mean?
Source: Kaggle.
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• The sample means varied because they are small samples.

• The sample means varied because the samples were not representative of all days
during the pandemic.

• The sample means varied because each sample is a different subset of the population.

Item 9:
Item stem: Researchers studied perceptions of Vietnamese citizens during the initial

outbreak of the COVID-19 pandemic. One of the questions asked was "To what extent is
the number of official news (regarding the pandemic) overwhelming on a scale of 1 to 10"
where 1 = Least Overwhelming and 10 = Most Overwhelming. Below is the distribution
of this variable for the 75 respondents with postgraduate education in the sample.

How should the researchers interpret Vietnamese citizens’ perceptions regarding the
official news during the initial outbreak of the COVID-19 pandemic?
Source: Research article.

• A majority of the respondents felt overwhelmed by the number of official news
although a few did not feel overwhelmed.

• A majority of the respondents rated their feeling of being overwhelmed as a 7
although some ratings were higher and some were lower.
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• A majority of the respondents continued to access the official news even though
they were overwhelmed by its number.

Item 10:
Item stem: Researchers at the University of Oxford have been collecting information

on policy responses that governments have taken to respond to the pandemic. The
following graph shows a distribution of the stringency index for a group of countries
calculated on October 2, 2020. This index records the strictness of ?lockdown style?
policies that primarily restrict people?s behaviour.

Select the statement below that gives the most complete description of the graph in
a way that demonstrates an understanding of how to statistically describe and interpret
the distribution of a variable.
Source: Adapted from research data.

• The values go from 10 to 90, increasing in height to 55, then decreasing to 90. The
most values are at 55. There is a gap between 10 and 25.

• The distribution is normal, with a mean of about 55 and a standard deviation of
about 15.
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• Many countries seem to have an index value of 55, but some countries have a higher
value and some have a lower value. However, one country must have very lenient
lockdown-style policies.

• The distribution of stringency indices is somewhat normal, with an outlier at 10.
The typical index value is about 55 and standard deviation is about 15.

Item 11:
Item stem: Researchers at the National Institutes of Health (NIH) were interested in

determining if taking Remdesivir was an effective treatment for adult COVID-19 patients
with certain characteristics. An experiment was conducted with 1,062 participants. 541 of
these participants were randomly assigned to receive Remdesivir and the others received
a placebo. The number of days the participant took to recover was recorded. The
researchers planned to conduct a hypothesis test to determine if there was a significant
difference in the average number of days participants to took recover for the Remdisivir
group and the placebo group. Which of the following is a reason why the researchers
should create and examine graphs of the number of days participants took to recover
before the hypothesis test is conducted?
Source: Research article.

• To decide what the null hypothesis and alternative hypothesis should be.

• To compute the average number of days participants took to recover in order to
conduct a hypothesis test.

• To see if there are recognizable differences in the two groups to decide if a hypothesis
test is necessary.

Item 12:
Item stem: Consider an individual fitting the following description.

• 20-year-old female,

• lives alone near a university campus,

• is exposed to an average of 10 people each week,

• has no underlying medical complications,
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• is asymptomatic and unvaccinated,

• and follows CDC’s guidance.

According to the "19andMe" tool developed by Mathematica, her probability of
catching COVID-19 through community transmission in a week is .0024, as of March
30, 2021. What does the statistic, .0024, mean in the context of this calculation from
Mathematica?
Source: Online calculator.

• For all individuals fitting the above description, approximately 0.24% will catch
COVID-19 through community transmission at some point during the week.

• If you randomly selected an individual fitting the above description there is a 0.24%
chance that they will catch COVID-19 through community transmission at some
point during the week.

• In a random sample of 10,000 individuals fitting the above description, 24 of them
will catch COVID-19 through community transmission at some point during the
week.

• Both a and b are correct.

Item 13:
Item stem: According to a national survey of dog owners, the average first-year costs

for owning a large-sized dog is $1,700. Which of the following is the best interpretation
of the mean?

• For all dog owners in this sample, their average first-year costs for owning a
large-sized dog is $1,700.

• For all dog owners in the population, their average first-year costs for owning a
large-sized dog is $1,700.

• For all dog owners in this sample, about half were above $1,700 and about half
were below $1,700.

• For most owners, the first-year costs for owning a large-sized dog is $1,700.
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Item 14:
Item stem: For scientific credibility, journal articles are reviewed by other scientists

before publication. This process is called peer-review. Researchers collected data to
study how the pandemic has affected the peer-review timelines for six Ecology journals.
The plot below shows the distribution of number of days taken by all reviewers to review
papers assigned to them.

A sample of 10 randomly selected papers will be taken from this population and
the sample mean will be calculated. Which of the following intervals is MOST likely to
include the sample mean?
Source: Research article.

• 0 to 10

• 10 to 20

• 20 to 30

• 40 to 50

Item 15:
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Item stem: In the state of Pennsylvania, 147,469 Paycheck Protection Program
(PPP) loans worth $150,000 or less were issued from the beginning of the pandemic until
August 8th, 2020. The standard deviation of the loan amounts was $33,661. Which of
the following gives the most suitable interpretation of this standard deviation?
Source: Treasury Department.

