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Chair: Tim Jacobbe 
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Variability is often considered a central concept in the subject of statistics. This 

dissertation presents a large-scale snapshot of United States high school students’ understanding 

of variability. Over seven hundred secondary students in high-performing districts from 6 

different states, with statistics topics included in their high school standards, participated in the 

study. Data were collected from the participants using existing instrument designed to measure 

overall conceptual understanding of statistics through multiple-choice (MC) and constructed 

response (CR) items. These data were collected in the participants’ classrooms during one 90-

minute or two 45-minute testing sessions.  

Responses to CR items were of primary interest to this study. The items were coded 

based on how they addressed variability, per an existing framework for understanding statistical 

variation. Using a procedure developed as part of the study, student responses were scored 

according to whether the response displayed evidence of understanding of variability. Through 

quantitative methods, this study was able to identify and utilize trends and patterns in response 

data to (a) evaluate students’ understanding of variability and (b) empirically analyze the role of 

variability in the overall understanding of statistics. Responses showed strong evidence of 

understanding how to anticipate variability when collecting data through surveys. However, 
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there was a glaring lack of evidence of understanding the role variability plays in designing 

studies and analyzing data. Evidence of understanding of variability found in the CR items was a 

significant predictor of an overall understanding of statistics. The lack of evidence of strong 

understanding of variability among secondary students in high-performing districts raises 

concerns about how high school students, in general, understand the concept. 
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CHAPTER 1 

INTRODUCTION 

The importance of statistical literacy has been voiced for decades among statisticians and 

statistics educators (e.g. Kruskal & Wallman, 1982; ASA, 1991; Steen, 2001). Decisions based 

on data are made daily by political and business leaders, academics, and government officials. 

Because these data always vary (Cobb & Moore, 1997), an understanding of the concept of 

statistical variation is crucial to be able to appropriately collect, analyze, and interpret data. 

Informed citizens should have a sufficient understanding of statistical ideas to be able to 

critically evaluate these decisions. To ensure our education system is adequately preparing 

students to be statistically literate, research into student understanding of variability is necessary. 

Research on students’ understanding of statistical concepts is well represented in the 

literature, but tends to focus on measures of central tendency such as the mean, median, mode, 

and expected value (e.g., Batanero, Cobo, & Diaz, 2003; Cruz & Garrett, 2006; Watson & 

Moritz, 1999; Shaughnessy & Zawojewski, 1999). This trend is likely due to the heavier 

emphasis on measures of center in the K-12 curriculum over measures of variability 

(Shaughnessy, 1997). While research on students’ understanding of variability exists, it has the 

tendency to be limited in scope (e.g., Ben-Zvi, 2004; Reading & Shaughnessy, 2000; Reading, 

2004; Shaughnessy & Ciancetta, 2002; Torok & Watson, 2000). For instance, the results of most 

studies focused on variability tend to analyze very small samples of students. While these studies 

reveal a great deal about how individual students think about variability, they do not allow for 

the recognition of patterns and trends across students. Research that analyzes a larger number of 

student responses to a wide variety of tasks is needed to paint a broader picture of students’ 

current understanding of variability.  
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The use of statistics assessment items that focus on variability is one way to collect data 

that displays students’ understanding of variability. Prior research adapted items from the 

National Assessment of Educational Progress (NAEP) assessment to develop interview tasks that 

provided insight into students’ understanding of variability (e.g. Shaughnessy et al. 1999; 

Reading & Shaughnessy, 2000). However, assessments such as NAEP have been criticized for 

assessing statistical understanding using items that focus on procedural understanding of 

statistics rather than conceptual understanding. The NSF-funded Levels of Conceptual 

Understanding of Statistics (LOCUS) project (DRL-1118168) was launched, in part, to change 

the way statistics is assessed (Jacobbe et al., 2014). LOCUS resulted in a set of new assessments 

that measure conceptual understanding of statistics (Jacobbe, 2015) in a manner that is consistent 

with the K-12 Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

framework (Franklin et al., 2007) while also addressing state and national standards (e.g., 

Common Core State Standards). The GAISE framework identifies variability in data as a 

defining characteristic of the discipline of statistics and emphasizes its importance throughout the 

statistical problem-solving process. Thus, the LOCUS assessments can be used to explore 

students’ understanding of variability in greater depth.  

This dissertation seeks to provide a large-scale snapshot of high school students’ 

understanding of variability by using an existing framework that describes robust understanding 

of variability (Peters, 2011). In particular, this study examines students that have been taught 

some amount of statistics and come from schools in high-performing districts according to 

standardized testing. Proportions of students that understand elements of variability will be 

examined from two different perspectives, design and data-centric, to determine which elements 

are well understood by high school students and which may require more attention in the 
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curriculum. The design perspective deals with the acknowledgement, recognition, and/or 

anticipation of variation in the design of a study. The data-centric perspective considers variation 

that is represented, measured, and described during exploratory data analysis (Peters, 2011). 

Additionally, a regression model will be used to determine the relationship between an 

understanding of variability and an overall conceptual understanding of statistics. While not free 

from limitations, this study will provide a broader image of how high school students with some 

statistics instruction are understanding the concept of variability. 

Variability and Statistical Literacy 

Variability is omnipresent in data that are used to make decisions in daily life and is 

frequently cited as one of the main reasons that the discipline of statistics exists (Cobb & Moore, 

1997; Moore & Cobb, 2000; delMas, 2004). Understanding the role variability plays in data 

analysis is necessary for members of society to both make and critically evaluate data-based 

claims and findings (Gal, 2004). While statistics is commonly seen as a subfield of mathematics, 

many statisticians would argue that it is a mathematical science (Cobb & Moore, 1997) used to 

solve problems in the presence of variability. Statistics is more similar to fields such as 

economics and physics in which mathematical tools play a large role but do not represent the 

essence of the field (Cobb & Moore, 1997; delMas, 2004). Each of these fields has its own core 

concepts that guide the exploration of information. In the case of statistics, variability is one of 

those core concepts. 

Mathematics content standards and curriculum recommendations reflect the importance 

of variability in grades 6-12 statistics education. The National Council of Teachers of 

Mathematics (2006) explicitly emphasizes measures of variability in curriculum 

recommendations for statistics and data analysis as early as Grade 6. The Principles and 

Standards (NCTM, 2000) strand for data analysis at the high school level is centered around 
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students “drawing conclusions in light of variability” (p.325). The influence of the Common 

Core State Standards for Mathematics (CCSSM) (NGACBBP & CCSSO, 2010) has further 

increased the role of statistics in mathematics curricula across the United States. Beginning in 

Grade 6, students are expected to develop an understanding of statistical variability by 

anticipating its existence when collecting data and describing measures of spread in a dataset. By 

high school, students should be prepared to fully explore the effects of variability when making 

predictions and decisions with data. The increased recognition of variability as a central concept 

to statistics in curriculum recommendations and content standards creates a need for further 

research on student understanding.  

The concept of variability is important for high school students to understand because it 

is a fundamental aspect of how practicing statisticians approach empirical inquiry (Wild & 

Pfannkuch, 1999). Empirical inquiry requires a thorough understanding of the investigative 

cycle, which is synonymous to the statistical problem-solving process, and ideas considered to be 

fundamental to statistics (Wild & Pfannkuch, 1999). These fundamental concepts include 

recognizing the need for data, transnumeration, consideration of variability, reasoning with 

statistical models, and integrating statistical and contextual information. Statistical reasoning and 

thinking are used to describe the skills and knowledge required to thoroughly conduct 

investigations using data (Ben-zvi & Garfield, 2004). They can also be thought of as the skills 

and thought processes utilized by practicing statisticians (Pfannkuch & Wild, 2004). Variability 

can be considered a core concept in statistical thinking because it is the motivating idea behind 

the data collection, analysis, and interpretation phases of empirical inquiry (Moore, 1992; 1990).  

Additionally, variability is important for high school students because it is a central 

component of how citizens interpret and make conclusions about data (Wallman, 1993; Steen, 



 

15 

2001; Gal, 2002; Franklin et al., 2007). The ability to effectively consume statistical information 

and data is known as statistical literacy, which has a growing focus in some K-12 statistics 

education recommendations (Franklin et al., 2007). Statistical literacy is defined in multiple 

ways throughout the statistics education literature (e.g., Wallman, 1993; Watson, 1997; Garfield, 

1999; Gal, 2000; Franklin et al., 2007). In the most general sense, statistical literacy refers to the 

ability to “intelligently cope with the requirements of citizenship, employment, and family, and 

to be prepared for a healthy, happy, and productive life” in a data-driven world (Franklin et al., 

2007, p. 1). This dissertation more specifically uses the term to describe people’s ability to 

interpret and critically evaluate information and data-based arguments that appear in diverse 

media channels (Gal, 2000). The implied meaning of a statistically literate person is one that has 

developed a basic understanding of all four components of the statistical problem-solving 

process—formulate questions, collect data, analyze data, and interpret data—and their 

underlying concepts.  

To achieve statistical literacy, students should understand the roles that variability plays 

in statistical investigations (Moore, 1990; Cobb & Moore, 1997; Shaughnessy, 1997; Moore, 

1998; Garfield & Gal, 1999; Gal, 2004; Franklin et al., 2007). Per the K-12 GAISE framework 

(Franklin et al., 2007), formulating a statistical question requires the ability to anticipate 

variability in the data collected in order to answer the question. If a posed question has a 

deterministic answer, then it is not considered a statistical question. Collecting data requires the 

ability to acknowledge variation for the purpose of controlling potential sources of variability. 

These techniques help reduce the amount of variability in the data and ensure the conclusions of 

the study are meaningful. Statistical techniques for analyzing data are used to give an accounting 

of the variability in the data. Margins of error, confidence intervals, and standard deviations all 
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use the distribution of repeated sampling to account for variability in the sample data. Data 

reduction techniques, such as graphing and calculating summary statistics, are used to find the 

key features and trends that are often hidden by variation in the data (Wild & Pfannkuch, 1999; 

Konold & Pollatsek, 2002). Finally, making interpretations about data in the presence of 

variability requires the allowance of variability. Generalizations must be made that extend 

beyond the data and allow for variability in the sample responses.  The natural existence of 

variability in data and its importance in the statistical problem-solving process requires educators 

and researchers to carefully consider the emphasis on variability in teaching and learning. 

Determining how students are currently understanding the concept is a necessary step in this 

consideration.  

Theoretical Underpinnings 

Consideration of variation is believed by many to be a requirement of the ability to think 

statistically (e.g., Franklin et al., 2007; Shaughnessy, 1997; Wild & Pfannkuch, 1999) and is 

often a goal of introductory statistics courses (e.g., Ben-Zvi & Garfield, 2004; Chance, 2002). 

Thus, research on students’ reasoning about and understanding of variability is necessary to 

better determine how to teach statistics in ways that emphasize the concept of variability. This 

dissertation draws on the theoretical perspective employed in existing research regarding 

students’ understanding of variability in order to add to the knowledge base.  

Originally conceptualized by Piaget (1954, 1962), cognitive developmental models 

attempt to describe the changes and dynamics in how people understand mathematics and other 

domains. Piaget hypothesizes that learners develop knowledge through a series of stages that are 

tied to context-neutral and biologically driven universal structures. However, Piaget also 

acknowledges a constructivist aspect of learning that recognizes the influence of the environment 

and of educational intervention. These two ideas are somewhat contradictory to each other and 
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have led to the rise of neo-Piagetian cognitive developmental theorists that replace the universal 

stage theory with domain-specific theories (e.g., Bidell & Fischer, 1992; Biggs & Collis, 1982, 

1991; Case, 1985; Case & Okamoto, 1996; Fischer, 1980). Biggs and Collis (1982), for example, 

built off of Piaget’s work to develop the Structure of Observed Learning Outcomes (SOLO) 

model, which focuses on students’ responses instead of their cognitive level of development.  

Many of these models are utilized in research that examines students’ mathematical 

reasoning and thinking in areas such as geometry, number operations, and probability. This 

dissertation specifically draws from the Biggs and Collis (1982, 1991) model because of its use 

in cognitive developmental models in students’ statistical reasoning (e.g., Jones et al., 2000; 

Mooney, 2002; Watson et al., 1995). The original SOLO taxonomy (Biggs & Collis, 1982) 

consists of five modes of functioning—sensorimotor, ikonic, concrete-symbolic, formal, and 

post-formal—and five cognitive levels—prestructural, unistructural, multistructural, relational, 

and extended abstract—that exist within each mode and represent increased complexity in 

students’ understanding. Later additions to the SOLO model (Biggs, 1989; Biggs & Collis, 1991; 

Collis & Biggs, 1991; Pegg & Davey, 1998) acknowledge that students’ development in earlier 

modes supports development in later modes.  

The SOLO-based Framework for Robust Understanding of Statistical Variation (Peters, 

2011) is utilized in this study for its thorough descriptions of specific elements of variation from 

different perspectives. The design perspective deals with the acknowledgement, recognition, 

and/or anticipation of variation in a study design. Anticipating and acknowledging variability in 

the design perspective are synonymous to the roles variability plays in formulating questions and 

collecting data, as described in the K-12 GAISE framework (Franklin et al., 2007). The data-

centric perspective considers variation that is represented, measured, and described during 
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exploratory data analysis (Peters, 2011). This perspective is closely related to the analyzing data 

component of the statistical problem-solving process from the K-12 GAISE framework, which is 

used to account for variability in a collected dataset.  

The Framework for Robust Understanding of Statistical Variation (Peters, 2011) also 

identifies four elements of variation that transcend the perspectives: variational disposition, 

variability in data for contextual variables, variability and relationships among data and 

variables, and effects of sample size on variability. Reasoning with a variational disposition 

involves anticipating and acknowledging variability when considering study design, data 

collection techniques, analysis of data, and interpretations derived from data. Reasoning about 

variability in data for contextual variables incorporates the context of the data in both the 

anticipation of variability in study design and the consideration of potential sources of variability 

in data. The element of variability and relationships among data and variables deals with 

controlling variability through study design and exploring controlled and random variability in 

data. Finally, the effects of sample size on variability was identified as an overarching element of 

understanding. These four elements are considered to define integrated reasoning of variability 

across the different perspectives (Peters, 2011).  

The theoretical underpinnings of this dissertation draw from cognitive developmental 

learning theory and, more specifically, the SOLO model. These theories, in conjunction with 

frameworks for statistical reasoning and the understanding of statistical concepts that resulted 

from them, provide the basis for this study on students’ understanding of variability. The 

structure of student responses can be examined to determine their current level of understanding 

of statistical variation and the extent of their ability to make connections between elements of 

variation.  
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Research Questions 

This dissertation aims to provide a large-scale snapshot of high school students’ 

understanding of variability who have been taught some amount of statistics and attend schools 

in high-performing districts. The Framework for Robust Understanding of Variation (Peters, 

2011) will be used to describe the design and data-centric perspectives of variation and the four 

overarching elements of variability. Students’ understanding will be examined through their 

responses to items from the LOCUS assessments. Because the LOCUS assessments were 

developed to measure overall conceptual understanding of statistics (Jacobbe, 2015), this study 

will also investigate the relationships between understanding of variability and overall 

understanding of statistics. The following research questions will guide the study: 

1. What proportion of high school students understand variability from the design and the 

data-centric perspectives, and each of the four overarching elements of variability? Do 

high school students score higher on items from a particular perspective? 

2. What is the relationship between overall conceptual understanding of statistics and 

understanding of variability from the design and data-centric perspectives amongst high 

school students? 

Working Definitions 

Many terms used throughout this dissertation are not universally defined in statistics 

education literature. Some terms have been defined above, and the rest of the terms are defined 

here for clarification for the reader. Unless otherwise indicated, the working definitions below 

are the intended meanings throughout the dissertation: 

1. Variation: used to describe the act of varying or changing condition.  

2. Variability: used interchangeably with variation, as is consistent with literature (see 

Peters, 2011; Garfield & Ben-Zvi, 2008). 

3. Statistical Literacy: people’s ability to interpret and critically evaluate information and 

data-based arguments that appear in diverse media channels (Gal, 2000). 
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4. Conceptual Understanding: knowledge that is rich in depth and makes connections 

between statistical ideas and concepts.  

5. Procedural Understanding: a familiarity with the procedures or formulas used to answer 

questions but a lack of deeper knowledge. 

Structure of the Dissertation 

The written portion of this dissertation will include five chapters. This chapter (Chapter 

1) serves as an introduction and contains an overview of the relevant literature and a theoretical 

framework, which together provide the context for the study. Chapter 2 contains a review of 

relevant literature that is necessary to ground and justify this study. Chapter 3 explains the 

methodology used in this study, including a description of the participants and instruments used. 

Additionally, the procedures for the development of a scoring procedure and analysis of the 

quantitative data collected will be discussed along with the limitations of this study. The results 

of the study will be presented in Chapter 4. Chapter 5 will serve as the concluding chapter of the 

dissertation, and will discuss the implications and limitations of this research as well as related 

future research ideas. 
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CHAPTER 2 
REVIEW OF THE LITERATURE 

As a result of the importance of the concept of variability to statistical literacy, multiple 

research studies have been conducted to gain insight into how students understand it (e.g., 

Shaughnessy et al., 1999; Reading & Shaughnessy, 2000; Torok & Watson, 2000; Reading, 

2004; Reid & Reading, 2008). These research studies tend to use a specific task, or set of tasks, 

to construct empirically supported frameworks to determine where students are in their 

developmental understanding of variability. The following chapter of this dissertation will 

review statistics education literature that focuses on students’ understanding of variability. Since 

studies on this topic scarcely focus primarily on secondary students, this review will include 

research conducted with K-12 and tertiary students as well. These studies will be examined to 

summarize findings, shed light on the development of frameworks for the understanding of 

variability, and provide a literature base for the current study.  

Student Understanding of Variability 

Research on the student understanding of variation was rather scarce prior to 1999 (Ben-

Zvi, 2004). Since then, there has been an increase in research on students ranging from grades 4-

12 as well as tertiary students (e.g. Torok & Watson, 2000; Reading, 2004; Reid & Reading, 

2008). To help organize the review of this literature and better orient the review with this 

dissertation, Peters' (2011) framework for robust understanding of variation will be employed for 

its description of variation from different perspectives. The modeling perspective integrates 

reasoning used to fit models to patterns of variability in data and to determine how well these 

models fit. The data-centric perspective integrates reasoning about exploring, measuring, and 

representing variation in the analysis of data. These two perspectives were adapted and extended 

by Peters (2011) for use with understanding of variability from research on understanding of 
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distributions (Prodromou & Pratt, 2006). The adoption of perspectives from understanding of 

distributions is supported by literature that recognizes variability as an integral piece of 

understanding distributions (Reading & Reid, 2006). Finally, the design perspective captures 

reasoning about variation that anticipates and acknowledges variation in the design of 

quantitative studies. The purpose of including the design perspective is to capture requisite 

reasoning about variation (Wild & Pfannkuch, 1999) that is not accounted for by the other two 

perspectives. Since the design and data-centric perspectives are the primary focus of this 

dissertation, and few studies specifically target student understanding of variation from the 

modeling perspective, the review prioritizes studies from the former two perspectives. 