• All of the individual loan amounts are $33,661 apart.

• The difference between the highest and lowest loan amount is $33,661.

• The difference between the upper and lower quartile is $33,661.

• A typical distance of a loan amount from the mean is $33,661.

Item 16:
Item stem: A teacher gives a 15-item science test. For each item, a student receives

one point for a correct answer; 0 points for no answer; and loses one point for an incorrect
answer. Total test scores could range from -15 points to +15 points. The teacher
computes the standard deviation of the test scores to be -2.30. What do we know?

• The standard deviation was calculated incorrectly.

• Most students scored below the mean.

• None of the above.

Item 17:
Item stem: Figure A represents the weights for a sample of 26 pebbles, each weighed

to the nearest gram. Figure B represents the mean weights for 39 random samples of 3
pebbles each, with all mean weights rounded to the nearest gram. One value is circled in
each distribution. Is there a difference between what is represented by the dot circled in
A and the dot circled in B? Please select the best answer from the list below.
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• No, in both Figure A and Figure B, the circled dot represents the same measurement,
a weight of 6 grams.

• Yes, in Figure A there are only four dots with a weight of 6, but in Figure B there
are nine dots with a weight of 6.

• Yes, the circled dot in Figure A is the weight for a single pebble, while the circled
dot in Figure B represents the mean weight of 3 pebbles.

Items 18 and 19 refer to the following situation:
RAND collected data from 1,082 teachers during October 2020 and asked them

"During the most recent full week, approximately how many hours did you work as part
of your teaching position at your school?" The sample average number of hours worked
was 46.6. An empirical sampling distribution was estimated by doing the following:

• From the original sample, 1,082 teachers were chosen randomly, with replacement.

• The mean was computed for the new sample and placed on the plot shown below.

• This was repeated 999 more times.

Below is the plot of the estimated empirical sampling distribution. (Note: This plot
can be used as an estimate of what the sampling distribution would look like.)
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Figure A.1. Mean Number of Hours

Source: RAND.
Item 18:

Item stem: Which of the following is the best description of the variability in the
empirical sampling distribution?

• The mean number of hours teachers worked during October 2020 was 46.636.

• The variability in the mean number of hours teachers worked from sample to sample
is quite small spanning from approximately 45 to 49.

• The variability in the number of hours worked from teacher to teacher is quite
small, spanning from approximately 45 to 49.

Item 19:
Item stem: What values do you believe would be LESS plausible estimates of the

population average number of hours worked by teachers if you wanted to estimate the
population average with 95% confidence?

• Values approximately 47.3 and above because it is unlikely that teachers would
work for so many hours in a week.

• Values below approximately 45 and values above approximately 48.5 because there
are no dots that are that extreme.

• Values in the bottom 5% (below approximately 45.9) and values in the top 5%
(above approximately 47.4).
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• Values in the bottom 2.5% (below approximately 45.7) and values in the top 2.5%
(above approximately 47.5).

Item 20:
Item stem: Gallup surveyed 3,759 randomly chosen U.S. adults during a week in

February 2021. The sample percent of adults who visited a restaurant within the prior
24 hours was 24%. The 95% confidence interval was 20% to 28%. What is this interval
attempting to estimate?
Source: Gallup.

• The average number of U.S. adults who visited a restaurant within the previous 24
hours during that week in February 2021.

• The percent of the 3,759 U.S. adults who visited a restaurant within the previous
24 hours during that week in February 2021.

• The percent of all U.S. adults who visited a restaurant within the previous 24 hours
during that week in February 2021.

• For U.S. adults who visited a restaurant within the previous 24 hours during that
week in February 2021, only 20% to 28% were comfortable visiting a restaurant.

Item 21:
Item stem: In a study of working mothers with children under 18 at home, researchers

at the Pew Research Center randomly selected a sample and asked them if they have
personally experienced being passed over for an important assignment during the pandemic
because they were balancing work and parenting responsibilities. They calculated a 95%
confidence interval for the percentage of mothers who said yes (10% to 12%). Which of
the following statements is true about the center of the interval (11%)?
Source: Pew Research Center.

• We know that 11% of mothers in the sample have been passed over for an important
assignment during the pandemic because they were balancing work and parenting
responsibilities.

• We know that 11% of mothers in the population have been passed over for an
important assignment during the pandemic because they were balancing work and
parenting responsibilities.
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• We can say with 95% confidence that 11% of mothers in the sample have been
passed over for an important assignment during the pandemic because they were
balancing work and parenting responsibilities.

• We can say with 95% confidence that 11% of mothers in the population have been
passed over for an important assignment during the pandemic because they were
balancing work and parenting responsibilities.

Item 22:
Item stem: The World Health Organization (WHO) maintains updated records of

the number of COVID-19 cases in each country, territory and area.
On March 20th, 2021, we took a random sample of n = 50 regions. We looked at

the number of cases per 100,000 people in the population. A 99% confidence interval
for the population mean and a 90% confidence interval for the population mean were
constructed using this sample.