Design-Perspective 

The design perspective is the perspective that includes much of the research, which is 

reasonable due to its focus on the basics of study design. Furthermore, a significant line of 

research involves the use of the lollies problem—a sampling task with lollies that was used as the 

main focus in multiple studies (Shaughnessy et al., 1999; Reading & Shaughnessy, 2000; Torok 

& Watson, 2000). The lollies problem is an adaptation of a 1996 National Assessment of 

Educational Progress (NAEP) item that researchers used to learn more about student 

understanding of variability in the setting of a sampling task. Results from the 1996 NAEP 

administration showed that no students commented on the issue of spread (Shaughnessy & 

Zawojewski, 1999). However, researchers felt that redesigning the task would encourage 

students to reveal their understanding of variability.  

Other research that falls under the design perspective includes student understanding of 

variability in a probability scenario (e.g. Shaughnessy & Ciancetta, 2002). The types of questions 

regarding variability are like those asked in the sampling situations. For example, in a sampling 

situation, one might ask the number of times an item would be expected to be chosen in each of 
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10 trials, and in a probability situation, one might ask the number of times a particular outcome 

would be expected to occur in each of 10 trials. Both questions reveal similar information about 

student understanding of variability, however, changing the task from sampling to one that 

involves probability may yield different results.  

Shaughnessy et al. (1999) used the adaptation of the 1996 NAEP item in a study of 

grades 4-12 students in Australian and American schools. The written responses revealed that 

students did not have a strong understanding of the center or spread of outcomes from the 

sampling task, like the responses from the original NAEP administration. One trend was that 

grade 12 students seemed to provide responses that reported low estimates of variation, possibly 

due to instruction in probability and lack of instruction in sampling distributions. Students also 

failed to use specific words like “vary,” “deviate,” or “variation” when attempting to indicate 

variation. To further explore what students were thinking, the researchers decided to interview 

students in grades 4-12 using a protocol involving the lollies problem (Reading & Shaughnessy, 

2000). 

Reading and Shaughnessy (2000) interviewed twelve students from Australian schools 

and reported the results from four of those interviews, one in each of grades 4, 6, 9, and 12. The 

students were given two different sampling scenarios. The first involved a bowl of 100 lollies 

where 20 of them were yellow, 50 were red, and 30 were blue, and the second also involved a 

bowl of 100 lollies where 20 were yellow, 70 were red, and 10 were blue. In each of the 

scenarios, students were asked to consider how many red lollies they would expect to get in a 

handful of 10 lollies. Additionally, they were asked to consider how many red lollies they would 

expect each of six people to get if they took a handful of 10 lollies. The students had an actual 
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bowl of colored lollies that contained the same proportions of each color as the scenario 

presented and could revise their responses after having an opportunity to conduct the activity. 

The condensed student response form is shown in Figure 2-1. Note that in addition to a 

description of the sampling scenario, the researchers included prompts that specifically address 

variability. For example, the question labeled 1A in Figure 2-1 concludes with, “would this 

happen every time? Why?” to determine students’ anticipation of variability in various samples 

drawn from the bowl. Students were prompted to respond in three different ways: list, choice, 

and range. The first way required the student to list the number of reds they expected each of the 

six people to draw in their handful of 10 lollies. The second way required students to select 

which of the choices presented would best represent the number of reds each of the six people 

would draw. Finally, the students were asked to give a range of likely number of reds drawn 

from lowest to highest. 

Students’ responses to the form in Figure 2-1 were coded to understand how they 

perceived center and spread in the sampling situation. If a response was consistent with the 

expected value of reds that would be drawn in a sample of 10 lollies, it was coded as mean-

centered. If a response was below the expected value it was coded as low and if it was above the 

expected value it was coded as high. For spread, responses were coded as narrow, reasonable, or 

wide according to the dispersion. The purpose of the interviews and coding scheme was to 

compare students’ responses across the three versions of the task and to examine their 

perceptions of variability.  

The study was exploratory in nature, and did not specify any theoretical framework about 

student understanding of variability. However, the interviews and coding of written responses 
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were used by researchers to make insightful observations that drew from their expertise in 

statistics and statistics education.  

Student Response Form  

1A) Suppose we have a bowl with 100 lollies in it. 20 are yellow, 50 are red, and 

30 are blue. Suppose you pick out 10 lollies. How many reds do you expect 

to get? __ Would this happen every time? Why?  

1B) Altogether six of you do this experiment. What do you think is likely to 

occur for the numbers of red lollies that are written down? Please write them 

here. _____, _____, _____, _____, _____, _____ Why are these likely 

numbers for the reds?  

1C) Look at these possibilities that some students have written down for the 

numbers they thought likely. Which one of these lists do you think best 

describes what might happen? Circle it.  

 

a) 5,9,7,6,8,7  

b) 3,7,5,8,5,4  

c) 5,5,5,5,5,5  

d) 2,3,4,3,4,4  

e) 7,7,7,7,7,7  

f) 3,0,9,2,8,5  

g) 10,10,10,10,10,10  

 

Why do you think the list you chose best describes what might happen? 

1D) Suppose that 6 students did the experiment—pulled out ten lollies from this 

bowl, wrote down the number of reds, put them back, mixed them up. What 

do you think the numbers will most likely go from? From ____ (low) to 

____ (high) number of reds. Why do you think this?  

** (After doing the experiment) Would you make any changes to your answers 

in 1B–1D? If so, write the changes here. 

 

Figure 2-1.  Student response form (condensed) (Shaughnessy et al., 1999). 

 

The researchers discovered that while students showed growth in their ability to describe the 

sampling situation on the centering scale, there was no consistent growth in their ability to 
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describe the situation on the spread scale. The 12th grade student gave narrow responses for the 

spread, and students were generally not able to use specific language to explain their reasoning. 

Both tendencies were confirmed by previous research with the scenario (Shaughnessy et al., 

1999). Listing responses tended to provide more information about the students’ implicit 

conception of variation than the choice and range forms of response.  

In a later study, Torok and Watson (2000) aimed to expand on the research done by 

Shaughnessy et al. (1999) by conducting interviews that would more deeply probe student 

understanding of variability and investigate their knowledge of terms associated with variability. 

They conducted sixteen interviews with 8 boys and 8 girls from a school in Tasmania, where 

there were two students from each of grades 4, 6, 8, and 10. The researchers chose to use four 

different situations that involved variation: two involving the lollies problem, one involving real 

daily local temperature data, and one involving the heights of a large group of children. The goal 

was to use a combination of scenarios with isolated random variables, like the lollies problem, 

and scenarios with real world variation, that consisted of multiple sources of variation. 

The researchers analyzed the interviews to develop a four-level hierarchical framework 

that described levels of developing concepts of variation. A student at level A displayed a “weak 

appreciation of variation,” at level B an “isolated appreciation of … variation,” at level C an 

“inconsistent appreciation of variation,” and at level D a “good appreciation of variation” (Torok 

& Watson, 2000). Like the study by Shaughnessy et al. (1999), the small sample size limited the 

conclusions that could be drawn from the results. However, the researchers could use their 

framework to describe characteristics of student understanding of variability based on those 

analyzed in the sample. For example, students at levels A and B demonstrated an affinity to 

individual values or sub-ranges when predicting the outcomes of the sampling situations where 
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students at levels C and D could describe their expected outcome as a middle value with other 

likely outcomes surrounding it. Somewhat surprisingly, little association seemed to exist 

between understanding of variability and real-world knowledge. Students’ responses to the 

questions that involved heights and temperature, scenarios that students would be more familiar 

with, did not show different levels of understanding than their responses to the questions 

involving the lollies problem, a scenario that they were less likely to have experience with.  

In another study, Reading and Shaughnessy (2004) qualitatively analyzed all the 

interview data collected by Shaughnessy et al. (1999), Shaughnessy and Zawojewski (1999), and 

Reading and Shaughnessy (2000) for the lollies problem, not just the four case studies that were 

analyzed by Reading and Shaughnessy (2000). The researchers utilized the hierarchical 

framework developed by Torok and Watson (2000) as a starting point to analyze the student 

responses. After analyzing the responses, the authors felt that two additional hierarchies were 

needed to describe certain characteristics of the responses—one based on how students described 

the variation and one based on how the students explained the source of the variation. One 

important finding resulting from the use of these additional hierarchies was that the form of 

response (list, choice, range) influenced whether the student attempted to describe the variance 

or look for a cause of it.  

Conclusions drawn from these studies were not meant to be descriptive of a population, 

but were intended to be starting points for further research regarding understanding of variation 

in a random sampling setting. Reading and Shaughnessy (2004) pointed out that the time-

consuming process of analyzing qualitative interview data restricted the sample size of these 

studies, but provided richer information than just analyzing written responses. The task itself was 

also limiting because reasoning about variation occurred in many other types of scenarios other 
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than a sampling situation with isolated random variation and a known population. Additionally, 

having students only consider 6 random samples from the bowl of lollies was noted to be a 

potential limitation to students' ability to consider the variation that occurs in repeated sampling 

(Reading & Shaughnessy, 2000). For example, having them respond with the number of reds that 

would be expected in each of 100 samples, possibly through simulations, may have led students 

to more thoughtfully consider variation. When having students choose from a list of possible 

outcomes, researchers later considered allowing students to describe all options that they felt 

made sense, which would yield more information about their thinking than forcing them to 

choose one option. In some cases, students that were responding to the surveys lacked 

sophisticated language when discussing variation, which may have limited their ability to 

communicate their thoughts clearly (Shaughnessy et al., 1999; Reading & Shaughnessy, 2000). 

The studies using the lollies problem revealed how little students understood about 

variability and shed some light on potential problems with mathematics and statistics curricula. 

In general, students tended to show growth in their understanding of measures of central 

tendency as they got older (from grade 4 to 12), however, no such growth appeared for 

understanding spread (Shaughnessy et al., 1999; Reading & Shaughnessy, 2000; Torok & 

Watson, 2000). The success with measures of central tendency may have been a result of the K-

12 curriculum's focus on finding the mean, median, mode, and expected values, and limited 

focus on measures or interpretations of spread or variability (Shaughnessy, 1997). Torok and 

Watson (2000) linked increased understanding of central tendency and variation with increases 

in grade level. Differences in conclusions may have been because Torok and Watson did not 

have Grade 12 students in their study, and they suggest further research in Grade 12 students' 

understanding is needed. Reading and Shaughnessy found that Grade 12 students tended to select 
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responses that overemphasize the expected value of the sampling situation (e.g. "5, 5, 5, 5, 5, 5"). 

The researchers theorized that this was a systematic bias due to Grade 12 students having formal 

instruction in probability and not in sampling distributions (Shaughnessy et al., 1999; Reading & 

Shaughnessy, 2000).  

Shaughnessy and Ciancetta (2002) conducted a study that described student 

understanding of variability within the design perspective, but used a probability task instead of a 

sampling one. Another 1996 NAEP item, shown in Figure 2-2, was used to generate discussion 

about variation that involved two identical spinners that had one black side and one white side. 

The results from the NAEP item showed that most students were unable to provide the correct 

answer with correct reasoning. For example, only 28% of 12th grade students in the general 

population provided correct answers, and only 8% of the 12th grade students also provided 

correct reasoning (Shaughnessy & Zawojewski, 1999).  

Shaughnessy and Ciancetta wanted to change the item to be more statistical in nature and 

wanted to see how students taking various mathematics classes responded across grade levels. 

The original, unchanged task, as shown in Figure 2-2, was administered to 652 students in grades 

6-12 taking 28 different math classes in 5 different schools. Results showed that most students in 

grades 6-8 answered incorrectly by stating that the chances of winning were 50-50. Some growth 

was shown for students in grades 9-12 algebra courses, but still only between 30% and 43% of 

students answered correctly for these classes. Students in upper level courses such as pre-

calculus, AP Calculus, and AP Statistics did quite well on the item, each achieving around 90% 

correct responses with correct reasoning. The researchers hypothesized that playing the game 

and seeing the variability in outcomes would help students that struggled with this item to 

recognize the sample space.  
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The two fair spinners above are part of a carnival game. A player wins a prize 

only when both arrows land on black after each spinner has been spun once. 

Jeff thinks he has a 50-50 chance of winning. Do you agree? 

A   Yes        B   No        Justify your answer. 

 

Figure 2-2.  Spinner task from 1996 National Assessment of Educational Progress 

 

To address their claim, they interviewed 28 students in grades 8-12 with similar 

demographic profiles as the students that answered the survey item. During the interview, the 

students could respond to the original item, explain their answer, and then were asked how many 

times they would expect someone to win the game if they played 10 times. After running actual 

trials with the spinner, the students had the opportunity to reconsider their answer to the original 

item. Interviews after students had the opportunity to play the game revealed that the number of 

students who believed the game was not 50-50 went up and the number who exhibited correct 

reasoning went up. Additionally, seeing the variability in repeated trials led more students to list 

the sample space on their own. Researchers concluded that having students conduct simulations 

that reveal variation in the outcomes of a task helps them make connections to the sample space. 

However, because some students still insisted that the game was 50-50 after collecting data, 

often with the stance that “anything can happen when you play, the game should be 50-50,” the 
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researchers agreed with previous research that states it can be very difficult to change existing 

student beliefs about probability and statistics (Shaughnessy, 1992).  

The studies that involved student understanding of variability from the design perspective 

revealed that students tended to have trouble with anticipating variability. Having to imagine 

what potential outcomes might occur in a hypothetical sampling situation or a probability 

situation is another example where students are required to think abstractly. However, some of 

the research provides evidence that allowing students to conduct the trials that are explained in 

the scenarios helps students understand the variability in the outcomes (e.g. Shaughnessy & 

Ciancetta, 2002). Other interesting challenges arise because of these studies, including the effects 

of instruction in probability on student understanding of the concept of variability. As Cobb and 

Moore (1997) discussed, formal probability is a difficult concept to master, and is not necessary 

for beginning courses in statistics. These studies provide evidence that instruction in formal 

probability may negatively interfere with students’ ability to reason in scenarios that involve a 

probabilistic element but do not require formal knowledge of probability.  

Additionally, results from these studies are not necessarily generalizable to any larger 

population of students. They all examined small samples of students in a qualitative manner. The 

results might only be specific to the students interviewed, and they might also include bias from 

the researchers. While further studies are needed to continue to understand the errors and 

misconceptions in reasoning in situations that involve variability, there is growing evidence that 

many students have difficulty with the concept from the design perspective.  

Data-Centric Perspective 

The data-centric perspective considers variability that appears in a set of data. Studies 

that fall under this perspective include one where students respond to an open-ended task about 

weather data to make inferences (Reading, 2004), one that focuses on student understanding of 
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variability that can be seen in data displays (Meletiou & Lee, 2002a), and one that has students 

examine the effect of variability when comparing two groups (Ben-Zvi, 2004). These studies 

involve different types of tasks than those seen in the design perspective, however, many of the 

analysis methods and results are closely related.  

Reading (2004) aimed to extend the research on student understanding of variability by 

applying and, if necessary, expanding the hierarchy used by Reading and Shaughnessy (2004), 

which was developed in a sampling context, to a context that involved a natural event in which 

variation occurred. One class from each of grades 7, 9, and 11 in a secondary school in Australia 

were selected to participate in the study. The researchers had the students work on a weather 

activity that used real rainfall and temperature data to help students write a report on which 

month would be best to hold an outdoor celebration. Data from 36 months was used to ensure 

that each student had a different dataset to analyze. Each student was given the chance to draw 

conclusions from the data individually before getting together with a small group to decide on 

which month they all thought was best for the celebration. The task was intentionally left open-

ended to allow students to talk about variability whenever they felt it was important.  

Researchers analyzed individual student responses using a three-step approach consistent 

with previous research (e.g. Mooney, 2002; Langrall & Mooney, 2002; Watson et al., 2003). 

They began by coding the responses according the hierarchy used by Reading and Shaughnessy 

(2004). Then, descriptors were revised based on any new descriptions of variation, and the 

hierarchy was expanded for responses that the existing framework did not explain well. All 

responses were then coded using the new hierarchy. Researchers discovered that while most 

responses fit within the levels of the existing hierarchy, some responses described variation using 

words while others described variation using only numbers. Thus, they determined that these two 



 

33 

types of responses were different enough to warrant an extension of the original framework to 

include two developmental cycles, one for qualitative responses and one for quantitative 

responses. The responses showed that beginning conceptions of variability may start with word 

descriptions, but as students develop their understanding of variability, they begin to use 

numbers to describe the variability.  

Students’ qualitative responses were sorted into two categories: limiting and sequential. 

The limiting responses set a general limit on the values in the data. For example, a limiting 

response about the weather data might suggest that a month is not a good choice because it is too 

cold or too hot. A sequential response deals with the data item by item or by blocking parts of the 

data in a qualitative way. For example, a sequential response about rainfall might state that there 

were a few dry days and then a couple of wet days. The quantitative responses, which were 

assumed to be more statistically sophisticated, were sorted according to whether the response 

referred to exterior values, interior values, or both in the data. For example, stating the minimum 

and the maximum showed that the response was focused on exterior values, where stating the 

interquartile range would imply that the response was focused on interior values. In comparing 

their hierarchy to the one developed by Reading and Shaughnessy (2004), the researchers noticed 

that none of the students’ responses discussed variability in a manner that focused on deviations 

from an anchor. The study revealed that students were not responding to the task completely as 

intended, and that very few higher-level conceptions of variability were represented in the 

responses.  

The intent of the real-world context was to create a meaningful and engaging task for the 

students to work with that included real data that varied naturally. However, there was strong 

evidence that the nature of the task limited students’ ability to interpret variation in the data. For 
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example, the use of real data seemed to interfere with students using techniques they recently 

learned in class like making visual displays of the data. Additionally, student motivation on the 

task began to drop off when some realized that the celebration described in the task was only 

hypothetical. However, researchers maintained the high quality of the information gleaned from 

the study, especially because they were not attempting to quantify the best students but to 

discover what types of descriptions were used to address variability in a dataset. 

Another study that falls under the data-centric perspective dealt with comparing two 

groups using real world data. Ben-Zvi (2004) aimed to examine how students began to reason 

about variability during a group-based task given in a supportive environment. Two Grade 7 

students who were considered to have above average ability and verbal skills were videotaped 

and interviewed during and after they worked together to complete the surnames task. The task 

consisted of 35 Hebrew surnames collected from their class, 35 English surnames from an 

American class, and the length of each surname. The main task was presented by the classroom 

teacher and consisted of comparing the surname length of the two groups.  

The focus of the analysis was on how the students began to “notice and acknowledge 

variability in the data and make use of special local information in different ways as stepping-

stones towards the development of global points of view of describing and explaining the 

variability between groups” (p. 47). The study identified seven stages of development that the 

students progressed through on their path to a conclusion. The initial focus of students was on 

individual pieces or local features of the data, such as noticing how many names included “Mc,” 

and they eventually worked up to more global features of the data, such as how long names 

usually were in each group. The researchers noted that the students’ development of reasoning 
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about variability happened simultaneously with their development of seeing global features of 

the distributions as wholes by noticing shape, center, and spread.  

Some factors that appeared to have helped the students develop their reasoning about 

variability were noted by the researchers. For example, the students used multiple informal tools 

and methods in their attempts to understand the variability in the data, the students had previous 

experience with exploring data, and the students’ experience with the context of the data allowed 

them to make connections between their statistical observations and their knowledge of the 

context. Further, student interactions with the teacher acted as a catalyst to their thinking. They 

would occasionally prompt the teacher for feedback which, although limited in nature, would 

help them move forward in their thinking. Ben-Zvi considered the learning to have taken place in 

a zone of proximal development (Vygotsky, 1978), where the teacher acted as the expert that 

absorbed the students’ understandings into their own framework and then provided feedback for 

the students to review their thinking and create new understanding.  

Because of previous research that implied students had trouble thinking stochastically, 

Meletiou and Lee (2002b) aimed to develop a statistics course that put variability at the center of 

everything. The idea was that by developing students’ understanding of variability, they would 

more deeply understand other concepts in statistics. The authors developed an introductory 

statistics course that was taught by the second author at a university in the United States to a 

class of 33 students in business-related fields. The instructor attempted to increase student 

awareness of variation through a series of investigations that highlighted the purpose of statistics 

as a set of tools and methods that are necessary to handle variation.  
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As part of the course, graphical displays were introduced during investigations as tools 

used to visualize trends, patterns, and deviations from those patterns. One of the primary types of 

graphical displays used in the course was the histogram. Assessment data collected from students 

at the beginning of the course showed that very few could decide, with correct reasoning, which 

of two distributions, shown with histograms, had more variability. An open-ended questionnaire 

at the end of the course combined with interviews of eight students provided evidence that the 

course had influenced students’ statistical thinking to be less deterministic. However, students 

still struggled with certain concepts, such as sampling distributions, not only because of the 

abstractness of the idea, but also because of their still limited understanding of histograms.  

The studies that took place in the data-centric perspective continued to reveal information 

about how students describe and understand variation. In some cases, researchers’ understanding 

of student descriptions of variation were expanded, for example when Reading (2004) 

discovered that description hierarchies and causation hierarchies were missing from the existing 

framework used in a sampling situation. Additionally, it was revealed that students may begin to 

reason with variation in a much less statistically sophisticated way using non-specific words and 

phrases to describe what occurs in the data. As students progressed in their understanding, they 

began to use more numerical information to support their ideas with statistical measures of 

variation. This phenomenon was not only seen in the weather task (Reading, 2004), but also in 

the surnames task (Ben-Zvi, 2004) in which the two students began to use numbers from the data 

to help describe the comparison between the two groups.  

These studies not only revealed information about student understanding of variability 

from a different perspective but also revealed new challenges that exist in different contexts. 

Contrary to the findings of Torok and Watson (2000), the studies in the data-centric perspective 
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provided evidence that the context did play a role in the students’ experiences. In the surnames 

task, students appeared to utilize their knowledge of the context to assist in their statistical 

reasoning (Ben-Zvi, 2004). However, negative effects appeared when Reading (2004) began to 

see lack of motivation because students realized that the context, which involved planning a 

celebration, was not actually going to occur. Also, because of the students’ familiarity with the 

context, they seemed to ignore skills and tools learned in the classroom, for example displaying 

the data graphically, when attempting to glean information from the data.  

Development of Frameworks for Student Understanding of Variability 

Introduction and First Frameworks  

Early research in student understanding of variability used student responses to NAEP 

items adapted to a survey or brief interview protocol (Shaughnessy et al., 1999, Reading & 

Shaughnessy, 2000). To analyze the students’ responses, researchers used their expertise as 

statisticians and statistics educators to make conclusions about the students in their studies. No 

explicit frameworks were employed to describe student understanding in either of these studies 

nor was there explicit mention of any frameworks used in analyzing the data.  

Torok & Watson (2000) were the first to explicitly describe their process for analyzing 

qualitative data in a study regarding student understanding of variation. In addition to the lollies 

problem, researchers also used two other scenarios that involved a set of temperature data and 

the heights of a large group of children. Sixteen 45-minute interviews were conducted with boys 

and girls in grades 4, 6, 8, and 10 from two different schools in Australia and responses were 

transcribed for analysis. To analyze the data, the researchers used a clustering technique like the 

one described by Miles and Huberman (1994) and previously used in other research in statistics 

education not directly related to variation (Watson & Moritz, 2000; Mokros & Russel, 1995).  
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Level A: Weak appreciation of variation  

• Acknowledge variation  

• Provide responses that suggest a very weak understanding of proportional ideas  

• Focus on individual outcomes without consideration of the set  

• May refer to the average as the most common individual value  

• Provide answers with inconsistent degrees of variation and clustering  

• Are easily swayed by experimental results  

• Do not produce meaningful summary graphs (for 40 draws). 

• Never refer to variation explicitly, show poor knowledge of variation terminology  

• Have poor general knowledge of real world situations  

 

Level B: Isolated appreciation of aspects of variation and clustering  

• Readily acknowledge variation  

• Provide responses that suggest a very weak understanding of proportional ideas  

• May provide answers in terms of sub-ranges or specific values  

• May refer to the average as a value within a range of common values  

• May provide answers with consistently too much or too little variation and clustering  

• Are moderately swayed by experimental results  

• Generally attempt summary graphs but do not produce meaningful ones (for 40 draws)  

• Never refer to variation explicitly, have reasonable knowledge of variation terminology  

• Have variable knowledge of real world situations  

 

Level C: Inconsistent appreciation of variation and clustering  

• Readily acknowledge variation  

• Exhibit strong proportional thinking and may provide responses that imply 

representativeness, such as the "perfect" sample of 5 red, 2 yellow, and 3 green  

• Provide answers in terms of specific outcomes in the context of a set of outcomes  

• May provide answers with consistently too much or too little variation and clustering  

• Are only slightly influenced by experimental results  

• Produce equivalent of time series graphs to summarize data  

• Explicitly refer to variation, may have strong knowledge of variation terminology  

• Have basic general knowledge of real world situations  

 

Level D: Good, consistent appreciation of variation and clustering  

• Readily acknowledge variation  

• Provide responses that suggest a conflict between proportional ideas; or exhibit strong 

proportional thinking and provide responses that imply representativeness. 

• Provide answers as specific outcomes in the context of a set of outcomes  

• Consistently provide answers with an appropriate level of clustering  

• Are only slightly influenced by experimental results  

• Produce frequency or time series graph to summarize data  

• Explicitly refer to variation, usually have strong knowledge of variation terminology  

• Have good general knowledge of real world situations 

 

Figure 2-3.  Four levels of developing concepts of variation (Torok & Watson, 2000).  
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First, a checklist of important statistical concepts, ideas associated with the interview 

protocol, and initial observations from the student transcripts was created using previous 

literature as a guide (Moore, 1990; Shaughnessy, 1997; Shaughnessy et al., 1999). The checklist 

was finalized after revisions and refinement resulting from the re-reading of interview transcripts 

and consisted of four general groupings of understanding of variation. The four groups were: 

sensitivity to variation in relation to likelihood of individual outcomes, sensitivity to variation in 

relation to distribution of consecutive outcomes, language used during interviews, and aspects 

related to real world contexts. Each main group consisted of between 2 and 4 subgroups that 

further described the main group. Each student response was coded either 0, 1, or 2 for each 

subgroup, where 0 represented no or poor demonstration of understanding and 2 represented 

complete or successful demonstration.  

These coded responses were used to conduct a visual search for clustering in the data 

matrix and the resulting clusters were used to describe four levels of understanding of variation: 

no appreciation, weak appreciation, inconsistent appreciation, and good/consistent appreciation 

of variation and clustering. The four levels were further described using examples from the 

students' responses. The framework, shown in Figure 2-3, represents tentative themes in 

students’ responses to these questions, and the researchers call for further studies to help build 

the bigger picture of how a larger sample of students respond to these types of questions about 

variability.   

As Reading and Shaughnessy (2004) analyzed qualitative data from the lollies problem 

using the framework for student understanding of variability developed by Torok and Watson 

(2000), they discovered that the existing framework did not adequately account for all the 

students’ responses. As discussed above, they extended the framework to include a description 
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hierarchy to explain how students describe the variation that occurs, and a causation hierarchy to 

describe how students attempt to explain the source of variation. While not explicitly using any 

theoretical framework for cognitive growth, the description and causation hierarchies each 

include four levels that represent increasing sophistication in student responses. Torok and 

Watson’s framework focused mainly on evidence that students were appreciating or recognizing 

the variability in the task, where the description and causation hierarchies are more specific to 

how the students describe and explain variation. For example, the description hierarchy, shown 

in Figure 2-4, moves from responses that discuss either middle or extreme values, labeled D1, to 

responses that discuss values as deviating from a central anchor, labeled D4. The description 

hierarchy is much more directly applicable to student responses because it contains identifiable 

features from the response, whereas the Torok and Watson hierarchy may involve more 

interpretation by the reader.  

Levels Focus of Responses 

D1 - Concern with 

Either Middle Values 

or Extreme Values 

Describe variation in terms of what is happening with either extreme 

values or middle values. Extreme Values are used to indicate data 

items that are at the uppermost or lowest end of the data, while Middle 

Values indicate those data items that are between the extremes. 

D2 - Concern with 

Both Middle Values 

and Extreme Values 

Describe variation using both the extreme values and what is 

happening with the values between the extremes. 

D3 - Discuss 

Deviations from an 

Anchor 

Describe variation in terms of deviations from some value but either 

the anchor for such deviations is not central, or not specifically 

identified as central. 

D4 - Discuss 

Deviations from a 

Central Anchor 

Describe variation by considering both a center and what is happening 

about that center.  

 

Figure 2-4.  Description of Variation Hierarchy (Reading & Shaughnessy, 2004) as displayed in 

Reading (2004). 
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Levels Descriptors 

No consideration of 

variation  

Do not display any meaningful consideration of variation in context  

Do not acknowledge variation in relation to other concepts (e.g., 

distribution) 

Weak consideration of 

variation 

Identify features of only one source of variation (within-group or 

between-group)  

Acknowledge variation in relation to other concepts  

Incorrectly describe variation  

Do not base description of variation on the data  

Anticipate unreasonable amount of variation  

Poorly express description of variation  

Refer to irrelevant factors to explain variation incorrectly refer to 

relevant factors to explain variation  

Do not use variation to support inference  

Developing 

consideration of 

variation  

Clearly describe both within-group and between-group variation  

Recognize the effect of a change in variation in relation to other 

concepts  

Correctly describe variation  

Base description of variation on the data  

Anticipate reasonable amount of variation  

Clearly express description of variation  

Correctly refer to relevant factors to explain variation  

Use variation to support inference  

Do not link the within-group and between-group variation 

Strong consideration of 

variation  

Link within-group and between-group variation to support 

inference  

 

Figure 2-5.  Consideration of Variation Hierarchy (Reid & Reading, 2008) 

 

Because there was little research on student understanding of variability at the tertiary 

level, Reid and Reading (2004) further refined an existing hierarchy used at the pre-tertiary level. 

During a one-semester introductory statistics course for students in science-related fields in an 

Australian university, 46 students completed minute papers that focused on the curricular topics 

of exploratory data analysis, probability, sampling distributions, and inferential statistics. The 

authors used one of the five types of thinking described by Wild and Pfannkuch (1999), 

consideration of variation, and the hierarchy for student understanding of variability developed 
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by Torok and Watson (2000) in order to build a hierarchy for student consideration of variability. 

Their framework consisted of four levels—no, weak, developing, and strong consideration of 

variation—with descriptors that explained features of the students’ responses to each of the four 

minute problems. The authors used a four-item pre- and post-test questionnaire (Reid & Reading, 

2005), a class test, and assignments with the hierarchy developed for the minute papers in order 

to create a combined hierarchy of student consideration of variation, shown in Figure 2-5 (Reid 

& Reading, 2008).  

The resulting hierarchy is intended to be used for students responding to tasks related to a 

college-level introductory statistics course. To assess student consideration of variation in more 

advanced statistical tasks, more research is needed to refine the descriptors at each level. The 

researchers caution that because consideration of variation is a complex problem, students should 

not be assessed based solely on a response to a single task. Additionally, the researchers found 

very few responses that were coded as displaying a strong consideration of variation. Thus, 

further extension of the framework is necessary to develop descriptors for the highest level of 

consideration.  

The SOLO Taxonomy in Studies about Variation 

The SOLO model (Biggs & Collis, 1991) has been employed in probability (e.g. Jones et 

al., 1997) and in statistics (e.g. Jones et al., 2000; Mooney, 2002) to create and describe 

developmental hierarchies. Most of the studies in this review that utilize the SOLO model 

operate in the ikonic and concrete symbolic modes, which represent making use of imaging and 

operating with second order symbols, respectively.  

The framework for statistical thinking for young children developed by Jones et al. 

(2000), and later refined for middle school students by Mooney (2002), was one of the first in the 

statistics education literature to employ the SOLO taxonomy. The framework consisted of four 
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SOLO-based levels in each of four processes. Only the one process, organizing and reducing 

data, is relevant to student understanding of variability and is shown below in Figure 2-6. The 

four levels explain responses that move from the idiosyncratic level, where students are not able 

to describe the spread of data in terms that are relevant to discussion about spread, to the 

analytical level, where students can describe the spread of the data using correct and valid 

measures of spread. This framework was often used as a guideline for the development of future 

frameworks based on the SOLO taxonomy.  

 

 Organizing and Reducing Data 

Levels Focus of Responses 

1 - Idiosyncratic Is not able to describe the spread of the data in terms representative of the 

spread. 

2 - Transitional Describes the spread of the data using invented measures that are partially 

valid. 

3 - Quantitative Describes the spread of the data using a measure from a flawed procedure 

or a valid and correct invented measure.  

4 - Analytical Describes the spread of the data using a valid and correct measure. 

 

Figure 2-6.  Statistical thinking framework (Mooney, 2002) as displayed in Reading (2004). 

 

Watson et al. (2003) developed a questionnaire with items that were designed to allow 

students to demonstrate their understanding of variability in sampling contexts, like the lollies 

problem, and data and chance contexts, which are the statistics strands most students see in 

school settings. The authors used the SOLO taxonomy to code the student responses to the 

questionnaire in a hierarchical fashion. Some items were coded with a three-point hierarchical 

scale, others with a four-point scale, and a few with five- and six-point scales. The coded data 
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was used in conjunction with a Rasch partial credit model to develop an empirically supported 

framework for understanding of variability.  

The quantitative analysis of the coded data revealed four levels of understanding of 

variation, shown in Figure 2-7: prerequisites for variation, partial recognition of variation, 

applications of variation, and critical aspects of variation. The thresholds for the levels were 

based on judgements about the “content, sophistication, and structure of the responses” (p. 13). 

The results of the coding and the levels of understanding implied that there was a continuum of 

understanding and students were often floating around the border of two different levels. The 

Rasch analysis, along with evidence of strong content validity, implied that all the items, despite 

their various contexts, measured a unidimensional construct that the authors identified to be 

variation. This result was in line with many researchers’ beliefs that variation is at the center of 

statistical investigation (e.g. Shaughnessy, 1997; Moore, 1990; Cobb & Moore, 1997; Wild & 

Pfannkuch, 1999).  

 

Levels Focus of Responses 

1 - Prerequisites for 

variation 

Working out the environment, table/simple graph reading, and 

intuitive reasoning for chance. 

2 - Partial recognition of 

variation 

Putting ideas in context, tendency to focus on single aspects and 

neglect others 

3 - Application of 

variation 

Consolidating and using ideas in context, inconsistent in picking 

most salient features. 

4 - Critical aspects of 

variation 

Employing complex justification or critical reasoning. 

 

Figure 2-7.  Developing Concepts of Variation (Watson et al., 2003) as displayed in Reading 

(2004). 
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Although the Watson et al. (2003) framework was developed to measure understanding 

of variation, the four levels do not explain how students explicitly describe variation. Reading 

and Shaughnessy (2004) expanded on the Torok and Watson (2000) framework to establish a 

hierarchical framework that would do just that. Because of the depth of information that the 

SOLO taxonomy allows in analyzing students’ responses, Reading (2004) used the final version 

of the Reading and Shaughnessy (2004) framework to not only see how it would hold up in a 

data-based inference setting, but also see if SOLO could be used as a conceptual framework to 

explain the hierarchical model.  

While coding the student responses, Reading (2004) found that the original hierarchy did 

not adequately explain all the responses. Because many students were describing the variation 

using only words in a less sophisticated way, Reading added a second level to the description 

hierarchy that accounted for qualitative responses. The descriptors remained nearly identical to 

the ones used for D1 and D2 in the original framework (Figure 2-4), however the qualitative 

versions were less sophisticated. There were no students in the study that displayed responses at 

the D3 or D4 levels, which correspond to discussing deviations from an anchor or central anchor, 

respectively. Thus, Reading suggests that further research explores these areas to determine if 

that part of the framework can also be extended. However, Reading identified a third level above 

D1 and D2 responses that not only considered both middle, or interior, and extreme values, but 

also showed the ability to link the two sets of values.  

The SOLO taxonomy was used to explain the cognitive growth throughout the six levels 

of the model, shown in Figure 2-8. In the qualitative cycle of the framework, the element of 

interest in this study was determined to be “a feature of the variation of the data described 

qualitatively” (Reading, 2004, p. 98). A unistructural response was one that contained one such 
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element, a multistructural response contained more than one such element, and a relational 

response linked these elements. Many of the qualitative responses were intuitive notions that 

were not necessarily straightforward to interpret. Researchers suggested looking at other research 

to help understand these notions. For example, Makar and Confrey (2003) found that pre-service 

teachers often used unclear or informal terms to compare dot plots but could more thoroughly 

explain their thinking. These explanations could be useful in helping to define the intuitive 

notions that younger students have and add to the descriptors at each level of the framework.  

 

First Cycle 

Qualitative Responses Element - qualitative feature of variation of data 

U1 - unistructural Magnitude related or arrangement related 

M1 - multistructural  Limiting related and/or sequential related 

R1 - relational Link the general limit with discussion of blocks sequentially 

Second Cycle 

Quantitative Responses Element - quantitative feature of variation of data 

U2 - unistructural Based on extreme values or interior values 

M2 - multistructural Based on extreme values and/or interior values 

R2 - relational Linking of extreme values and interior values may suggest 

immature notions of deviations 

 

Figure 2-8.  Refined Description of Variation Hierarchy (Reading, 2004) 

 

In the second cycle of the model, the quantitative cycle, the element of interest was “a 

feature of variation in the data described quantitatively” (Reading, 2004, p. 99). Again, a 

unistructural response contained one such element, multistructural responses contained more 

than one, and relational responses linked multiple elements. Research, such as the study 

conducted by Lann and Falk (2003) to evaluate strategies used by statistically naive tertiary 
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students to compare data for greater variability, was again used to help identify certain 

characteristics of students’ responses. While the range, for example, clearly deals with extreme 

values and the interquartile range deals with the interior values, students also use measures that 

are not as clearly extreme- or interior-value focused. Lann and Falk attempted to analyze student 

justifications for their responses, but this proved to be a difficult task. Results, however, would 

likely prove to be more useful for defining the qualitative cycle of the model.   