For the following options, a confidence interval is shown as a horizontal line. The
sample mean is represented by a solid dot in the middle of the confidence interval. Which
of the options would best represent how the two confidence intervals would compare to
each other?
Source: WHO.
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Items 23 and 24 refer to the following situation:
Are people able to recall words better after taking a nap or taking a caffeine pill? A

randomized experiment was conducted with 24 participants. Participants were shown a
list of words in the morning. In the afternoon, half of the participants were randomly
assigned to take a nap and the other half took a caffeine pill. The response variable was
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the number of words participants were able to recall 7 hours after being shown the list of
words in the morning. The nap group recalled an average of 15.8 words and the caffeine
group recalled an average of 13.0 words, with a mean difference of 15.8 ? 13.0 = 2.8
words.

A randomization distribution was produced by doing the following:

• From the original sample, the 24 participants were re-randomized to the nap group
(n=12) or caffeine group (n=12), without replacement.

• The mean difference in words recalled between the two re-randomized groups was
computed [mean(nap group) - mean(caffeine group)] and placed on the plot shown
below.

• This was repeated 999 more times.

Below is the plot of the randomization distribution. (Note: This plot can be used as
an estimate of what the sampling distribution would look like if the null hypothesis is
true.)

Figure A.2. (Mean Words Recalled for Nap Group) - (Mean Words Recalled for Caffeine
Group)

Item 23:
Item stem: The null hypothesis is there is no difference in the true mean number of

words recalled for the nap group and caffeine group. Looking at the observed sample
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mean difference in number of words recalled between the nap group and the caffeine
group of 2.8 on the plot, is there evidence against the null hypothesis?

• No, because the average of the re-randomized sample mean differences is equal to
0.

• No, because the proportion of re-randomized sample mean differences equal to or
above 2.8 is very small.

• Yes, because the proportion of re-randomized sample mean differences equal to or
above 2.8 is very small.

• Yes, because the observed result shows that the nap group remembered an average
of 2.8 words more than the caffeine group.

Item 24:
Item stem: Suppose the sample size was doubled from 24 participants to 48 partici-

pants and the participants were still randomly assigned into two groups of equal size.
How would you expect the standard error of the mean difference to change?

• Decrease, because with a larger sample size, there would be less variability in the
re-randomized sample mean differences.

• Increase, because with a larger sample size, there is more opportunity for error.

• Stay about the same, because people are still being assigned to groups randomly.

Items 25 and 26 refer to the following situation:
Researchers collected data from 89,305 people from around the world. Respondents

were asked about their social distancing behavior during the COVID-19 pandemic.
Of these people, 51,110 were co-habiting (including married), and 38,195 were single
(including divorced). The average social distancing score was 83.07 for the co-habiting
group and 80.41 for the single group. Note that a higher score implies that the individual
was more socially distant. The difference in average social distancing score was 83.07 -
80.41 = 2.66.

A randomization distribution was produced by doing the following:

• From the original sample, the 89,305 people were re-randomized to the cohabiting
group (n=51,110) or single group (n=38,195), without replacement.
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• The mean difference in social distancing score between the two rerandomized groups
was computed [mean(co-habiting) ? mean(single)] and placed on the plot shown
below.

• This was repeated 99 more times.

Below is the plot of the randomization distribution for the 100 simulated mean
differences. (Note: This plot can be used as an estimate of what the sampling distribution
would look like if the null hypothesis is true.)

Figure A.3. (Mean Score for Co-habiting group) - (Mean Score for Single group)

Source: Research article.
Item 25:

Item stem: Why is the randomization distribution centered at 0?

• Because the randomization distribution was created under the assumption of a
difference in mean social distancing score of 0.

• Because the people who had higher scores cancelled out the people who had lower
scores resulting in a mean of 0.

• Because that was the original score that respondents started at for both groups.

Item 26:
Item stem: Researchers hypothesize that co-habiting is related to more social

distancing than being single for people responding to this survey. Compute the approx-
imate p-value for the observed difference in social distancing score of 0.25 based on
the randomization distribution using the one-tailed test appropriate to the researchers?
interest.

• .02

• .05
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• .04

Item 27:
Item stem: The following situation models the logic of a hypothesis test. A procedure

called RT-qPCR tests whether or not a wastewater sample is positive for the COVID-19
virus. The null hypothesis is that the sample is negative. The alternative hypothesis
is that the sample is positive. The lab performs the test and decides to reject the null
hypothesis. Which of the following statements is true?
Source: CDC.

• The sample is definitely positive and further action is needed.

• The sample is most likely positive, but it could be negative.

• The sample is definitely negative and no further action is needed.

• The sample is most likely negative, but it might be positive.