Watson et al. (2007) later conducted a study that combined many of the previously 

discussed tasks to identify a hierarchy for, and consider developmental pathways between, 

students’ understanding of expectation and variation. Their study consisted of 73 students in 

grades 1, 3, 5, 7, and 9 in Australian schools. Five protocols were used to garner student 

responses to the lollies task (Shaughnessy et al., 1999), the weather task (Torok & Watson, 

2000), a task comparing two distributions of student test scores (Watson & Moritz, 1999), the 

spinner task (Shaughnessy & Ciancetta, 2002), and a population/sample means task (Tversky & 

Kahneman, 1971). The researchers used the SOLO taxonomy as a structure for their analysis. 

Coding schemes for each of the tasks were adapted versions of those used by the researchers who 

originally analyzed their respective data from the tasks. Using a Rasch analysis, Watson et al. 

(2007) identified a 6-level hierarchical framework for student understanding of expectation and 

variation, shown in Figure 2-9. Using the resulting model and a review of previous literature, the 

researchers hypothesized pathways between understanding of expectation and variation and how 

they develop throughout the 6 levels.  

This framework appears to be consistent with the frameworks previously developed 

under each of the specific tasks used in this study. For example, the Reading (2004) framework 

explains how students describe variability in terms of the students’ use of words and/or numbers 
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to make connections between extreme and interior values. The Watson et al. (2007) framework 

considers establishing links between expectation and variation which, in different words, is 

related to the idea of explaining some notion of center and the amount of change or deviation 

from that center. The authors stress that while it may be difficult to interview students in order to 

utilize the framework in a classroom setting, the individual activities could easily be adapted for 

small group work or discussion to collect evidence for student understanding of variability. 

Additionally, the authors suggest that the framework is useful for determining what types of 

teacher interventions are appropriate. Teachers can pinpoint a student’s level of understanding by 

using level descriptors and then target activities to help them consolidate “necessary 

underpinning knowledge” which leads them into the next level (p. 115).  

 

Levels Descriptors 

1 - Idiosyncratic Little or no appreciation of either expectation or variation. 

2 - Informal Primitive or single aspects of expectation and/or variation and no 
interaction of the two. 

3 - Inconsistent Acknowledgement of expectation and variation, often with support, 
but few links between them. 

4 - Consistent Appreciation of both expectation and variation with the beginning of 
acknowledged interaction between them. 

5 - Distributional Established links between proportional expectation and variation in a 
single setting. 

6 - Comparative 
Distributional 

Established links between expectation and variation in comparative 
settings with proportional reasoning. 

 

Figure 2-9.  Framework for Conceptual Understanding of Expectation and Variation (Watson et 

al., 2007). 
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Although there have been multiple frameworks developed in the last two decades to 

explain understanding of variability, Peters (2011) argued that there was still no “holistic image 

of robust understanding of variation” (p. 52). The existing frameworks, while insightful and 

informative, failed to reach beyond the concrete-symbolic mode of cognitive functioning because 

they all describe understanding of variability in ways that are directly tied to their context. Peters 

wanted to develop a framework that would thoroughly describe a robust understanding of 

variation in the formal mode of functioning, or reasoning that both incorporates and transcends 

the context of interest.  

Using the SOLO taxonomy as their supporting theory, Peters (2011) hypothesized a 

framework that included two UMR (unistructural, multistructural, relational) cycles of levels of 

response. In the first cycle, three perspectives of variation are presented: the design perspective, 

the data-centric perspective, and the modelling perspective. In the second cycle, robust 

understanding of variation is described as reasoning across all the perspectives. The elements of 

each perspective and descriptors for those elements were developed by analyzing a pilot study of 

six secondary mathematics/statistics teacher-leaders’ (Peters, 2009) and a main study of 16 

teacher-leaders’ responses to three main tasks that corresponded with the three perspectives. The 

resulting framework, shown in Figure 2-10, included four main elements for each of the three 

perspectives: variational disposition, variability in data for contextual variables, variability and 

relationships among data and variables, and effects of sample size on variability. Further, each of 

these elements contained multiple, more specific indicators from the analysis of the teachers’ 

responses. 
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Figure 2-10.  Framework for Robust Understanding of Variation (Peters, 2011) 

 

This framework was the first to provide a holistic image of a robust understanding of 

variation in the formal mode. While other frameworks provide information about understanding 

of variation, they are often tied completely to the context and do little to answer calls to examine 

reasoning beyond concrete-symbolic reasoning (e.g. Reading, 2004). This framework not only 

answers these calls, but provides deep descriptions of within-perspective reasoning and across-

perspective reasoning. It provides researchers, teachers, and curriculum developers with a goal of 

instruction and pathways to improve understanding of variation. The framework not only 

provides the opportunity to analyze student responses to individual tasks on a level that 

transcends those tasks, but also allows researchers to analyze classroom discourse to determine 
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whether the discourse supports the development of a robust understanding of variation. Finally, 

the framework is a useful tool to inform teacher educators and future teachers of statistics of the 

kind of robust understanding of variation an expert teacher is expected to have.  

Discussion 

The SOLO model has proved to be a useful tool in the development of frameworks that 

explain student understanding of variability. It allows researchers to deeply analyze student 

responses to develop an empirically-based framework (Reading, 2004). For example, Reading 

(2004) used an existing framework, that was not developed under the SOLO taxonomy, to code 

new student response data. The results of the coding showed that the original framework was not 

detailed enough to fully explain the range of responses, and required an additional level to 

account for qualitative responses. The SOLO taxonomy supported this finding because it allows 

for multiple cycles of cognitive growth. Within each cycle, the SOLO taxonomy also explained 

the development from D1 to D2 and beyond as unistructural, multistructural, and relational. 

Another strength of frameworks developed using the SOLO taxonomy is that they provide a 

basis for creating rubrics (Reading, 2004; Reid & Reading, 2008; Peters, 2011). Assessing 

student understanding of variation by using level descriptors from the frameworks can give an 

idea of where a student is in their cognitive development of the concept. Additionally, these 

frameworks can be used to inform teaching by examining students’ views of variation, 

determining their level of understanding, and using the level descriptors to design interventions 

to help improve their understanding.  

The development of these frameworks relies solely on drawing meaning from student 

responses. In some cases, these are written responses to tasks, while other cases include 

interview protocols. In either case, the understanding of variation displayed in the response is 

entirely determined by the interpretation of the researchers. The studies discussed above used 
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multiple coders, and any coding discrepancies were resolved through discussion until there was 

complete agreement. Still, it can be difficult to interpret student responses when they are unclear 

or use informal terminology (Reading, 2004). However, more research on teachers’ 

understanding of statistical concepts could help alleviate this problem because they may be able 

to more aptly describe their informal understanding (e.g. Makar & Confrey, 2003). Another 

limitation of these frameworks is that, because they attempt to describe cognitive development, it 

is necessary to have students respond to multiple tasks to get a clear picture of their 

understanding. Students often have issues with contexts which may bolster or undermine their 

ability to express their understanding (e.g. Torok & Watson, 2000; Reading, 2004).  

The previously discussed studies paint a slightly confusing picture about how students are 

understanding variability. Despite the growth of statistics in the K-12 curriculum, students at the 

secondary and tertiary level still show a general lack of understanding of concepts that are 

widely considered to be central to the discipline of statistics. Not only do students have difficulty 

expressing their thoughts using language native to statistics, but even their informal conceptions 

lack evidence of a solid understanding of variability. In multiple instances, researchers developed 

frameworks that included levels that were above the level of reasoning of most of the 

participants in the study (e.g. Reading, 2004). This lets us know that many students are facing 

challenges with reasoning about variability and are unable to reason at a level that one would 

expect to see after instruction in statistics. The research shows many possible explanations for 

this lack of advanced reasoning such as confusion due to similarity with the context or even due 

to weak instruction in probability. Clearly, the concept of variability needs to take a more central 

role in statistics courses, perhaps following the example of the course designed by Meletiou and 

Lee (2002b).   
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This general lack of a solid understanding of variability appears in other related studies as 

well. Research on student understanding of more advanced statistical concepts such as 

distribution traces errors and misconceptions back to a weak understanding of variability 

(Reading & Reid, 2006; Pfannkuch & Reading, 2006). Another topic of study is students’ 

understanding of measures of variability, such as the standard deviation (e.g., delMas & Liu, 

2005). Initially, students will be introduced to variability via the standard deviation. Although the 

measure of standard deviation is somewhat complex and confusing to novice students, the idea 

of variability can be taught in simpler ways. In one study, Mathews and Clark (2003) discovered 

that students who earned a grade of A in an introductory statistics course could not explain the 

standard deviation beyond its computation. Research about student understanding of samples and 

sampling distributions also revealed that student understanding of variation played a major role 

in their reasoning (Watson, 2004; Chance et al., 2004). 

However, before drastic changes to the landscape of statistics education are made, 

consideration of the types of studies that have been reviewed is necessary. Many of the studies 

discussed above are qualitative in nature and draw from small sample sizes. While these 

qualitative studies are very detailed and informative for individual cases, they do not necessarily 

reveal widespread patterns across many students. Additionally, the coding procedures used in 

these studies rely on interpretations by the lead author and their team of researchers. Experience 

and the agreement among multiple independent coders provide credibility, but do not rule out 

misinterpretation of what a student means in a response. In many cases, the researchers called for 

further investigation of student understanding in their respective tasks to help develop the 

framework. Unfortunately, framework development seems to be short lived, as researchers turn 

to new and different tasks that explore variability. Instead, more research needs to start with 



 

54 

general frameworks, like the one developed by Peters (2011), and collect more data to test and 

refine the framework. This dissertation seeks to add to the knowledge base of student 

understanding of variability by analyzing responses to tasks from constructed response items 

through the lens of the framework created by Peters. 
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CHAPTER 3 

METHODOLOGY 

Introduction 

A major goal of this study was to describe U.S. high school students’ understanding of 

variability to inform future research, teaching practice, and curriculum in statistics. Previous 

studies focusing on students’ understanding of variability have used small samples sizes to 

develop in-depth reports on how students think about variability (Ben-Zvi, 2004; Reading & 

Shaughnessy, 2000; Reading, 2004; Shaughnessy & Ciancetta, 2002; Torok & Watson, 2000). 

To provide a large-scale snapshot of student understanding, this study analyzed data from a large 

sample of high school students. Student response data on an assessment of conceptual 

understanding of statistics was examined using quantitative methods to focus on overarching 

patterns in their understanding of variability from different perspectives. This study can 

contribute to future discussions about the role of variability in statistics curricula and which 

perspectives may require more attention. In this chapter, I review the research questions that 

guided this investigation and the design of the study used to answer them. Specifically, I describe 

the process used to select participants, collect data, and analyze the data to explore students’ 

understanding of variability.  

Theoretical Perspective 

This dissertation analyzed scored student responses to items on the Levels of Conceptual 

Understanding of Statistics (LOCUS) assessments through the perspective of neo-Piagetian 

cognitive developmental theory, and will use the Structure of Observed Learning Outcomes 

(SOLO) model (Biggs & Collis, 1982, 1991) as a tool to examine students’ understanding of 

variability. Neo-piagetian cognitive developmental theory and the SOLO model acknowledge 

that students’ understanding increases in complexity as they mature, and allow for different 
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levels of complexity based on the domain. This study specifically considered U.S. high school 

students’ understanding of variability across a few different contexts from LOCUS and shed 

light on which elements and perspectives of variability need more attention.  

The theoretical framework underpinning this study supports the notion that students’ 

understandings of the concept of variability may differ from their level of understanding of 

mathematics or their level of understanding of statistics as a whole. Prior research on student’s 

understanding of variability (e.g., Shaughnessy et al., 1999; Reading & Shaughnessy, 2000; 

Torok & Watson, 2000) shows that many students exhibit low levels of understanding when 

faced with tasks involving variability. These studies utilized long-form tasks, follow-up 

interviews, and context specific frameworks. The use of LOCUS to understand students’ 

understanding of variability would provide a more streamlined method of assessment for 

potential use in the classroom setting. To examine student understanding of variability that 

transcends the specific context of the problem, the Robust Understanding of Statistical Variation 

framework (Peters, 2011) was employed because it was developed in the formal mode of 

cognitive functioning. 

Study Design 

Research Questions 

To analyze high school students’ understanding of variability using the LOCUS 

assessments, this study used the Robust Understanding of Statistical Variation framework 

(Peters, 2011) as a guide. The two-dimensional framework considers four elements of variability 

from three different perspectives and includes descriptions of what robust understanding looks 

like for each point of intersection between element and perspective (Table 3-1).  
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Table 3-1.  Descriptors for elements and perspectives of variability in the Robust Understanding of Variability framework (Peters, 

2011). 

 Design Perspective Data-Centric Perspective Modeling Perspective 

Variational disposition DP1: 

Acknowledging the existence of 

variability and the need for study design 

in  

a. controlling the effects of variation 

from extraneous variable(s); 

b. including considerations of variation 

for variable(s) of interest during data 

analysis; or 

c. using sample statistics to infer 

population parameters for the 

variable(s) of interest 

DCP1: 

Anticipating reasonable variability in 

data by 

a. considering the context of data; 

b. recognizing that data descriptions 

should include descriptions or 

measures of variability (and center); 

or 

c. recognizing unreasonable 

variability in data (e.g., that which 

could result from a data entry error) 

MP1: 

Anticipating and allowing for reasonable 

variability in data when using models 

for  

a. making predictions from data; or 

b. making inferences from data 

Variability in data for 

contextual variables 

DP2: 

Using context to consider sources and 

types of variability to (1) inform study 

design or to (2) critique study design by 

a. considering the nature of variability 

in data (e.g., measurement 

variability, natural variability, 

induced variability, and sampling 

variability); or 

b. anticipating and identifying 

potential sources of variability 

DCP2:  

Describing and measuring variability in 

data for contextual variables as part of 

exploratory data analysis by 

a. (1) creating, (2) using, (3) 

interpreting, or (4) fluently moving 

among various data representations 

to highlight patterns in variability; 

b. focusing on aggregate or holistic 

features of data to describe 

variability in data; or 

c. (1) calculating, (2) using, or (3) 

interpreting appropriate summary 

measures for variability in data 

(e.g., measures of variation such as 

range, interquartile range, standard 

deviation for univariate data sets; 

correlation and coefficient of 

determination for bivariate data 

sets) 

MP2: 

Identifying the pattern of variability for 

contextual variables by 

a. modeling data to explain variability 

in data; 

b. considering contextual variables in 

the formulation of appropriate data 

models; 

c. considering contextual variables in 

modeling data to describe holistic 

features of data; or  

d. considering or creating 

distribution-free models or 

simulations to explore contextual 

variables 
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Table 3-1.  Continued. 

 Design Perspective Data-Centric Perspective Modeling Perspective 

Variability and relationships 

among data and variables 

DP3: 

Controlling variability when (1) 

designing studies or (2) critiquing the 

extent to which variability was 

controlled in studies by  

a. using random assignment or random 

selection of experimental/ 

observational units to (in theory) 

equally distribute the effects of 

uncontrollable or unidentified 

sources of variability; or 

b. using study design to control the 

effects of extraneous variables (e.g., 

by incorporating blocking in 

experimental design or stratifying in 

sampling designs) to isolate the 

characteristics of the variable(s) of 

interest or to isolate systematic 

variation from random variation 

DCP3: 

Exploring controlled and random 

variability to infer relationships among 

data and variables by 

a. (1) using and (2) interpreting 

patterns of variability in various 

representations of data; 

b. focusing on aggregate or holistic 

features of variability in data to 

make comparisons; 

c. (1) using or (2) interpreting 

appropriate summary measures of 

the variability in data to make 

comparisons (e.g., transformed 

versus untransformed data); or 

d. examining the variability within and 

among groups 

MP3: 

Modeling controlled or random 

variability in data, transformed data, or 

sample statistics for 

a. making inferences from data (e.g, 

isolating the signal from the noise 

for univariate or bivariate sets of 

data or formally testing for 

homogeneity in variances); or 

b. assessing the goodness of a model’s 

fit by examining the deviations 

from the model 

Effects of sample size on 

variability 

DP4: 

Anticipating the effects of sample size 

on the variability of 

a. a sample or 

b. statistics used to characterize a 

sample (e.g., mean, proportion, 

median) when (1) designing a study 

or (2) critiquing a study design 

DCP4: 

Examining the effects of sample size on 

the variability of  

a. a sample or 

b. statistics used to characterize a 

sample (e.g., mean, proportion, 

median) through the creation, use, 

or interpretation of data-based 

graphical or numerical 

representations 

MP4: 

Anticipating the effects of sample size 

on the variability of a sampling 

distribution to  

a. model the sampling distribution; or 

b. consider significance, practical or 

statistical significance, of 

inferences 
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The following research questions were investigated to develop a snapshot of U.S. high school 

students’ understanding of variability:  

1. What proportion of U.S. high school students understand variability from the design and 

the data-centric perspectives, and each of the two overarching elements of variability? Do 

U.S. high school students score higher on items from a particular perspective? 

2. What is the relationship between overall conceptual understanding of statistics and 

understanding of variability from the design and data-centric perspectives amongst U.S. 

high school students? 

Both research questions were answered using quantitative methods to utilize a large 

amount of assessment response data and draw overarching conclusions regarding U.S. high 

school students’ understanding of variability. The first question was answered by scoring student 

responses to LOCUS CR items per the understanding of variability they displayed. The 

procedure that was used for scoring the responses is described in the data analysis section of this 

chapter. Tabulated scores were used to determine the proportion of students that showed 

evidence of understanding of variability for cross-sections of element and perspective as well as 

specific elements and perspectives. The second question used a multiple linear regression model 

to determine the importance of the concept of variability to overall conceptual understanding of 

statistics, as measured by the multiple-choice section of the LOCUS assessment. The regression 

model controlled for various demographic features of the participants in an attempt to isolate the 

relationship between variability and overall understanding of statistics.  

Instrument 

The LOCUS assessments were the result of an NSF-funded project (DRL-1118168) to 

develop an instrument that measured conceptual understanding of statistics. They were 

developed using a modified version of Mislevy and Riconscente’s (2006) evidence-centered 

design (ECD) process, which involved the construction of assessments through evidentiary 

arguments. The five layers of ECD, domain analysis, domain modeling, conceptual assessment 
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framework, assessment implementation, and assessment delivery, were utilized in the creation of 

an evidence model that served as a blueprint throughout the development of the assessment 

(Jacobbe et al., 2015). The description of conceptual understanding of statistics in the K-12 

GAISE framework (Franklin et al., 2007) served as the foundation for the evidence model. The 

evidence model contains descriptions for each element of the problem-solving process at every 

developmental level, evidence statements of understanding the element, possible work products, 

and observable features of responses demonstrating understanding and served as the foundation 

for item writing.  

The GAISE framework (Franklin et al., 2007) describes understanding of statistics using 

a two-dimensional model focusing on the components of the statistical problem-solving process 

and developmental levels. The three developmental levels, A, B, and C, are based on 

development in statistical literacy. Understanding of each component of the problem-solving 

process—formulating questions, collecting data, analyzing data, and interpreting data—is 

described across the three developmental levels. At level A, a person should begin to develop 

data sense and an understanding of basic statistical tools. The nature of variability at this stage is 

limited to measurement, natural, and induced variability that occurs within groups of interest. At 

level B, a person should continue to build on concepts from level A and begin to see statistical 

reasoning as a way to solve problems using data. Also, sampling variability is introduced and the 

focus of variability is extended to both within and between group variation. At level C, a person 

should be able to understand the statistical solving process at a deep enough level to explain 

statistical reasoning to others. They should be comfortable formulating statistical questions, 

appropriately collecting data to answer the questions, and analyzing and interpreting the data to 
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form conclusions. Random variation and the role it plays in the inference process is also explored 

at this level.  

The item writing process for LOCUS resulted in a set of multiple choice items that 

connected directly to elements in the evidence model, and constructed response items coded by 

developmental level and process component. Two versions of the LOCUS assessment were 

constructed using the written items, a Beginning/Intermediate version and 

Intermediate/Advanced version. The Beginning/Intermediate version of the assessment 

corresponds with levels A and B of the GAISE framework, and the Intermediate/Advanced 

version corresponds with levels B and C. Within each version of the assessment, there are also 

two equated forms that are available to be used in a pretest/posttest manner or as standalone 

assessments.  

Pilot studies for the LOCUS assessment items were conducted with students in grades 6-

12 that had some form of statistics instruction. Of the 3324 students that participated in the pilot 

study, 2075 completed the Beginning/Intermediate and 1249 completed the 

Intermediate/Advanced versions of the assessment. Nearly all (95%) of the high school students 

that participated in the pilot study completed the Intermediate/Advanced version. Results from 

the pilot study revealed that many students struggled with the material (Jacobbe et al., 2015), but 

high school students tended to construct higher quality responses on CR items (Foti & Jacobbe, 

2015; Whitaker & Jacobbe, 2014, Case & Jacobbe, 2014). This study chose to use the 

Intermediate/Advanced version of LOCUS to focus on high school students, where higher 

quality responses were expected.  

The two equated forms of the Intermediate/Advanced version share two out of five CR 

items in common. The other three items are different in context, but cover the same process 
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components at identical developmental levels. Form 2 was chosen for use in this study because 

more of the CR items addressed variability from the design and data-centric perspective than 

those on form 1. This version of the LOCUS assessment consisted of 23 MC and 5 CR items. 

The reliability, estimated with stratified alpha, for form 2 of the Intermediate/Advanced version 

of LOCUS was 0.87 and has been validated as a measure of conceptual understanding of 

statistics for high school students (see Jacobbe et al., 2014; Jacobbe et al., 2015).  

Participant Selection 

The participants (N = 742) in this study were secondary students from schools in Florida, 

New Jersey, Arizona, Colorado, Ohio, and Georgia. These states were chosen based on three 

criteria: a contact for the LOCUS project was in the area for ease of implementation, the school 

was in a high-performing district according to standardized assessment scores, and the state 

standards included statistics prior to the CCSSM. The students had all taken, or were in the 

process of taking, a statistics course or a mathematics course that included statistics, and were in 

Grades 9 (n = 6), 10 (n = 105), 11 (n = 211), or 12 (n = 421). Participants were nearly evenly 

split between male (46%) and female (51%), with roughly 3% omitting to respond to the gender 

survey item. A majority of the students were White (62%), non-Hispanic (82%), and reported 

that English was the primary language spoken at home (79%). A full table of the participants’ 

demographics is shown in Table 3-2. 

By visually comparing the participants in this study with the approximate distribution of 

demographics among all secondary students in the United States (NCES, 2014), some clear 

differences can be seen. Participants selected for this study from high-performing districts in 

states that had statistics in their state standards tended to include more White, Asian, and non-

Hispanic students than in the general population. Whether English was the primary language 

spoken at home was not available for the entire United States secondary school population, 



 

63 

however, among the population 5 years of age and older, about 20% primarily speak a language 

other than English at home (ACS, 2015).  

 

Table 3-2.  Demographics of students in sample and approximate percentages of secondary 

students in the U.S.  

 N % U.S. % 

Gender    

Female 382 51.41 49 

Male 342 46.03 51 

Omitted  19 2.56  

Grade    

9 6 0.81  

10 105 14.13  

11 211 28.40  

12 421 56.66  

Ethnicity    

Not Hispanic 610 82.10 74.60 

Mexican 53 7.13  

Puerto Rican 16 2.15  

Cuban 12 1.62  

Other Hispanic 30 4.04  

Omitted 22 2.96  

Race    

Native American 10 1.35 1.0 

Asian 45 6.06 5.3 

Black 108 14.54 15.50 

White 460 61.91 49.50 

Other 70 9.42  

Omitted 50 6.73  

English Spoken    

No 129 17.63  

Yes 588 79.14  

Omitted 26 3.50  

 

Students in this study were in schools from six different districts around the United 

States. Part of the reason these districts were chosen to participate in the LOCUS project was 

because they were considered high-performing districts (Jacobbe et al., 2015). Each school was 
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instructed to administer LOCUS to students in high level courses, including honors level 

mathematics, AP Statistics, and AP Calculus, in an attempt to gather higher quality responses.   

Within a participating school, all students in eligible classrooms took the assessment. 

However, only data from students whose parents signed an informed consent form (Appendix A) 

were analyzed in this study. A $5 gift card to a major national retail store was offered as an 

incentive for students to return a completed informed-consent form, irrespective of whether they 

agreed to participate in the study or not. Teachers in participating classrooms were also provided 

with a small stipend for classroom supplies as a reward for returning the informed-consent 

forms. These incentives were used to motivate teachers to encourage their students to put forth 

their best efforts when completing the assessment. 

Data Collection 

The participants in the study completed the LOCUS assessments in their respective 

schools during one 90-minute session or two 45-minute sessions. The completed exam booklets 

were sent back to the University of Florida and were stored in a locked room. CR item answers 

were recorded by the participants directly in the exam booklet using pen or pencil. The MC items 

were recorded by the participants using a bubble sheet that was scored using a machine. All MC 

responses and scores were recorded and stored digitally.  

Responses to CR items were qualitative data in their original form, but were converted to 

quantitative data using the scoring process described in the next section. Once scores for the CR 

items were completed, they were stored with the corresponding MC scores from the same test 

booklet and all participant identifying information was removed from the dataset. Scoring 

information for the CR items was used to explore both research questions. In addition to scoring 

information, demographic data was collected for each participant and included their grade level, 

self-reported gender, race, ethnicity, and primary language used in their household. Demographic 
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information was used to control for variability when exploring the second research question that 

examined the relationship between overall conceptual understanding of statistics and 

understanding of variability. 

Data Analysis 

All parts of LOCUS CR items used in this study were coded by the element and 

perspective of variability that they addressed. Codes were determined using the descriptors from 

the Framework for Robust Understanding of Statistical Variation (Peters, 2011). As part of the 

LOCUS project, complete descriptions of items were made available online (“Professional 

Development,” n.d.) that included the full item, an overview of the question, CCSSM standards 

addressed, ideal responses and scoring instructions, sample responses that indicated solid 

understanding, and common misunderstandings. These pieces of information were used to 

determine exactly what each part of an item was intended to address. Once the online item 

information was thoroughly considered, the descriptors from the Framework for Robust 

Understanding of Statistical Variation were used to match the item with the element and 

perspective of variability it best assessed.  

An item that addressed variability from the design perspective was coded in the form DPx 

and one that addressed variability from the data-centric perspective was coded in the form DCPx. 

The x at the end of the code represented the element of variability that the item addressed. A 1 

represented items that considered variational disposition, 2 represented items that considered 

variability in data for contextual variables, 3 represented items that addressed variability and 

relationships among data and variables, and 4 represented items that dealt with the effects of 

sample size on variability. For example, an item that considered variational disposition from the 

data-centric perspective was coded DCP1.  
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A second coder was briefed on the general process used to code the items. They utilized 

the LOCUS website and the Robust Understanding of Statistical Variation framework 

descriptors to independently code the items. After the first round of coding, there was 73% 

agreement among the 15 item parts. For all parts (11/15) with initial codes from the framework, 

the two coders agreed. For the other four, one coder assigned a code to the part while the other 

coder did not feel the part required understanding of variability to respond to. After further 

discussion, the two coders came to complete agreement for all item part codes. Detailed 

examples of how the items were coded and instructions for scoring each item will be provided in 

the next sections.  

Item Coding 

The first constructed response item on the form was referred to as the department store 

problem (Figure 3-1). The question required students to recognize the need for random selection 

when taking a sample and, recognize and describe why random assignment is necessary when 

conducting an experiment (“Professional Development,” n.d.). Since the item deals with 

decisions involved with designing a study, it most closely aligns with the design perspective. To 

determine which element within the design perspective the item assesses, the ideal responses and 

scoring guidelines were used in conjunction with the question overview and sample student 

responses. The ideal response indicated that a method using random selection should be used to 

determine which credit card holders should be used in the sample. Controlling variability when 

designing a study using random selection appeared in the element labeled variability and 

relationships among data and variables in the framework. Therefore, the first part of the item was 

coded as DP3. The second part of the item required students to describe why random assignment 

to treatments is important in an experimental design. This part of the item also addressed DP3 

because it involved controlling variability through random assignment in the study design. 
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1. A department store manager wants to know which of two advertisements 

is more effective in increasing sales among people who have a credit card 

with the store. A sample of 100 people will be selected from the 5,300 

people who have a credit card with the store. Each person in the sample 

will be called and read one of the two advertisements. It will then be 

determined if the credit card holder makes a purchase at the department 

store within two weeks of receiving the call.  

a) Describe the method you would use to determine which credit card 

holders should be included in the sample. Provide enough detail so that 

someone else would be able to carry out your method. 

b) For each person in the sample, the department store manager will flip a 

coin. If it lands heads up, advertisement A will be read. If it lands tails 

up, advertisement B will be read. Why would the manager use this 

method to decide which advertisement is read to each person? 

 

Figure 3-1.  The department store problem.  

 

The second constructed response item was referred to as the student council problem and 

took students through a short statistical investigation by having them write a survey question, 

display the data graphically, and draw a conclusion from the data. The first part of the item 

required students to write a survey question. A survey question in this scenario is used to answer 

a statistical question, which should anticipate variability. While the anticipation of variability is 

not directly necessary to answer the item, it is a crucial piece of understanding to be able to 

adequately create a survey question. Therefore, part (a) of the item was coded as DP1 because it 

required an acknowledgement of variability in pieces of the study design. Part (b) required 

students to provide a method they would use to sample 100 students to answer the survey 

question they wrote in part (a). Like the department store problem, this part of the item required 

students to recognize the need for random sampling and was therefore coded as DP3. Part (c) 

asked students to create a reasonable graphical display of possible responses to the survey. 

Creating a reasonable hypothetical dataset required a variational disposition from the data-centric 
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perspective because graphical displays should show reasonable variability in the data according 

to the context. Therefore, this part of the item was coded DCP1. Part (d) required students to 

recommend an activity and justify their answer using their graphical display in part (c), which 

involved choosing the activity with the most votes. This part of the item did not ask respondents 

to consider variability in their answer and was not coded for this study.  

 

2. The student council members at a large middle school have been asked to 

recommend an activity to be added to physical education classes next year. 

They decide to survey 100 students and ask them to choose their favorite 

among the following activities: kickball, tennis, yoga, or dance. 

a) What question should be asked on the survey? Write the question as it 

would appear on the survey. 

b) Describe the process you would use to select a sample of 100 students 

to answer your question. 

c) Create a table or graph summarizing possible responses from the 

survey. The table or graph should be reasonable for this situation. 

d) What activity should the student council recommend be added to 

physical education classes next year? Justify your choice based on 

your answer to part (c). 

 

Figure 3-2.  The student council problem.  

 

The third item, the boss preference problem, assessed the ability to read and understand a 

two-way table to see if there was an association between gender and preference for a male or 

female boss when starting a new job. The three parts of this item did not require students to show 

their understanding of variation. Parts (a) and (b) of this item asked students to read information 

directly from the table and describe the association between the two variables, respectively. 

These parts did not require the student to understand variation and were not coded. Part (c) asked 

students to look at a 2-way table from a different city to determine which data shows a stronger 
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association between the two variables. The way the question was presented in this item did not 

require understanding of variation and was not coded. 

3. A researcher wanted to know whether there is an association between gender 

and preference for a male or female boss when a person starts a new job. The 

researcher randomly sampled 1,000 employed adults living in City A. Each 

person was asked, “If you were to start a new job, would you prefer to have a 

male boss or a female boss?” The table below shows the results for City A. 

City A 

 Prefer Male Boss Prefer Female Boss Total 

Male 428 122 550 

Female 272 178 450 

Total 700 300 1000 

 

a)   i) What percentage of males prefer a male boss? 

(ii) What percentage of females prefer a male boss? 

b) Describe the association between gender (male or female) and preference 

for a male or female boss in City A. 

 

The researcher asked the same question in a survey of 1000 randomly 

selected adults from City B. The table below shows the results for City B. 

City B 

 Prefer Male Boss Prefer Female Boss Total 

Male 425 175 600 

Female 275 125 400 

Total 700 300 1000 

 

c) In which city, A or B, is there a stronger association between gender 

(male or female) and preference for a male or female boss? Justify your 

response. 

 

Figure 3-3.  The boss preference problem.  
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4. A study was carried out to investigate whether there is a relationship between 

the percent of hearing loss and the volume at which people typically listen to 

music. Ten high school students agreed to participate in a study. Each was 

given a music player with headphones and was asked to listen to music for 10 

minutes. The students were told to adjust the volume to a comfortable setting. 

After 10 minutes, the volume setting, which ranges from 1 to 10, was 

observed for each student. Each student then took a hearing test, and a 

measure of hearing loss (in percent) was recorded. The data are shown in the 

table below. 

Volume 

Setting (x) 
8 10 1 4 5 8 3 1 2 8 

Hearing 

Loss (y) 
23 24 11 9 15 19 14 5 7 15 

 

a) Construct an appropriate graphical display that allows you to investigate 

the relationship between volume setting and hearing loss. 

b) Based on the graphical display, describe the relationship between 

volume setting and hearing loss. 

c) From this study, is it reasonable to conclude that listening to music at a 

high-volume causes hearing loss? Explain why or why not. 

 

 

Figure 3-4.  The hearing loss problem.  

 

Item four, the hearing loss problem, presented data from an experiment to determine the 

relationship between hearing loss and the volume at which people listen to music. Part (a) had 

students use the given dataset to construct a graphical display that would allow them to 

investigate the relationship between the two variables. This part of the item did not require 

understanding of variation to complete and was not coded. Part (b) asked students to use their 

graphical display to describe the relationship between hearing loss and volume. An adequate 

description of the relationship between the two variables may require understanding of variation 

from the modeling perspective, which was not the focus of this study, and therefore this part was 

not coded. Part (c) required students to conclude whether listening to music at high volume 
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causes hearing loss. To answer this part, students must refer to the study design introduced in the 

item stem to notice this is an observational study where cause-and-effect conclusions cannot be 

made. Considering study design when making conclusions involved understanding of statistical 

variation from the design perspective. This item was coded as DP3 because it involved critiquing 

the extent to which variability was controlled through the study design. In this case, the 

observational study design did not control for confounding variables that may have interfered 

with the relationship between volume and hearing loss, and therefore a cause-and-effect 

conclusion between the two variables could be drawn.  

The final item on the constructed response, the school day problem, followed an 

investigation to test the claim by a national newspaper that 30% of students favor an extended 

school day. Part (a) had students complete the necessary details for conducting a simulation to 

see what sample percentages would be expected if the population percentage was actually 30%. 

This did not require understanding of variation from the design or data-centric perspective and 

was not coded. Part (b) involved the use of the given sampling distribution of the sample 

proportion to determine if an observed result was plausible. To determine plausibility, the 

student had to consider the variability in the sampling distribution. Calculating the probability 

that a result as or more extreme than the observed result required an understanding of how the 

data vary. Therefore, this part was coded DCP3 because it explored the variability in a visual 

representation of the data. Part (c) had students draw a conclusion based on the sample data in 

the problem. The justification for the conclusion could be based on the sampling variability, and 

would therefore examine variability and relationships among data and variables from the data-

centric perspective. This part of the item was coded as DCP3.  
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5. Stella saw the following headline in a national newspaper: “30 Percent of High School 

Students Favor Extended School Day.” She wondered if the percentage of students at 

her school who favor an extended school day was less than 30 percent. To investigate, 

she selected a random sample of 50 students from the 1,200 students at her school and 

asked each student in the sample if he or she favors an extended school day.   

 

Only 12 of the students in the sample favored an extended school day. Because the 

sample percentage is (12/50)100 = 24%, Stella thinks that fewer than 30 percent of the 

students at her school favor an extended school day. She wonders if it would be 

surprising to see a sample percentage of 24 or less if the school percentage is really 

30. 

a) To see what values of the sample percentage would be expected if the school 

percentage was 30, she decides to use 1,200 beads to represent a student who 

favors an extended school day and a white bead to represent a student who does 

not. How many red beads and how many white beads should Stella use?     

 

Stella put all the beads in a box. After mixing the beads, she selected 50 of them 

and computed the percentage of red beads. She put the 50 beads back in the box 

and repeated this process 99 more times. Then, she made the following dotplot of 

the 100 sample percentages:   

 

    

b) If the school percentage were actually 30%, how surprising would it be to see a 

sample percentage of 24% or less? Justify your answer using the dotplot. 

c) Based on her sample data, should Stella conclude that the percentage of students 

at the school who favor an extended school day is less than 30%? Explain why or 

why not.   

 

Figure 3-5.  The school day problem.  

 

The final item codes resulted in eight item parts that addressed 4 cells from the robust 

understanding of statistical variation framework. The only two elements that were covered by 

these item parts were variational disposition and variability and relationships among data and 
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variables. Only one item part addressed each of the DP1 and DCP1 cells of the framework, 4 

item parts addressed the DP3 cell, and 2 item parts addressed the DCP3 cell. The parts of the 

framework considered in this study are shown in Table 3-2. 

 

Table 3-3.  Components of framework relevant to this study. 

 Design Perspective Data-Centric Perspective 

Variational 

disposition 

DP1: 

Acknowledging the existence of variability 

and the need for study design in  

d. controlling the effects of variation from 

extraneous variable(s); 

a. including considerations of variation for 

variable(s) of interest during data analysis; 

or 

b. using sample statistics to infer population 

parameters for the variable(s) of interest 

DCP1: 

Anticipating reasonable variability in data by 

d. considering the context of data; 

e. recognizing that data descriptions should 

include descriptions or measures of 

variability (and center); or 

f. recognizing unreasonable variability in 

data (e.g., that which could result from a 

data entry error) 

Variability and 

relationships 

among data and 

variables 

DP3: 

Controlling variability when (1) designing 

studies or (2) critiquing the extent to which 

variability was controlled in studies by  

c. using random assignment or random 

selection of experimental/ observational 

units to (in theory) equally distribute the 

effects of uncontrollable or unidentified 

sources of variability; or 

d. using study design to control the effects of 

extraneous variables (e.g., by 

incorporating blocking in experimental 

design or stratifying in sampling designs) 

to isolate the characteristics of the 

variable(s) of interest or to isolate 

systematic variation from random 

variation 

DCP3: 

Exploring controlled and random variability 

to infer relationships among data and 

variables by 

e. (1) using and (2) interpreting patterns of 

variability in various representations of 

data; 

f. focusing on aggregate or holistic features 

of variability in data to make 

comparisons; 

g. (1) using or (2) interpreting appropriate 

summary measures of the variability in 

data to make comparisons (e.g., 

transformed versus untransformed data); 

or 

h. examining the variability within and 

among groups 

 

Item Scoring 

A scoring procedure for the CR items was developed as a minor extension of the item 

codes. For each part of an item, if the student response showed evidence of understanding of 

variability according to how the part was coded, the part received a score of 1. Otherwise, the 



 

74 

part received a score of 0. In some cases, responses could receive a score of 0.5 if they displayed 

a developing understanding from the relevant cell. The only example of a response that received 

a score of 0.5 was for cell DP3 when stratified sampling was discussed, but no randomness was 

involved in the description. Evidence of understanding was determined by the presence of key 

features in the response that addressed variability according to the framework and did not factor 

in the quality or depth of the response. For example, a response that suggested the use of a 

random sample for part (a) of the department store problem and a response that describes the 

complete process required to take a random sample would both receive a score of 1. Prior 

research on responses to LOCUS items suggested that high-quality and diverse responses to CR 

items were rare (Case & Jacobbe, 2014; Foti & Jacobbe, 2015; Whitaker & Jacobbe, 2014; 

Jacobbe et al., 2015). 