Item 28:
Item stem: Researchers at Renaissance Learning Inc. wanted to answer the following

research question: Did the mathematics performance of Grade 2-8 students decline during
the pandemic? A sample of students from across the U.S. took the Star assessments in
fall 2019 (Grades 1-7) and fall 2020 (Grade 2-8). The scores were analyzed to determine
which students were low performing and should either receive an educational intervention
or be watched more closely. 42% of the students were considered low performing during
the pandemic, as compared to 34% before the pandemic. Is there a need to conduct a
hypothesis test to determine whether mathematics scores declined during the pandemic,
or could we just use the sample statistic (42%) as evidence of such a decline?
Source: Renaissance Learning.

• We do not need to conduct a hypothesis test because 42% is much larger than 34%.

• We should conduct a hypothesis test because a hypothesis test is always appropriate.

• We should conduct a hypothesis test to determine if the sample statistic was
unlikely to occur by chance.

124

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/wastewater-surveillance.html
https://www.renaissance.com/how-kids-are-performing/


Items 29 and 30 refer to the following situation:
The RAND Corporation regularly surveys people in the U.S. In their 2019 and 2020

surveys of the same 1,520 adults, one question asked was “In the past month (30 days),
on how many days did you drink at least one full drink of alcohol?” One research question
that the surveyors had was “Is there a difference between before COVID-19 pandemic and
during COVID-19 pandemic behavior with regards to the average number of alcoholic
drinks consumed?”
Source: Research article.
Item 29:

Item stem: Which of the following is a statement of the null hypothesis for a
statistical test designed to answer the research question?

• There is no difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the number of alcoholic drinks consumed.

• There is a difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the number of alcoholic drinks consumed.

• There is no difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the average number of alcoholic drinks consumed.

• There is a difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the average number of alcoholic drinks consumed.

Item 30:
Item stem: Which of the following is a statement of the alternative hypothesis for a

statistical test designed to answer the research question?

• There is no difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the number of alcoholic drinks consumed.

• There is a difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the number of alcoholic drinks consumed.

• There is no difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the average number of alcoholic drinks consumed.

• There is a difference between before COVID-19 pandemic and during COVID-19
pandemic behavior in terms of the average number of alcoholic drinks consumed.
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Item 31:
Item stem: A scientist is designing a research study. They are hoping to show that

the results of an experiment are statistically significant. What type of p-value would
they want to obtain?

• A large p-value.

• A small p-value.

• The magnitude of a p-value has no impact on statistical significance.

Item 32:
Item stem: A clinical trial was conducted to determine if women who have regular

mammograms to screen for breast cancer would decrease breast cancer mortality. The
null hypothesis is women who have regular mammograms have the same breast cancer
mortality rate as women who do not have regular mammograms. The alternative
hypothesis is women who have regular mammograms have a lower breast cancer mortality
rate than women who do not have regular mammograms. A hypothesis test was conducted
and the results were not statistically significant. Does that mean that the null hypothesis
is true, that women who have regular mammograms have the same breast cancer mortality
rate as women who do not have regular mammograms?

• Yes. It means you cannot conclude that the alternative hypothesis is true, so the
null hypothesis must be true.

• No. It means you cannot conclude that the null hypothesis is true, so the alternative
hypothesis must be true.

• No. It means that there is not enough evidence to conclude that the null hypothesis
is false.

• No. It means that there is not enough evidence to conclude that the alternative
hypothesis is false.

Item 33:
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Item stem: Dogs have a very strong sense of smell and have been trained to sniff
various objects to pick up different scents. A pilot experiment was conducted with dogs
in Germany who were trained to smell COVID-19 in saliva samples. In the test, one dog
was presented with 115 saliva samples; 21 from COVID-19 patients and 94 from healthy
people. The dog indicated which saliva samples were from the COVID-19 patients.
Out of the 21 COVID-19 positive samples, the dog correctly identified 20 of them. A
hypothesis test was conducted to see if this result could have happened by chance alone.
The alternative hypothesis is that the dog correctly identifies COVID-19 more than half
the times. The p-value is less than .001. Assuming it was a well-designed study, use a
significance level of .05 to make a decision.
Source: Research article.

• Reject the null hypothesis and conclude that the dog correctly identifies COVID-19
more than half of the time.

• There is enough statistical evidence to prove that the dog correctly identifies
COVID-19 more than half of the time.

• Do not reject the null hypothesis and conclude there is no evidence that the dog
correctly identifies COVID-19 more than half of the time.

Item 34:
Item stem: Scientists are studying the relationship between the Oxford - AstraZeneca

COVID-19 vaccine and a PCR test result positive for COVID-19. What type of study
should they have conducted in order to establish that two doses of the vaccine cause a
reduction in the chance of a positive PCR test?
Source: Study details.

• Observational study

• Randomized experiment

• Survey

Item 35:
Item stem: Gallup conducted a survey to measure people’s well-being during the

pandemic. They collected information regarding various life experiences and demographic
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information. A random sample of adults from Poland were selected and 1,010 of them
responded to the survey.

Which of the following does NOT affect Gallup’s ability to generalize the survey
results to the entire global adult population?
Source: World Happiness Report 2021.

• Although the total number of adults in the world is much higher, only 1,010 were
surveyed.

• The survey was only given to Polish adults.

• Even though many more Polish adults were contacted, only 1,010 responded.

• All of the above present a problem for generalizing the results to people all over
the world.

Item 36:
Item stem: Researchers studied the relationship between COVID-19 cases and air

pollution in California, USA. They found that as cases increased, pollution measured
in terms of Nitrogen dioxide (NO2) tended to reduce. Which of the following graphs
illustrates this point?
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Source: Research article.

• Graph A

• Graph B

• Graph C

Item 37:
Item stem: The U.S. Census Bureau launched the Household Pulse Survey to study

the impact of the COVID-19 pandemic on households across the country. In the most

129

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219392/


recent round, they gathered data from over 78,000 households. Using the data on Number
of Children in the Household and Mean Amount Spent on Food Prepared and Eaten at
Home (in U.S. dollars) during the previous week, they found a linear relationship and
produced the following regression equation and plot of the regression equation:

Suppose you are asked to use regression to predict the mean amount spent on food
at home for a household with 5 children. Which of the following methods can be used to
provide an estimate?

Source: Census Bureau.
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• Locate the point on the line that corresponds to 5 children in the household and
read off the corresponding value on the y axis.

• Substitute 5 for (# Children) in the equation and solve for "Predicted Amount".

• Both of these methods are correct.

• Neither of these methods is correct.
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Appendix B|
Additional Results for Chapter 2

B.1 Respondent Demographics

B.1.1 Univariate summaries

Gender Frequency

Woman 0.605
Man* 0.387
Transgender 0.003
Prefer not to disclose 0.003
Prefer to self-specify 0.002

Table B.1: Gender identification: n = 1253

Whether an international student Frequency

No* 0.931
Yes 0.069

Table B.2: International student: n = 1253
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Class standing Frequency

First Year (e.g. Freshman)* 0.638
Second Year (e.g. Sophomore) 0.228
Third Year (e.g. Junior) 0.097
Fourth Year or Higher (e.g. Senior) 0.037

Table B.3: Class standing: n = 1253

Prior statistics training Frequency

No* 0.696
Yes 0.304

Table B.4: Prior statistics training: n = 1253

Expected course grade Frequency

A* 0.338
B 0.410
C 0.216
D 0.032
F 0.004

Table B.5: Expected course grade: n = 1253

Highest education level of a parent/guardian Frequency

Less than high school* 0.011
High school graduate 0.080
Some college, no degree 0.080
Associates Degree 0.041
Bachelor’s Degree 0.391
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Highest education level of a parent/guardian Frequency

Some graduate school 0.025
Master’s Degree 0.260
Professional Degree 0.036
Doctorate Degree 0.076

Table B.6: Highest education of parent/guardian: n =
1253

B.2 Assessment Response Summaries

Figure B.1. Comparison of total score (out of 37) - separate panels
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BLIS M-BLIS
Item A B C D A B C D

1 16.6 8.8 74.6* NA 19.3 7.5 73.2* NA
2 7.4 15.8 44* 32.8 8.6 18 50.7* 22.6
3 53.4* 20.5 7.2 18.8 52.5* 8.6 13 25.9
4 15.7 83.5* 0.8 NA 13 86.2* 0.8 NA
5 81.3* 16.5 2.2 NA 84.7* 13.8 1.5 NA
6 3.4 10.8 73.5* 12.2 4.7 15.8 70.7* 8.8
7 32.6 15.7 16.1 35.6* 21 17.1 20.8 41.1*
8 39.8 30.7 29.5* NA 23.7 43.4 32.8* NA
9 65.4* 30.7 3.9 NA 34* 56.4 9.6 NA
10 14.7 9.1 19.9 56.3* 21.6 21.5 17.7 39.2*
11 19.1 38.9 42* NA 18.5 44.4 37.1* NA
12 13.9 22.7 5 58.3* 11.9 31.1 8.3 48.8*
13* 37.6* 40.3 8.5 13.6 37.6* 35 14.1 13.3
14 5.8 42.8* 50.3 1.1 2.8 69.1 24.6* 3.6
15 5.6 8.9 21.6 63.8* 6 18.2 27.3 48.5*
16* 24.6* 19.9 36.1 19.4 27.8* 42.4 29.8 NA
17* 25.2 28.7 46.1* NA 23.7 29.4 46.8* NA
18 35.3 45.9* 18.8 NA 29.9 45.4* 24.7 NA
19 9.7 29.8 19.7 40.8* 11.1 27.6 22.9 38.4*
20 20.7 29 37.9* 12.4 17.9 34.8 34.3* 13
21 16.5* 8.8 39.3 35.4 16.3* 14.1 36.7 32.8
22 29.6 58.5* 11.9 NA 26.8 61* 12.2 NA
23* 12.2 29.8 43.4* 14.6 10.4 31.1 43.9* 14.6
24* 57.2* 25.4 17.4 NA 60* 22.4 17.6 NA
25 55.5* 25.9 18.7 NA 61.6* 28 10.4 NA
26 42.2* 42.5 15.4 NA 42* 42.3 15.8 NA
27 31.7 38.6* 18.8 11 27.5 45* 14.6 12.8
28 20.5 26.8 52.7* NA 17.2 22.6 60.2* NA
29 18 17.4 52* 12.5 13.3 20.2 48.9* 17.6
30 10 19.9 21.8 48.3* 9.6 22.4 22.4 45.5*
31 8.2 86.4* 5.5 NA 9.9 83.9* 6.2 NA
32* 19.7 20.8 48* 11.4 20 23.6 43.6* 12.8
33 64.4* 22.1 13.5 NA 62* 25.5 12.5 NA
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BLIS M-BLIS
Item A B C D A B C D