The ideal and sample student responses from the LOCUS website were used as 

guidelines to develop examples for each item part that would indicate understanding according to 

the item code. For example, the scoring procedure for the department store problem was as 

follows: 

Item 1: Department Store:  

 

Part (a) - Score a 1 for DP3 if response addresses controlling for variability in the 

study design using random selection. Score a 0.5 if the response addresses an 

appropriate stratification technique, but does not address randomness. Otherwise, 

score a 0. 

e.g., Random selection is used to select the sample, and a method is described for 

how this could be done by numbering the credit card holders from 1 to 5300; 

Sample is stratified into frequent and non-frequent shoppers before random 

sampling is conducted.  

Part (b) - Score a 1 for DP3 if response explains why random assignment to 

treatments is important in the design of a statistical experiment. Otherwise, score a 

0. 
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e.g., indicates that flipping a coin to determine which advertisement is read results 

in random assignment to treatments and therefore the study can conclude cause and 

effect 

 

An example student response from the LOCUS website is shown in Figure 3-6. For part (a), the 

response adequately described a process for random selection and would be scored a 1 for code 

DP3. In part (b), the response indicated that random assignment helps to control variability and 

results in a conclusion that could establish a cause and effect relationship. Thus, this part would 

be scored a 1 for code DP3.  

 

Figure 3-6.  Sample student response from LOCUS website. 

 

During the scoring of the items, notes were taken on both common and uncommon 

responses to improve consistency of scores and to allow for responses to show evidence of 

understanding outside of the cell the item was coded for. On extremely rare occasions, a 

response would show evidence of understanding of variability from a cell of the framework that 
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differed from the cell the item part was coded for. These responses were recorded, however, 

none of them occurred with a frequency high enough to yield meaningful interpretations in this 

study. Each time a unique decision was made about the evidence of understanding shown in a 

response, the booklet number, quoted response, and subsequent decision was recorded. These 

notes were used to update the full scoring procedure to be more descriptive in terms of 

observable features of a response. The full scoring procedure, updated with information from the 

scoring, is shown in in Appendix B.   

 

Table 3-4.  Sample of scoring table for a participant (not actual data). 

 Design Perspective Data-Centric 

Perspective 

Totals 

variational disposition DP1: 

0/1 - 0% 

DCP1: 

1/1 - 100% 
1/2 - 50% 

variability in data for 

contextual variables 
- - - 

variability and relationships 

among data and variables 

DP3: 

2/4 - 50% 

DCP3: 

2/2 - 100% 
4/6 - 67% 

effects of sample size on 

variability 

 

- - - 

Totals 2/5 - 40% 3/3 - 100% 5/8 - 63% 

 

Scoring of CR items was done by the author of this dissertation as well as a second 

independent coder that was trained to use the procedure. Inter-rater agreement was assessed 

using agreement percentages and is discussed in Chapter 4. Once all responses were scored, each 

participant had a 2x4 matrix representing their scores in each of the two perspectives (columns) 

and four elements of variation (rows). A hypothetical example of a scored exam matrix can be 

seen in Table 3-4.  
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Research Question 1  

The first research question sought to provide a snapshot of how U.S. high school students 

understand the concept of variability. The results from the scoring procedure were aggregated 

across students and converted to proportions. Proportions in each individual cell of the 

framework represented an estimate of how well high school students understood an element of 

variability from a particular perspective, row sums represented how well students understood an 

element of variability across perspectives, and column sums represented how well students 

understood variability from a particular perspective across all elements. Aggregating across all 

rows and columns resulted in a single estimate for how well students generally understood 

variability. Direct interpretations of a proportion would be the proportion of responses that 

showed evidence of understanding from a part of the framework (e.g., cell, perspective, 

element). 

Part of the snapshot involved testing whether one perspective seemed to prompt more 

evidence of understanding than the other. A statistical significance test was used to test for 

differences in understanding in the design and data-centric perspectives. A difference between 

two-proportions z-test was utilized under the null hypothesis of no differences to see if there 

were significant differences between the variables for high school students. Additionally, two 

item parts that were nearly identical, parts 1a and 2b, were analyzed in depth because of 

differences observed during scoring. A difference between two-proportions z-test was used under 

the null hypothesis of no difference to determine if responses were showing evidence of 

understanding at different frequencies despite being nearly identical items.   

Research Question 2  

The second research question sought to determine if there was a relationship between 

overall understanding of statistics and understanding of variability, and if so, the strength of that 
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relationship. A multiple linear regression model of the form 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖 

was fit to test this relationship, where y was the observed overall understanding of statistics, 𝑥1 

through 𝑥𝑘 were the observed variables for 𝑘 demographic features, 𝑥𝑝 was the observed 

understanding of variability, 𝛽0 through 𝛽𝑝 were the model parameters to be estimated, and 𝜖 

was the random error. Model fitting was conducted in the R statistical software package and 

followed standard procedures for multiple linear regression (Rawlings, Pantula, & Dickey, 

2001). 

Overall understanding of statistics was measured by the score students received on the 

MC portion of LOCUS. Only the MC items were considered in their LOCUS score to avoid 

correlations between correctness and evidence of understanding of variability in the CR items. 

Understanding of variability was measured by the score students receive on the CR items 

according to the scoring procedure used in this study, which was different than the original 

scoring rubric used as part of the LOCUS project. Additionally, the model included the 

demographic information that was collected on the students such as grade, gender, race, 

ethnicity, and primary language spoken at home. While these demographics were not the primary 

focus of this study, significant effects needed to be controlled for to limit the influence of outside 

variables on the relationship between understanding of statistics and variability.  

Two models were considered to attempt to better understand the relationship between 

understanding of variability and overall understanding of statistics. The initial model aggregated 

scores in both the design and data-centric perspectives and used a single score for understanding 

of variability. Another model split understanding of variability into two variables, one for 

understanding from the design perspective and one for understanding from the data-centric 

perspective. The purpose of this model was to see if a particular perspective had a stronger 
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impact on overall understanding of statistics than the other. The adjusted 𝑅2 value was used to 

determine how much of the variability in the MC scores could be attributed to the regression on 

the predictors.  

Limitations 

 Despite careful consideration throughout this study, there were certain limitations that 

must be discussed to properly interpret the potential findings. To start, this study used a carefully 

planned quantitative methodology, however, there were details regarding the sampling methods 

that must be addressed. The sample of students was not chosen randomly from the population of 

grades 9-12 students in the United States that have taken a course involving statistics. Therefore, 

it is not technically permissible to generalize the results of this study beyond the participants 

involved. The results of the data analysis could only suggest conclusions about the population. 

With data collected from over 700 students, the conclusions drawn from this study were 

informative, but further studies must be conducted if the patterns seen are to be confirmed.  

A truly random sample of United States secondary students could potentially include 

many students that have not had any formal statistics education in their school career. This 

would, most likely, bias the results towards a lack of understanding of variability. On the other 

hand, because the schools and classrooms that were chosen for this study were selected because 

of their connection to researchers in statistics education and were from high performing districts, 

the results of this study may just as easily overestimate the level of understanding of variability 

in secondary students. Thus, the findings in this study must be interpreted with caution and be 

taken as a piece of evidence toward more general conclusions.   

This study considered the use of post-stratification sample weights (Dillman et al., 2014) 

to allow for unbiased generalizations to a larger population. Weighting the sample to the 

population of U.S high school students seemed to be too large of a deviation from the original 
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sampling methods. The most logical choice of population would be U.S. high school students 

that have taken a course involving statistics, however, demographic data for this population was 

not readily available. Such data exists for students that took AP statistics, however, there is no 

reason to believe that the AP statistics population looks anything like the population of students 

that have taken any course involving statistics. Thus, methods to weight the sample were avoided 

in this study and the existing limitations on generalizations remained.   

Another limitation to this study was that pilot administrations of the LOCUS assessments 

revealed some potential issues regarding the difficulty of the items. Many students in the pilot 

administration of LOCUS received very low scores, particularly on the CR items (see Case & 

Jacobbe, 2014; Foti & Jacobbe, 2015; Whitaker & Jacobbe, 2014; Jacobbe et al., 2015). One 

possibility is that the LOCUS items were at a level of understanding that was too far above the 

understanding of most students in the current secondary environment. Another possibility was 

that due to the focus of the LOCUS assessments on conceptual understanding, many of the items 

were lengthy word problems. This study did not consider the possibility that students may not 

have had the proper language proficiency to accurately display their understanding of variation. 

Thus, it is possible that the results of this study regarding students’ understanding of variability 

are confounded with language ability.  

Finally, one of the purposes of this study was to provide an example of using assessment 

items as tasks to analyze students’ understanding of variation. However, because the CR items 

are not entirely open ended, and students were not given the opportunity to more thoroughly 

explain their answers (e.g., in an interview), their ability to fully display their understanding of 

variability may have been limited. Therefore, the results of this study should be used as evidence 

of potential, versus definite, weaknesses and strengths in current secondary statistics education 
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efforts. This limitation was reflected in the data analysis and interpretation of the results by 

examining responses for evidence of understanding instead of strictly thinking of responses as 

correct or incorrect. 
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CHAPTER 4  

RESULTS 

In this chapter, the results of the data analysis will be presented. Data were collected and 

analyzed in alignment with the goals of this study. The fundamental goal of the data analysis was 

to learn more about how U.S. high school students understand the concept of variability, as 

defined by the Framework for Robust Understanding of Variation (Peters, 2011). The data 

consisted of scored LOCUS CR items according to the scoring procedure outlined in Chapter 3. 

Contrary to common item scoring, where a 1 represents a correct response and a 0 represents an 

incorrect response, the scores for the items represent whether a response showed evidence of 

understanding of variability. Therefore, a response that received a 0 simply means that it did not 

provide sufficient evidence of understanding.  

The following subsections of this chapter display the results of the data analysis as they 

pertain to the research questions guiding this study. Results from an inter-rater agreement 

process are also presented. Additionally, the nature of missing data from the collection phase and 

the techniques used to rectify the issues of missing data are discussed. Results of the data 

analysis are presented with interpretation in this chapter, and their implications will be discussed 

further in Chapter 5 of this dissertation.  

Inter-Rater Agreement 

To provide evidence for consistency in the scoring procedure, a second scoring was 

completed by another graduate student in statistics education. A meeting was held to thoroughly 

discuss the Framework for Robust Understanding of Variation (Peters, 2011), each CR item used 

in the study, and the scoring procedure presented in the previous chapter. Sample test booklets 

were examined to practice using the scoring procedure until the second scorer felt comfortable 

with the complete procedure. A random sample of 78, equal to approximately 10% of the total 
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number of test booklets, was then provided to the second scorer to be reviewed using the scoring 

procedure.   

A comparison of the two scorers’ data revealed that out of 624 total scored item parts, the 

two scores were in exact agreement 93.4% of the time. Since some item parts were scored as 0.5 

when partial evidence of understanding of variability was presented, the analysis of scoring 

agreement also considered agreement within 0.5 points. Under this condition, 96.6% of the 

scores were in agreement. Percentage of agreement has received criticism as an index for inter-

rater agreement because it does not consider agreement that would happen by chance (Cohen, 

1960; Robinson, 1957).   

Cohen’s (1960) kappa takes agreement that would occur by random chance into account 

and is defined by 

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 

where 𝑝𝑜 is the relative observed agreement among raters and 𝑝𝑒 is the hypothetical probability 

of chance agreement. For the two scorers in this study, kappa was calculated to be 0.88, meaning 

the two scorers were in agreement approximately 88% of the time when accounting for 

agreements due to random chance.  

Missing Data 

The scored data set contains missing data for CR items and, less commonly, for 

demographic data. Enders (2010) describes how partial deletion, removing data until there is no 

missing information left, and single imputation, techniques that estimate the missing data in one 

instance, yield suboptimal results. Multiple imputation, which involves techniques to estimate 

the missing data more than once, is the recommended method for dealing with missing data 

(Enders, 2010; van Buuren & Groothuis-Oudshoorn, 2011). 
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The missing data pattern, shown in Table 4-1, reveals the number of complete cases in 

the dataset and the number of cases that have various amounts of missing data. Typically, in 

order for an imputed dataset to yield unbiased results, the data needs to be missing completely at 

random (MCAR) and must not contain large amounts of missing data. To test for MCAR, 

Little’s test (1988) was used and resulted in a p-value of approximately 0. While failing to reject 

the null hypothesis of MCAR provides evidence that the data is MCAR, it does not prove that it 

is. Students with lower understanding of statistics or those who put less effort into LOCUS were 

more likely to have missing data. Therefore, it did not necessarily make sense for this data to be 

MCAR. Additionally, no item part had greater than 10% missing data, with most having under 

6% of their data missing.  

Predictive mean matching in the MICE package in R (van Buuren & Groothuis-

Oudshoorn, 2011) was used to multiply impute the missing data. Reviewing the summary 

statistics for the imputed datasets and a dataset of only the complete cases showed similar results. 

In total, five imputed data sets were constructed for use in multiple linear regression models. 

Each imputed data set was used to create a linear regression model and the coefficients from the 

multiple models were pooled to find the final coefficient estimates.  

 

 

Table 4-1.  Missing data pattern from full dataset. 

# of Data Missing 0 1 2 4 5 or more 

# of Cases 492 26 2 20 85 
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Descriptive Statistics 

Once the imputed datasets were created, descriptive statistics were computed for the 

understanding of variability on items and perspectives, and are shown in Table 4-2. Item parts 

are organized into their perspective and element from the robust understanding of statistical 

variation framework. The mean of each item part across all students, which is equivalent to the 

proportion of students that showed evidence of understanding of variability for that part, is 

presented. Item level results will be presented in more detail in the following sections.  

 

Table 4-2.  Descriptive statistics for all item parts. 

 Design Perspective  Data-Centric Perspective 

 DP1  DP3 DCP1  DCP3 

 2a  1a 1b 2b 4c  2c  5b 5c 

Mean/Proportion  

showing evidence of 

understanding 

.94 

 

.62 .04 .75 .14 

 

.93 

 

.31 .07 

Showed evidence of 

understanding 
593 

 
391 25 473 88 

 
587 

 
196 44 

Did not show evidence  

of understanding 
38 

 
240 606 158 543 

 
44 

 
435 587 

 

 

The correlation matrix for the 8 item parts are shown in Table 4-3 and are also grouped 

by the perspective they address. Item part-to-item part correlations were generally very low, 

which provided evidence that each item part presented different information in terms of 

understanding of variability. More likely, the correlations were low because of the nature of the 

scores on the responses. For example, nearly all students showed evidence of understanding of 

variability on items 2a and 2c, while virtually no students showed evidence on items 1b, 4c, and 

5c. Item parts with polarized scores had no room to provide evidence of correlation between the 

item parts. The item parts where a decent number of students both did and did not show evidence 
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of understanding of variability were 1a, 2b, and 5b. 1a and 2b had the highest correlation of all 

the items, which may be due to them coming from the same perspective or, more likely, because 

they were nearly identical item parts. Further results regarding the relationship between these 

two items are discussed later in this chapter. Correlations between 1a and 5b, and 2b and 5b were 

also low, however, this was expected because the items addressed different perspectives of 

variability.  

 

Table 4-3.  Item part-to-item part correlations for all items, organized according to perspective.  

 

The LOCUS MC scores, which were scored independently of this study, can be seen in 

the histogram in Figure 4-1. These scores were used as a measurement of overall understanding 

of statistics, and the maximum possible score was 23. The mean score on the MC was 11.96 with 

a standard deviation of 4.46, and the dataset appears to be slightly skewed right.  

 

Correlation Matrix for all 

LOCUS CR Items 

Organized by Perspective 

Design Perspective  Data-Centric Perspective 

DP1  DP3  DCP1  DCP3 

2a  1a 1b 2b 4c  2c  5b 5c 

Design 

Perspective 

DP1 2a -           

DP3 

1a .064  -         

1b .050  .062 -        

2b .121  .350 .092 -       

4c .084  .224 .227 .150 -      

Data-

Centric 

Perspective 

DCP1 2c .188  .126 .023 .168 .061  -    

DCP3 

5b .127  .234 .152 .159 .214  .135  -  

5c .069  .204 .206 .107 .315  .028  .286 - 
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Figure 4-1.  Histogram of the multiple-choice scores from LOCUS (scored independently from 

this study). 

Understanding of Variability 

 In total, 742 high school students in grades 9, 10, 11, or 12 participated in the 

Intermediate/Advanced Form 2 administration of the LOCUS assessment. Of those participants, 

631 were included in the data analysis because they gave consent and answered at least 1 CR 

item. Understanding of variability was considered from various degrees of resolution. The data 

was analyzed at the perspective, element, and item levels. The results of these analyses are 

presented in this section and a summary of results are shown in Table 4-4.  

 

Table 4-4.  Proportion of item parts that showed understanding in Robust Understanding of 

Variation Framework.  

Element/Perspective Design Perspective 
Data-Centric 

Perspective 
Totals 

Variational 

disposition 
.940 .928 .934 

Variability and 

relationships among 

data and variables 

.389 .191 .323 

Totals .499 .437 .476 
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Summary scores across rows and columns are not equally weighted across all cells of the 

framework. For example, of the 50% of responses from the design perspective that showed 

evidence of understanding of variability, nearly all of them (4/5) came from the variability and 

relationships among data and variables element. Reporting the scores in this manner implies that 

more weight was given to elements with more items. This study placed less weight on variational 

disposition than variability and relationships among data and variables. The stronger emphasis 

on variability and relationships among data and variables is supported by the deeper 

understanding of variability required in that element. Variational disposition focuses on 

acknowledging and anticipating variability, which require lower-levels of understanding than 

considering, describing, and measuring variability in data. Additionally, the LOCUS assessments 

development process using ECD resulted in more items that addressed the variability and 

relationships among data and variables element, suggesting a stronger emphasis on this element 

is warranted.   

At the perspective level, the data showed more evidence of understanding from the 

design perspective than the data-centric perspective. Aggregating scores within the perspectives 

revealed that nearly 50% of all possible responses provided evidence of understanding from the 

design perspective, compared to 44% of responses from the data-centric perspective. A 

hypothesis test was conducted to test for a significant difference in understanding from one 

perspective. Under the null hypothesis of no difference between the two perspectives, a 

difference between two proportions test was conducted. The 95% confidence interval for the 

difference between the design perspective and data-centric perspective was (0.034, 0.091). 

Students showed significantly more evidence of understanding from the design than the data-

centric perspective.  
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The design perspective consisted of 5 total item parts and the data-centric perspective 

consisted of 3 total item parts. Therefore, when comparing proportions, it was important to 

recognize that the perspective-level scores achieved by individuals were discrete in nature. For 

example, in the data-centric perspective, individuals could only achieve 0, 33%, 66%, or 100% 

of the possible points because there were only 3 parts that addressed the perspective. Despite this 

realization, the difference between the two perspectives was still quite high for this large sample. 

A breakdown of points scored for each of the two perspectives can be seen in Figure 4-2. 

 
Figure 4-2.  Histograms of scores on the DP (out of 5) and DCP (out of 3). Note: vertical axes 

are on different scales.  

 

In the design perspective, a majority (67.4%) of students fell right in the middle and 

showed evidence of understanding of variability on between 2 and 3 out of 5 possible item parts. 

In the context of this study, this means that students had a middle-of-the-road understanding of 

variability as it pertained to the design of studies. Specifically, the elements of the design 
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perspective on LOCUS addressed acknowledging the existence of variability and knowing how 

to control some of it through study design. These are pivotal parts of the statistical problem-

solving process according to the formulating questions and collecting data process components 

of the K-12 GAISE framework (Franklin et al., 2007).  

In the data-centric perspective, nearly 61% of students scored a 1 out of 3 possible points. 

Students did not show strong evidence of understanding from this perspective, however, two of 

the three parts were on an item that carried out a simulation-based hypothesis test. It is entirely 

possible that the simulation was an unfamiliar scenario that distracted them from showing 

evidence of understanding of variability. Through item part 2c, students did show very strong 

evidence of their ability to anticipate reasonable variability in data, the descriptor for DCP1. Just 

over 5% of students showed evidence of understanding on all 3 parts from the data-centric 

perspective. These students showed evidence of having a Level C understanding of analyzing 

and interpreting data, which placed them in the highest level of understanding in the GAISE 

framework (Franklin et al., 2007).    

The variational disposition element of the framework was assessed through two item 

parts: one from the design perspective and one from the data-centric perspective. Approximately 

93.4% of all possible responses showed evidence of understanding from this element of the 

framework. In other words, most students showed their ability to acknowledge and anticipate 

variability. The second element that was assessed through the CR items was variability and 

relationships among data and variables. Across the 6 item parts that addressed this element of 

variability, approximately 32.3% of responses showed evidence of understanding. Item parts that 

addressed this element saw less evidence of understanding across both perspectives, however, 

responses showed more evidence of understanding, in this element, from the design perspective 
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(0.39) than from the data-centric perspective (0.19). The differences in evidence of 

understanding between design and data-centric perspectives mostly appeared in this element of 

variability. In the design perspective, understanding of variability and relationships among data 

and variables concerned the design of studies to control for variability through random selection 

of samples, random assignment of treatments in experiments, or designing studies to make causal 

conclusions. From the data-centric perspective, this element of variability involved exploring 

controlled and random variability to draw conclusions.  

The four cells of the robust understanding of statistical variation framework addressed by 

the LOCUS CR items in this study were DP1, DP3, DCP1, and DCP3. The proportion of 

responses that showed understanding from these cells were about 0.94, 0.39, 0.93, and 0.19, 

respectively. The histograms in Figure 4-3 display the breakdown of the total scores on each of 

the four cells of the framework.  

 
Figure 4-3.  Histograms of scores for each cell of the framework. 
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DP1 was only relevant to item 2a, and nearly all of students’ responses (94%) showed 

evidence of understanding. Specifically, students showed evidence of anticipation of variability 

when using a survey question to help answer a statistical question. While this result suggests that 

nearly all students could present a relevant survey question given a scenario, the item part did not 

directly address their ability to formulate a statistical question. This one item part may therefore 

overestimate students’ understanding of DP1. Empirical research on students’ ability to 

formulate statistical questions is scarce. In one study, Ben-Zvi (2002) found that nearly 60% of 

forty 7th grade students could provide research questions that focused on overall patterns in data 

when given a contextual scenario.  

DCP1 was assessed through a single item part and had a similarly high proportion of 

students show evidence of understanding (93%). This item part required students to create a 

display of hypothetical data that might result from the survey question used in the previous parts. 

Students showed evidence of understanding from DCP1 by displaying a set of data where survey 

responses varied. While reservation should be used when concluding understanding of DCP1 

from one item part, the item more directly addressed DCP1 than in the case of DP1. Shaughnessy 

et al. (1999) and Reading and Shaughnessy (2000) both discovered that students had trouble 

anticipating variability in sampling situations. While the scenario in the LOCUS item was less 

complex, nearly all students could anticipate variability in the hypothetical outcome of sampling.  

Evidence of understanding of variability from DP3 was discovered in four different item 

parts: 1a, 1b, 2b, and 4c. About 87% of students scored between 0 and 2 out of the 4 possible 

points for DP3. On 1a, about 62% of responses showed evidence of understanding from DP3 by 

anticipating variability in a study design and knowing to implement randomness into their 

sampling technique. Only about 4% of responses to 1b showed evidence of understanding of 
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variability from DP3 by describing that random assignment of treatments is important for 

controlling variability from outside sources. Item 2b, which was nearly identical to 1a, had about 

75% of students show evidence of understanding of variability from DP3. On 4c, about 14% of 

students showed evidence of understanding from DP3 by stating that cause and effect 

conclusions require controlling for variability through an experimental design. These concepts of 

study design fall in both levels B and C of the GAISE framework (Franklin et al., 2007), 

meaning they are beyond the expected understanding of a novice statistics student. These 

concepts are vital to statistical literacy and the ability to interpret results from other studies (Gal, 

2000).  

Evidence of understanding of variability from DCP3 was discovered in two different item 

parts: 5b and 5c. On 5b, about 31% of students showed understanding of variability from DCP3 

by acknowledging variability in a sampling distribution. Only 7% of students displayed evidence 

of understanding of DCP3 on item 5c by acknowledging that a difference between a given and an 

observed mean could be due to random variation. While more than one item part addressed 

DCP3, it is worth noting that the two item parts were from the same item. As noted above, this 

item’s context was a simulation study that may be unfamiliar to many students. Additionally, the 

variability concepts in part 5b are only addressed in Level C of the K-12 GAISE framework 

(Franklin et al., 2007).  

Links to Context 

Because items 1a and 2b both asked for a process to use for collecting a sample from a 

population, they prompted further analysis. Aside from one item using the term “method” and 

the other using the term “process,” the only difference between the two was the context of the 

item stem. Item 1 was looking for a sample of credit card holders from the 5,300 people that 

owned a credit card with a store. Item 2 was looking for a sample of students from a middle 
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school to conduct a survey. Research shows conflicting evidence regarding students’ 

understanding of variability across contexts (Torok & Watson, 2000; Ben-Zvi, 2004; Reading, 

2004).  

In this instance, a hypothesis test was conducted to determine if the proportions of 

students that showed evidence of understanding of variability from DP3 in each of these two 

item parts were significantly different. The 95% confidence interval for the difference in 

population proportions was (-0.19, -0.08) and the p-value for the significance test was nearly 0. 

A statistically significantly higher proportion of responses showed evidence of understanding of 

DP3 on item 2b than on item 1a.  

Torok & Watson (2000) found that no association existed between context and 

understanding of variability, as students displayed no difference in their understanding despite 

more familiarity with some of the tasks’ contexts than others. However, this finding suggests 

there may be a link. Reading (2004) and Ben-Zvi (2004) have also showed evidence that context 

played a role in understanding of variability. In one case, the context intervened with students’ 

abilities to use analysis techniques they had recently covered in class (Reading, 2004). In the 

other, context helped students connect their understanding of statistics to the problem (Ben-Zvi, 

2004). It is unclear whether the context of the credit card in the LOCUS item distracted students, 

or the context of the middle school survey helped students focus on the sampling techniques.  

Role of Variability in Understanding of Statistics 

To address the second research question, a multiple linear regression model was fit. The 

dependent variable in the model was each student’s LOCUS MC score. Models were fit with 

both DP score and DCP score as predictors. Demographic and grade level information was 

included in the model to control for any effects they may have had on the students’ overall 

understanding of variability. The model that was fit to each of the 5 imputed datasets was  𝑦𝑖 =
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𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖, where y is the observed overall understanding of statistics, 𝑥1 

through 𝑥𝑘 are the observed variables for 𝑘 demographic features, 𝑥𝑝 is the observed 

understanding of variability, 𝛽0 through 𝛽𝑝 are the model parameters to be estimated, and 𝜖 is the 

random error.  

Overall scores for DP and DCP were used in the regression model. Since there were not 

an equal number of items representing each cell of the framework, some cells more heavily 

influenced the overall scores for the perspective. For example, in each students’ DP score, DP3 

items account for nearly 80% of the score. These weighted perspective scores were used because 

not all elements were determined to be equally important to understanding of variability and 

overall understanding of statistics. As described in the section regarding results for research 

question 1, these weighted perspective scores were justified through their representation in the 

LOCUS assessments.   

Diagnostic plots for one of the imputed data sets are shown in Figure 4-4. The 

assumptions for fitting a multiple linear regression model visually appear to be satisfied in these 

plots. However, it may be worth noting the potential pattern in the residual plot, where residuals 

tend to be lower at the extremes of the dataset. Once the models were fit using each of the 5 

imputed datasets, the coefficients were pooled to achieve the final estimates (Enders, 2010; van 

Buuren & Groothuis-Oudshoorn, 2011). 

The estimates of the pooled model coefficients are shown below in Table 4-5. Controlling 

for all the demographic information and grade level, the coefficients for both DP and DCP were 

significantly greater than 0, with p-values < 0.001. For every 1 point increase in evidence of 

understanding of variability shown from the design perspective, students’ MC scores increased 

by about 1.94 points, on average. For every 1 point increase in evidence of understanding of 
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variability from the data-centric perspective, students’ MC scores increased by about 1.73 points, 

on average. With a maximum of 23 possible points, a mean of 11.96 and a standard deviation of 

4.46 points, these predicted changes in MC scores equate to an increase of 0.43 and 0.39 

standard deviations. The difference in predicted MC scores between a student that showed no 

understanding of variability from either perspective and a student that showed evidence of 

understanding on all item parts is nearly 15 points, on average. Confidence intervals for both 

perspectives showed that the average increase in MC score could be anywhere from just over 1 

point to over 2 points per 1 point increase in evidence of understanding of variability from each 

perspective.  

 

Figure 4-4.  Diagnostic plots for the multiple linear regression model fit to one of the imputed 

datasets. 
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Table 4-5.  Pooled estimates from multiple linear regression models on MC scores. 

    Pooled Estimates 

    B CI p 

DP   1.91 1.59 – 2.23 < 0.001 

DCP   1.73 1.21 – 2.25 < 0.001 

   

Observations   631 

R2 / adj. R2   .430 / .416 

Δ R2  0.300 F = 161.478 p < 0.001 

 

Given that the two perspectives have a statistically significant association with MC 

scores, fitting a model with overall understanding of variability as the aggregate of the two 

perspectives would yield no extra information. It is worth noting that the correlation between the 

two perspectives, overall, is 0.414. Thus, the two perspectives appear to provide different 

information to the estimated model. The coefficient of determination, 𝑅2, for this model was 

only 0.430. In other words, only 43% of the variability in MC scores was explained by the 

variation in the linear combination of the predictors in the models. The adjusted 𝑅2 value, which 

penalizes models for large number of explanatory variables, was 0.416.  

A model comparison test was conducted to analyze the impact that adding DP and DCP 

scores as predictors had on the model. With a p-value of approximately 0, there was significant 

evidence that the model with the two predictors was significantly different than the reduced 

model that excluded them. The value of R2 increased by 0.300 with the addition of the two 

predictors, providing further evidence that their addition to the model improves the predictive 

power of the model for MC scores.  
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The result that DP and DCP were significant predictors of overall understanding of 

statistics was not surprising. The literature is saturated with descriptions of the central role that 

variability plays in statistical thinking (e.g. Wild and Pfannkuch, 1999; Franklin et al., 2007). A 

possible limitation to this interpretation is that prior studies on the LOCUS assessment revealed 

high correlation between MC and CR items. However, the current study did not use the same 

scoring process as the LOCUS project for the CR items. Instances where students did not fully or 

correctly answer an item as intended by LOCUS but still received a point for showing evidence 

of understanding of variability were not uncommon. Future studies that utilize both LOCUS CR 

items and another outside measurement tool for overall understanding of statistics would help to 

empirically solidify the role of variability.  

Summary 

This chapter has presented the results from the analysis of the collected data on students 

understanding of variability. With this information, one should have the ability to interpret the 

results to sufficiently respond to the research questions guiding this investigation. In various 

instances throughout the results, statistical significance was presented. Due to the large sample 

size, small deviations from the null value can display significance when the variation in the data 

is relatively low. However, practical significance of the results is left open to interpretation.  

While the results of this study contributed to existing discussions about students’ 

understanding of variability, it also presented one of the first large-scale examinations of 

understanding at the general perspective level. Students showed significantly more 

understanding of variability from the design than the data-centric perspective. However, this 

difference was only six percentage points and may not necessarily be practically significant. On 

average, students showed moderate evidence of understanding from each of the two perspectives.  
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The individual cells of the framework yielded a finer resolution for where students were 

and were not showing evidence of understanding of variability. While DP1 and DCP1 resulted in 

nearly all students showing evidence of understanding, DP3 and DCP3 had more variability in 

their outcomes. The results for DP1 and DCP1 suggest that beginning conceptions of variational 

disposition may be well known among high school students that have taken a statistics course. 

These students may be more familiar with concepts of statistical and survey questions and have 

seen enough examples of data to understand that data vary.  

Item parts that addressed the variability and relationships among data and variables 

element of the framework seemed to yield less evidence of understanding of variability, with 

only 32% of responses providing evidence. The concepts in this element of variability were more 

challenging and required a deeper understanding of how to control sources of random variability. 

While some students seemed to recognize familiar situations that required random sampling, 

more complex ideas such as the purposes of random assignment were less frequently elaborated 

on. Students also showed less evidence of understanding when presented with a sampling 

distribution. Their focus was rarely on variation and the meaning of random chance. 

In the second part of the study, the results suggested that understanding of variability 

according to Peters’ (2011) framework was a significant predictor of overall understanding of 

variability for these students, controlling for all the demographic features that data was collected 

for. However, these interpretations must only be taken as possible evidence of this relationship 

because the two measurement tools were from the same assessment despite a unique scoring 

approach. Additionally, the regression model did not explain around 60% of the variation in the 

overall understanding of statistics, which means there may be other predictors that were not 

accounted for in this study or the LOCUS MC scores for these students were highly variable.  
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Chapter 5 of this dissertation will utilize the results presented here to draw more general 

conclusions about students’ understanding of variability, and will further address the practical 

significance of the findings. Implications of these results on teaching practice, curriculum 

development, and assessment will also be discussed.    
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CHAPTER 5 

DISCUSSION 

The primary purpose of this study was to develop a large-scale snapshot of U.S. high 

school students’ understanding of variability. To do that, it was necessary to define what it 

means to understand variability and look at prior studies on K-12 students’ understanding of 

variability. Prior research suggested that students did not tend to have a robust understanding of 

variability in a variety of different contexts (e.g., Ben-Zvi, 2004; Reading & Shaughnessy, 2000; 

Reading, 2004; Shaughnessy & Ciancetta, 2002; Torok & Watson, 2000). Multiple context 

specific frameworks have been utilized and developed in previous students. The Framework for 

Robust Understanding of Statistical Variation (Peters, 2011) was selected for use in this study 

because it described variation on an abstract level, void of context, and emphasized the different 

perspectives from which variability exists in statistical investigations. Once the background was 

set, this research was able to move forward. This chapter discusses the conclusions and 

implications that resulted from this research.  

Form 2 of the Intermediate/Advanced version of the NSF-funded (DRL-1118168) 

LOCUS assessments (Jacobbe et al., 2014) were sent to secondaryschools in high-performing 

districts in seven states across the United States. Students that had completed a course involving 

statistics took the LOCUS assessments during the school day. Their responses to the CR items 

were examined for evidence of understanding of variability from the design and data-centric 

perspectives outlined in the Framework for Robust Understanding of Variation. Prior to 

analyzing their data, each part of the CR items was coded according to the cell of the framework 

it addressed. Additionally, a scoring procedure was developed as part of this study that described 

what a response might contain to provide evidence of understanding from a cell of the 

framework. Item coding was done by both the author of this dissertation and by a faculty 
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member in statistics education. Item scoring was conducted by the author of this dissertation and 

a second scoring was completed on a subset of the data by a graduate student in statistics 

education. Through the LOCUS assessments, coding, and scoring procedures, data were 

collected to address the research questions posed in the first chapter of this dissertation.   

Discussion 

A description of how a sample of over 600 U.S. secondary students from high-

performing schools understood variability was determined in response to research question 1.  

On average, the students in the sample had a moderate understanding of variability from both the 

design and data-centric perspectives. A significantly higher proportion of responses to LOCUS 

CR item parts displayed evidence of understanding of variability from the design perspective, 

however, with a difference of only about six percentage points, the practical significance of this 

difference is low. A closer look at the content within each of the two perspectives shed light on 

the areas of variability that students tended to show the most, and least, evidence of 

understanding in.  

Within the design perspective, students showed the most evidence of understanding of 

variability from the variational disposition element. In the context of this study, students exceled 

at creating a survey question that anticipated variability in the responses. Creating statistical and 

survey questions are an important part of the formulating questions process component of the 

GAISE framework (Franklin et al., 2007). The results of this study showed that, given a context, 

students had the ability to create appropriate survey questions that anticipated variability in the 

responses. However, this study did not provide conclusions for students’ ability to pose statistical 

questions, an area that students of various ages tend to struggle with (Pfannkuch & Horring, 

2005; Allmond & Makar, 2010).  
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In the element of variability and relationships among data and variables from the design 

perspective, students also showed varying levels of understanding. The DP3 cell of the 

framework consisted of study design elements that are used to help control variability such as 

random sampling, stratified sampling, and random assignment of treatments in experimental 

studies. Students showed moderately strong understanding of random and stratified sampling. 

delMas et al. (2007) analyzed tertiary students’ understanding of random sampling as part of the 

NSF-funded Assessment Resource Tools for Improving Statistical Thinking (ARTIST) project. 

Their results showed that after a first course in statistics, about 65% of students could select a 

plausible random sample from a given population. Research on students’ understanding of 

random sampling tends to emphasize skills involved in conducting the random sample. The 

LOCUS items used in the current study emphasized the necessity of random sampling as part of 

the design of a study, and required students to consider the purpose and effects of the sampling 

process.  