34 25.4 70.4* 4.2 NA 31.2 65.2* 3.6 NA
35 23.4* 11.4 13 52.2 21.6* 16.9 15.4 46
36 79* 16.6 4.4 NA 68.6* 23.7 7.6 NA
37 16.6 20.7 57.8* 4.9 19.8 20.8 54.3* 5

Table B.7: Selected-response table

B.3 Reliability and Validity Evidence

Figure B.2. Item Information Curves - BLIS
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Figure B.3. Item Information Curves - M-BLIS
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Figure B.4. Test Information Function and Standard Error - BLIS
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Figure B.5. Test Information Function and Standard Error - M-BLIS

Item BLIS M-BLIS

Q1 -1.1927156 -1.1021233
Q2 0.2631418 -0.0375388
Q3 -0.1571817 -0.1164450
Q4 -1.7811054 -1.9824458
TL1 -1.3170586 -1.2386935
Q7 0.6567262 0.3897469
Q8 0.9650827 0.7822983
Q9 -0.7077156 0.7261573
Q10 -0.2838843 0.4792098
Q11 0.3556544 0.5778552
Q12 -0.3763797 0.0485164
Q13 0.5593310 0.5549103
Q14 0.3199521 1.2271370
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Item BLIS M-BLIS

Q15 -0.6321048 0.0628702
Q16 1.2357476 1.0437791
Q17 0.1714903 0.1347889
TL2 0.3055317 0.3746852
Q20 0.5445291 0.7102782
Q21 1.7825288 1.7836447
Q22 -0.3835169 -0.4960496
TL3 -0.0174983 -0.0913839
TL4 0.0476351 -0.0845298
Q27 0.5150569 0.2142002
Q28 -0.1221481 -0.4587553
TL5 0.4059238 0.6708731
Q31 -2.0158467 -1.7937093
Q32 0.0873939 0.2796047
Q33 -0.6621846 -0.5411665
Q34 -0.9608257 -0.6947486
Q35 1.3108151 1.4059160
Q36 -1.4599263 -0.8628098
Q37 -0.3549298 -0.1956216

Table B.8: Difficulty estimates based on PC model
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Figure B.6. Item Characteristic Curves - BLIS
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Figure B.7. Item Characteristic Curves - M-BLIS

B.4 Regression Results

Estimate Std. Error t-value p-value

(Intercept) 25.43 2.31 11.03 0.0000
Instrument - M-BLIS -1.21 0.33 -3.64 0.0003
International - Yes -1.27 0.75 -1.68 0.0937
Grade - B -4.57 0.38 -11.95 0.0000
Grade - C -6.88 0.49 -13.99 0.0000
Grade - D -8.77 0.99 -8.87 0.0000
Grade - F -0.28 3.72 -0.07 0.9407
priorSTAT - Yes 0.56 0.37 1.53 0.1255
Class - Second Year (e.g. Sophomore) -0.31 0.41 -0.76 0.4479
Class - Third Year (e.g. Junior) -0.25 0.63 -0.39 0.6980
Class - Fourth Year or Higher (e.g. Senior) 1.77 1.02 1.74 0.0823
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Estimate Std. Error t-value p-value

Gender - Woman -0.50 0.35 -1.43 0.1524
Gender - Transgender -2.37 3.74 -0.64 0.5256
Gender - Prefer not to disclose 2.84 3.67 0.77 0.4391
Gender - Prefer to self-specify 4.18 5.17 0.81 0.4182
Highest parent ed - High school graduate -2.72 1.96 -1.39 0.1662
Highest parent ed - College, no degree -1.96 1.95 -1.01 0.3144
Highest parent ed - Associate’s -1.75 2.06 -0.85 0.3966
Highest parent ed - Bachelor’s -1.51 1.89 -0.80 0.4236
Highest parent ed - Some graduate school 0.14 2.14 0.07 0.9470
Highest parent ed - Master’s -0.70 1.90 -0.37 0.7112
Highest parent ed - Professional degree -1.26 2.07 -0.61 0.5415
Highest parent ed - Doctorate -0.41 1.95 -0.21 0.8338
COVID engagement - Maybe -0.38 0.91 -0.42 0.6726
COVID engagement - Yes 0.03 0.68 0.04 0.9681
COVID interest - Maybe 1.22 0.55 2.21 0.0274
COVID interest - Yes 0.39 0.49 0.80 0.4245
COVID relevance - Maybe -3.59 1.48 -2.42 0.0155
COVID relevance - Yes -0.92 1.15 -0.80 0.4260
Familiarity with topic -0.01 0.01 -1.39 0.1655
Interest in topic 0.01 0.01 1.51 0.1324
Context - made question easier -0.17 0.35 -0.48 0.6341
Context - made question harder -0.29 0.93 -0.32 0.7520

Table B.9: Results from the full regression model

Estimate Std. Error t value p-value

(Intercept) 28.89 3.83 7.53 0.0000
Instrument - M-BLIS -5.80 4.81 -1.20 0.2286
International - Yes 0.0788 1.1140 0.0708 0.8752
Grade - B -4.5921 0.5257 -8.7348 0.0000
Grade - C -6.7615 0.6682 -10.1184 0.0000
Grade - D -8.5514 1.2567 -6.8048 0.0000
Grade - F 0.4755 3.7834 0.1257 0.9096
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Estimate Std. Error t value p-value

priorSTAT - Yes 1.1996 0.4903 2.4465 0.0172
Class - Second Year (e.g. Sophomore) 0.2548 0.5755 0.4428 0.8956
Class - Third Year (e.g. Junior) -0.2159 0.8732 -0.2472 0.6428
Class - Fourth Year or Higher (e.g. Senior) 1.2674 1.4629 0.8664 0.0870
Gender - Woman -0.2991 0.4722 -0.6335 0.4736
Gender - Transgender -1.4369 3.8185 -0.3763 0.7167
Gender - Prefer not to disclose 3.4160 3.6900 0.9257 0.3400
Gender - Prefer to self-specify 4.0562 5.1820 0.7827 0.4726
Highest parent ed - High school graduate -3.2444 2.8007 -1.1584 0.0548
Highest parent ed - College, no degree -3.8873 2.8068 -1.3850 0.0329
Highest parent ed - Associate’s -4.0512 2.9570 -1.3700 0.0376
Highest parent ed - Bachelor’s -3.0528 2.7370 -1.1154 0.0584
Highest parent ed - Some graduate school 0.3851 3.0209 0.1275 0.5557
Highest parent ed - Master’s -1.4848 2.7361 -0.5427 0.1755
Highest parent ed - Professional degree -0.9369 2.9184 -0.3210 0.2416
Highest parent ed - Doctorate -0.9873 2.8362 -0.3481 0.2580
COVID engagement - Maybe 0.1007 1.2342 0.0816 0.7519
COVID engagement - Yes 0.6973 0.9523 0.7322 0.2651
COVID interest - Maybe 0.6063 0.7670 0.7904 0.4399
COVID interest - Yes 0.2437 0.6822 0.3573 0.8167
COVID relevance - Maybe -4.5675 2.1554 -2.1191 0.0688
COVID relevance - Yes -2.6750 1.8918 -1.4140 0.1646
Familiarity with topic 0.0000 0.0136 -0.0010 0.8783
Interest in topic 0.0100 0.0129 0.7748 0.5249
Context - made question easier 0.7601 0.4796 1.5850 0.1034
Context - made question harder -0.2331 1.3634 -0.1710 0.8917
M-BLIS * International - Yes -2.1982 1.5346 -1.4324 0.1621
M-BLIS * Grade - B 0.1978 0.7571 0.2613 0.9379
M-BLIS * Grade - C 0.0312 0.9662 0.0323 0.9841
M-BLIS * Grade - D -0.4991 1.9815 -0.2519 0.7459
M-BLIS * priorSTAT - Yes -1.4494 0.7287 -1.9891 0.0687
M-BLIS * Class - Second Year -1.1473 0.8154 -1.4071 0.3645
M-BLIS * Class - Third Year -0.2476 1.2452 -0.1989 0.8984
M-BLIS * Class - Fourth Year or Higher 0.0364 1.9530 0.0186 0.4287

144



Estimate Std. Error t value p-value

M-BLIS * Gender - Woman -0.3288 0.6920 -0.4751 0.5639
M-BLIS * Parent ed - High school graduate 1.4023 3.8061 0.3684 0.2728
M-BLIS * Parent ed - College, no degree 4.1724 3.7799 1.1038 0.0754
M-BLIS * Parent ed - Associate’s 5.3618 4.0086 1.3376 0.0519
M-BLIS * Parent ed - Bachelor’s 3.2610 3.6685 0.8889 0.1024
M-BLIS * Parent ed - Some graduate school -1.3695 4.1521 -0.3298 0.7980
M-BLIS * Parent ed - Master’s 1.8308 3.6731 0.4984 0.2220
M-BLIS * Parent ed - Professional degree 0.2210 4.0395 0.0547 0.4898
M-BLIS * Parent ed - Doctorate 1.6842 3.7887 0.4445 0.2900
M-BLIS * COVID engagement - Maybe -1.4961 1.7527 -0.8536 0.4441
M-BLIS * COVID engagement - Yes -1.2941 1.3267 -0.9755 0.1871
M-BLIS * COVID interest - Maybe 0.9790 1.0848 0.9025 0.2342
M-BLIS * COVID interest - Yes -0.0937 0.9731 -0.0963 0.7556
M-BLIS * COVID relevance - Maybe 0.8075 3.0687 0.2631 0.9063
M-BLIS * COVID relevance - Yes 2.9060 2.3986 1.2115 0.2139
M-BLIS * Familiarity with topic -0.0179 0.0201 -0.8892 0.4097
M-BLIS * Interest in topic 0.0073 0.0190 0.3855 0.7339
M-BLIS * Context - made question easier -1.9502 0.6933 -2.8130 0.0065
M-BLIS * Context - made question harder -0.5543 1.8714 -0.2962 0.5633

Table B.10: Results from the full regression model with
interactions
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B.4.1 Diagnostic plots for the additive model

Figure B.8. Histogram of residuals - Full model in Equation 1
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Figure B.9. Quartile-quartile plot of residuals - Full model in Equation 1

147



Figure B.10. Fitted values versus residuals plot - Full model in Equation 1
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Figure B.11. Residuals plot - Full model in Equation 1
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B.4.2 Diagnostic plots for the interaction model

Figure B.12. Histogram of residuals - Full model plus interactions
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Figure B.13. Quartile-quartile plot of residuals - Full model plus interactions
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Figure B.14. Fitted values versus residuals plot - Full model plus interactions
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Figure B.15. Residuals plot - Full model plus interactions
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Appendix C|
Additional Results for Chapter 3

C.1 Descriptive Summaries

Figure C.1. Boxplot of gain score by instructor
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Figure C.2. Boxplot of gain score by lab sections
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Figure C.3. Boxplot of gain score by gender
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Figure C.4. Boxplot of gain score by class standing
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Figure C.5. Boxplot of gain score by prior statistics training

158



Figure C.6. Boxplot of gain score by whether a respondent is an international student
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Figure C.7. Boxplot of gain score by self-reported expected course grade
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Figure C.8. Boxplot of gain score by highest education level of a parent/guardian
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Figure C.9. Scatterplot of gain score and pre-test score
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Figure C.10. Scatterplot of post-test and pre-test scores
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Appendix D|
Q-matrix for Statistical Literacy

Full descriptions of the skills listed in the Q-matrix are as follows:

• CommunicateInterpret: Communicate/interpret statistical results.

• Descriptive: Answer a statistical question based on descriptive statistics.

• Inferential: Answer a statistical question based on inferential statistics.

• Visualizations: Answer a statistical question based on visualizations.

• Univariate: Answer a question based on univariate statistics/information.

• Bivariate: Answer a question based on bivariate statistics/information.

• StudyDesign: Understand study design in order to answer a statistical question.

• ContextCOVID: Be familiar with the context - COVID-19 - an item pertains to.
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CommunicateInterpret Descriptive Inferential Visualizations Univariate Bivariate StudyDesign ContextCOVID

Item 1 1 1 0 0 1 0 0 1
Item 2 1 1 0 0 1 0 1 1
Item 3 0 1 0 1 1 0 1 1
Item 4 0 0 0 0 0 1 1 1
Item 5 0 0 0 0 1 0 0 1
Item 6 0 0 0 0 0 1 0 1
Item 7 1 1 0 0 1 0 0 1
Item 8 1 1 0 0 1 0 1 1
Item 9 1 1 0 1 1 0 0 1
Item 10 1 1 0 1 1 0 0 1
Item 11 1 1 1 0 0 1 0 1
Item 12 1 1 0 0 1 0 0 1
Item 13 1 1 0 0 1 0 0 0
Item 14 0 1 0 1 1 0 1 1
Item 15 1 1 0 0 1 0 0 1
Item 16 1 1 0 0 1 0 0 0
Item 17 1 1 0 1 1 0 1 0
Item 18 1 1 1 1 1 0 1 1
Item 19 1 0 1 1 1 0 1 1
Item 20 1 0 1 0 1 0 0 1
Item 21 1 0 1 0 1 0 0 1
Item 22 0 0 1 1 1 0 0 1
Item 23 1 0 1 1 0 1 0 0
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CommunicateInterpret Descriptive Inferential Visualizations Univariate Bivariate StudyDesign ContextCOVID

Item 24 1 0 1 1 0 1 1 0
Item 25 1 0 1 1 0 1 0 1
Item 26 0 0 1 1 0 1 0 1
Item 27 1 0 1 0 1 0 0 1
Item 28 1 1 1 0 0 1 0 1
Item 29 1 0 1 0 0 1 0 1
Item 30 1 0 1 0 0 1 0 1
Item 31 0 0 1 0 0 0 0 0
Item 32 1 0 1 0 0 1 0 0
Item 33 1 0 1 0 1 0 1 1
Item 34 0 0 0 0 0 1 1 1
Item 35 1 0 0 0 0 0 1 1
Item 36 0 1 0 1 0 1 0 1
Item 37 1 0 1 1 0 1 0 1

Table D.1: Q-matrix for Statistical Literacy using MB-
LIS/BLIS
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