Another result that was seen among the item parts representing the DP3 cell of the 

framework was that context appeared to play a role in how students chose to sample. Prior 

research yields conflicting evidence on the influence of context on student thinking. In some 

cases, different contexts did not seem to affect how students approached the problem (e.g. Torok 

& Watson, 2000). In other cases, effects of context on students’ understanding of variability 

were observed in both positive and negative ways. Ben-Zvi (2004) found that students’ 

familiarity with the context allowed them to fully engage in the problem and work to find 

solutions. Reading (2004), on the other hand, found that context was distracting students because 

they failed to connect the problem to statistical methods they had recently learned in class. The 

results of this dissertation provided statistically significant evidence that context played a role in 
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how students chose to take a sample from a population. A higher proportion of responses 

described a method for random sampling on the student council problem than on the department 

store problem, which included an identical item part. While the responses on the department 

store problem did not show preference for an alternative type of sampling procedure, many 

responses did not describe a sampling method.   

The parts of the variability and relationships among data and variables element in the 

design perspective that students failed to show evidence of understanding were in experimental 

design. The purpose of random assignment was only described in 4% of responses and the type 

of conclusion that could be drawn without an experimental design was only correctly identified 

in 14% of responses. In the item part that addressed random assignment, the wording of the 

question may not have persuaded students to explain, in depth, that random assignment is used to 

help eliminate the effects of variability from variables not controlled in a study. Therefore, the 

4% may be lower than the number of responses that would show evidence of understanding if the 

question prompted more explanation. Random assignment of treatments is a concept that 

students are not expected to fully understand until they are operating at Level C of the GAISE 

framework (Franklin et al., 2007). Therefore, we would expect high school students that have 

taken a course involving statistics to be familiar with the concept of random assignment, but 

would not yet have mastered the role that variability plays in the process.  

The lack of responses displaying evidence that students understood when cause and effect 

conclusions were appropriate could also be attributed to low levels of understanding of statistics 

in the sample. The interpretation of the results for this item were more direct than the item that 

addressed random assignment because responses that were scored as 0 also made inappropriate 

conclusions from the given data. The 14% of responses that showed evidence of understanding 
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of variability for cause and effect conclusions were ones that correctly identified that a cause and 

effect conclusion was inappropriate for the scenario. Distinguishing between conclusions from 

association studies and experiments is included in the description of the Interpreting Data 

component of Level C in the GAISE framework. Therefore, students that have only completed 

an introductory course on statistics would not necessarily be expected to have a comprehensive 

understanding of appropriate conclusions.  

LOCUS CR item parts that addressed variability from the design perspective yielded 

polarizing results. The data suggests that most high school students that have taken a course 

involving statistics recognize situations where random sampling is necessary, however, the 

methods used in this study did not allow for the depth of that understanding to be explored. 

Additionally, most students could produce a survey question that anticipated variability in its 

responses, a viable skill when conducting a statistical study. On the other hand, item parts that 

addressed more complex concepts of study design yielded responses with less evidence of 

understanding of variability. Students failed to provide in depth explanations of the purpose of 

randomly assigning treatments in an experimental study, although many seemed to recognize 

random assignment as an important idea. In the scenario where a formal experimental design was 

not used, most students’ responses still concluded that the association in the data could be used 

as evidence of a cause and effect relationship between the variables. Despite the high frequency 

of responses that displayed evidence of understanding from the variational disposition element of 

the design perspective, there is a clear lack of deep understanding among these students of the 

role variability plays in the design of studies.  

Within the data-centric perspective, students also showed the most understanding of 

variability from the variational disposition element. In the context of this study, students were 
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required to create a hypothetical data set with responses to their survey question. Their resulting 

data display needed to show variation in the responses to display their anticipation of variability 

based on the context of the data. Nearly all the responses in this study displayed evidence of 

understanding of the variability that would occur in the collected data. Prior research on 

students’ ability to anticipate variability in a sample taken from a population revealed that 

students had difficulty with this task when given a population distribution. Shaughnessy et al. 

(1999) and Reading and Shaughnessy (2000) both found that their small sample of students of 

various grade levels had difficulty estimating the amount of spread that would occur when taking 

a sample from the given population and were not able to describe spread in sophisticated terms. 

These studies did reveal that students tended to know that all the draws from the population 

would not be the same, a finding that is consistent with results from this dissertation. 

In the element of variability and relationships among data and variables from the data-

centric perspective, student responses provided weak evidence of understanding. This cell of the 

framework addressed the exploration of controlled and random variability to infer relationships 

among data and variables. Consistent with Reading and Shaughnessy (2000), students’ responses 

failed to adequately explain variability resulting in only 31% of responses displaying evidence of 

understanding. In the next item part, evidence of understanding of variability from this cell was 

identified by an adequate description of the meaning of a p-value. Only 7% of responses showed 

evidence of understanding that the outcome observed in the scenario was reasonably due to 

random variation. The concepts addressed by these CR item parts fall under Level C of the 

GAISE framework. High school students who have taken a course involving statistics are 

unlikely to have mastered the ideas and vocabulary necessary to fully explain the scenario 
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presented in the item. However, a strong understanding of variability combined with the 

scaffolding provided in the item should have enabled students to provide informed responses.  

The item parts that addressed the data-centric perspective also yielded polarizing results. 

Students exceled at anticipating variability that would occur during data collection from a 

survey, but struggled to show evidence of understanding when exploring variability within a 

dataset to draw conclusions about the data. The scenario for the item parts that students struggled 

with may have been unfamiliar to many students, since it involved a simulated sampling 

distribution. The context may have distracted students from using their comprehension and 

problem-solving experiences to adequately respond to the item. Unfortunately, there were no 

other item parts that covered the necessary cells from the data-centric perspective to make 

comparisons regarding the influence of context. Despite this limitation, there was a lack of 

evidence that suggested these high school students had a firm grasp on the concept of variability 

as it applies to a distribution of data. 

The exploration that was guided by research question 1 led to multiple conclusions. 

Students showed strong evidence of understanding from the element of variational disposition 

across both design and data-centric perspectives. When more direct understanding of variation 

was required, like when drawing conclusions from data, there was very little evidence of 

understanding presented. The items that aligned well with the variational disposition element 

tended to require less explanation to be scored as showing evidence of understanding. For 

example, stating that a random sample is an appropriate sampling method was enough to show 

understanding for DP1. The concept of a random sample is frequently repeated throughout a first 

course in statistics, but students may not have a complete understanding of the reasons for 
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collecting random samples. Therefore, it is unknown how deeply students in this study 

understood those concepts.  

Understanding of variability in this study was considered from only four of the twelve 

total cells in the Framework for Robust Understanding of Statistical Variation (Peters, 2011). Of 

the pieces of the framework from the design and data-centric perspective, it is worth discussing 

the importance of the four cells represented by LOCUS CR items. The content in the LOCUS 

assessments was developed and validated by multiple experts in the field of statistics education 

and the resulting CR items failed to address half of the framework from these two perspectives. 

Because of the rigorous development process that led to the LOCUS assessments, it is reasonable 

to assume that the four cells represented by the CR items tend to appear more commonly in the 

statistical problem-solving process. Alternatively, an analysis and coding of the MC items may 

reveal that more of the framework is represented throughout the LOCUS assessments beyond the 

limited number of CR items. Despite the lack of complete framework coverage by CR items, the 

results of this study still make a case that this sample of students does not have a strong 

understanding of variability. The cells that were most emphasized require knowledge of 

variability and how it relates to the context of and relationships between data and variables. 

Further, it cannot be stressed enough that the students that participated in this study were 

from high-performing districts according to standardized tests. These students displayed weak 

evidence of understanding of variability, especially from the element of variability and 

relationships among data and variables. These results raise concerning questions not only 

regarding the quality of statistics instruction that the students in this study have received, but also 

the quality, or existence, of the statistics instruction that students in schools from average or 

underperforming districts. Chances are, if the students with some of the best opportunities for 
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success are struggling to understand a fundamental concept in statistics, the rest of the secondary 

students in the United States are as well.   

In response to research question 2, a multiple linear regression model was fit to the data 

and revealed that understanding from the design and data-centric perspectives were each 

statistically significant predictors of overall understanding of statistics. This finding is consistent 

with statistics education literature that places variability at the center of the subject of statistics. 

The GAISE framework (Franklin et al., 2007) explicitly recognizes the role of variability within 

each component of the statistical problem-solving process. In the Wild & Pfannkuch (1999) 

model for statistical thinking, consideration of variability is noted as a fundamental type of 

thinking. Even for those who only seek to develop statistical literacy in their students, an 

understanding of the role of variability in statistical investigations is a crucial component 

(Moore, 1990; Cobb & Moore, 1997; Shaughnessy, 1997; Moore, 1998; Garfield & Gal, 1999; 

Gal, 2004).  

This study provides one of the first attempts to empirically examine the relationship 

between an understanding of variability and an overall understanding of statistics. While it is 

clear that the results of this study suggest a significant relationship between the two, further 

research is required to confirm the finding. Psychometric analysis of the LOCUS assessment has 

shown that all of the items (MC and CR) are highly correlated. However, since a different 

procedure was used to score the CR items in this study, the strong correlation between all of the 

items may not hold. Future studies that utilize another instrument for either understanding of 

variability or overall understanding of statistics would allow for more robust comparisons to be 

made.  
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Implications 

Students’ understanding of variability has been studied in various ways, using different 

frameworks, with students of all ages. This study was one of the first to gather a large-scale 

snapshot of students’ understanding of variability. Watson et al. (2003) used a sample of 746 

students in grades 3, 5, 7 and 9 in Tasmanian schools to devise a questionnaire to be used to 

measure students’ understanding of statistical variation. The current study was the first of this 

scale to be conducted with U.S. high school students that analyzed patterns and trends in 

understanding across students.  

The use of the LOCUS assessment’s CR items to look at an individual concept of 

statistics provided a new way of utilizing the exam in a research setting. The CR items analyzed 

as part of this study had a focus on features of study design and the role variability plays in the 

design of studies and experiments. Previous research tended to focus on elements of variability 

such as its meaning, anticipating it, and exploring it in data and sampling situations, but rarely 

considered how students understood the role of variability in the design of studies. In light of the 

unique features of this study, the implications for curriculum changes, teaching practice, and 

future research will be discussed in the following sections.  

Implications for Curricula 

The results of this study suggest that a review of the prominence of the concept of 

variability in current statistics curricula may be necessary. Students showed the ability to present 

commonly used phrases like "random sampling" and displayed beginning level data investigation 

skills like creating a survey question and anticipating variability in a hypothetical set of data. 

However, evidence of understanding of the role variability plays in the design of studies and 

experiments, and data exploration and inference was nearly non-existent. The literature presented 

in this study strongly emphasized the importance of variability as a fundamental concept to 
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statistics. Thus, statistics curricula should reflect that importance to change the way students 

approach statistical investigations.  

Randomization is an integral part of the study design process and is used in both 

sampling methods and experimental design, among other places. The random assignment of 

treatments in an experimental study is necessary to reduce variability in the observed data that 

results from variables not controlled in the study. Student responses in this study only showed 

evidence of understanding the purpose of random assignment of treatments 4% of the time, even 

though many responses acknowledged the idea of random assignment. This may suggest that 

most students do not fully understand the reasoning behind random assignment of treatments, 

which acts as a way of limiting the effects of random variation.  

A closer look at some commonly used curricular guidelines revealed a lack of emphasis 

on the concept of variability in experimental design. For example, the Common Core State 

Standards for Mathematics (NGACBP & CCSSO, 2010), which were adopted by or influenced 

standards in at least 42 states, only requires students to “use data from a randomized experiment 

to compare two treatments.” Nowhere in the standards are students expected to connect the idea 

of randomized experiment back to variation. The most recent Principles and Standards for 

School Mathematics document (NCTM, 2000) expects students to “know the characteristics of 

well-designed studies, including the role of randomization in each” (p. 324). This expectation 

emphasizes the role of randomization, but does not tie in the concept of variation. The clear lack 

of high school students’ ability to show evidence of understanding of a commonly covered topic 

like random assignment of treatments suggests that another look at the focus of statistics 

curricula may be necessary. 
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Another important topic in introductory statistics courses is the types of conclusions that 

can be drawn from studies. Responses in this study showed weak evidence of understanding of 

the types of conclusions that can be drawn from a study with no experimental design. Only 14% 

of responses stated that cause and effect conclusions could not be made from a correlation 

between two variables. This result again suggests that curricular materials may not focus enough 

on the underlying role of variability. For example, in the Principles and Standards for School 

Mathematics (NCTM, 2000) data and probability strand for students in grades 9-12, one standard 

states that all students should "understand the difference among various kinds of studies and 

which types of inferences can legitimately be drawn from each" (p. 324). The instructor can 

either explain various types of studies and have students memorize the types of inferences that 

can be drawn, or the instructor can have students explore the role of variability in each type of 

study, where and how it is or is not controlled for, and infer the types of conclusions that can be 

drawn. While standards cannot necessarily be criticized for the resulting teaching methods, they 

can offer more explicit emphasis on variability because of its importance to the subject of 

statistics.  

This study on high school students understanding of variability presented evidence that 

students were able to anticipate variability, but struggled with acknowledging, accounting of, and 

allowing for variability. Statistics curricular materials need to be re-evaluated to consider more 

explicit expectations for understanding variability and the roles that it plays throughout the 

statistical problem solving process. The GAISE framework (Franklin et al., 2007) considers the 

three areas of variability that students struggled with in this study to be central to the collecting, 

analyzing, and interpreting data components of the statistical problem-solving process, 

respectively. When developing or making changes to existing statistics curricula, writers should 
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keep variability in mind to stress the importance of its role in understanding of statistics. The 

continued used of the GAISE framework as an influential document when designing or 

improving courses could result in the proper emphasis on understanding of variability.  

This dissertation suggests that many high school students do not have a deep 

understanding of variability after taking courses involving statistics. One possible implication is 

that statistics courses are failing to provide students with the proper instruction to develop 

statistical literacy. To fully emphasize the role of variability within the statistical problem-

solving process, it may be worth exploring new types of courses that are centered around 

variation. These courses could provide students with a strong fundamental understanding of 

statistics at the introductory level in high school or as part of various college programs, such as 

biostatistics, psychology, or economics. Meletiou and Lee (2002b) developed an introductory 

course at the college level to test their conjecture that an emphasis on students' intuitions about 

variability would improve their comprehension of statistical concepts. Although their study 

focused on a small group of students, the findings suggested improved reasoning about statistical 

processes. Further investigations on the effects of statistics courses centered around variability 

are needed to push this agenda, however, there is a clear foundation of research showing a lack 

of understanding of variability among students.  

Implications for Teaching 

Despite some of the preceding criticisms of statistics curriculum documents, they do 

explicitly focus on ideas that are directly linked to the concept of variability. The implementation 

of curricular materials determines the amount of attention paid to variability in the classroom. 

The results of this research have implications for teaching practice that could lead to students 

having a more robust understanding of variability throughout the statistical problem-solving 

process.  
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The results of student understanding of variability from the design and data-centric 

perspectives suggest that changes to the way statistics is taught may be necessary. Less than half 

of all responses showed evidence of understanding of variability, which could imply a lack of 

focus on the concept during statistics instruction. Explicitly noting variation in the classroom 

when appropriate is a simple way to ensure that classroom discussion involves the concept. This 

suggestion is in line with prior research on student understanding of variability that has also 

called for changes in the way statistics is taught (e.g. Torok and Waton, 2000; Moore, 1990).  

The results from the school day problem suggest that students are not getting enough 

experience with certain types of data. For example, only 19% of students showed evidence of 

understanding when faced with exploring and explaining the variation in the simulated data set in 

the school day problem. Giving students more time and experiences exploring data distributions 

will allow them to develop their ability to describe what they see. Many responses failed to 

adequately explain the simulated results by addressing the chance variation seen in the 

distribution. Discussions of data should not only include measures of central tendency, but also 

incorporate spread, the shape of the data, and different types of variability (Reading & 

Shaughnessy, 2004).  

The hearing loss problem also revealed high school students’ lack of experience with 

data-based investigations. Only 14% of students noticed that important sources of variability 

were not controlled through the design of the study and causal conclusions could not be made 

from the given data. At the same time, many students correctly identified and described the 

correlation that appeared in the data. Allowing students to investigate more scenarios involving 

data may give them the experience needed to fully appreciate the entire problem-solving process, 

and make connections between study design and the types of conclusions that are appropriate. 
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Advances in technology provide students with the ability to carry out computations that were 

once burdensome, and allow students to explore real-world scenarios that illustrate variability 

(Reading & Shaughnessy, 2004; Torok & Watson, 2000). The use of software in the classroom 

would allow students taking applied statistics courses to more easily explore data in the setting of 

the class. Thus, there is ample opportunity for more realistic data investigations in the statistics 

classroom. 

Statistics courses have made great progress in their focus for developing conceptual 

understanding of statistics with the help of the GAISE framework, NCTM Principles and 

Standards, and the CCSSM. The lack of evidence of understanding in the element of variability 

and relationships among data and variables suggests that certain topics may require different 

approaches. Only 32% of responses showed evidence of understanding on items that addressed 

experimental design, appropriate inferences, and data exploration. By keeping variability as the 

foundational concept driving all statistical methods and techniques, students will have more 

exposure to the multitude of roles that variability plays. Research on teaching practices 

supporting the concept of variability in the classroom is necessary to determine optimal 

approaches.  

Through the implementation of suggestions like these, students may have a more 

complete understanding of variability from various perspectives. Thinking of study design and 

data exploration starting with a consideration of variability may solidify many of the concepts 

commonly taught in statistics courses. While extra emphasis on variability may intrude on time 

usually spent on other statistical ideas, the central role of variability to statistics supported 

through the findings of this study and described in the literature provide justification for action.  
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Implications for Future Research 

The Framework for Robust Understanding of Variation (Peters, 2011) is a powerful tool 

for examining understanding of variability. The current study only utilized the most basic 

features of the framework to describe the responses seen on LOCUS CR items, and can be used 

as a guide for further studies. Peters (2011) suggests that the framework be used as a tool for 

research on instruction, classroom discourse, curriculum, and assessing the effectiveness of 

textbooks and other materials. The framework allows for connections to be made both within and 

across the multiple perspectives from which variability can be approached.  

Analyzing high school students' understanding of variability with LOCUS CR items 

resulted in some challenges. Since the items on LOCUS were not written using the Framework 

for Robust Understanding of Variation (Peters, 2011), they did not always prompt students to 

specifically address variability. Students' responses could only be interpreted as containing 

evidence of understanding of variability or not containing evidence. Conclusions were limited in 

this regard, since it could not be determined if students did not have an understanding of 

variability. It may be useful to develop further assessment tools that explicitly prompt students to 

explore variability in the items' scenarios.  

The quantitative methods utilized in this study allowed for analysis of patterns and 

comparisons across a large number of high school students. While conducting the scoring 

procedure, it became clear that a qualitative study that focused on the content of individual 

responses on LOCUS CR items would provide researchers with quality information about how 

students understand variability and other concepts in statistics. For example, the comparison of 

the two identical item parts with different contexts in this study could be explored further by 

examining how students responded to each of the two items. Reading and Shaughnessy (2000) 

and Shaughnessy et al. (1999) recognized that students tended to avoid using words like "vary" 
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"deviate" and "variation" when describing spread. Analyzing how students responded to LOCUS 

CR items could help contribute to research on the type of language students use when discussing 

variability.  

Despite the limitations of this study, the use of LOCUS CR items to analyze students’ 

understanding of variability would be useful to formatively assess students taking introductory 

statistics courses. In fields where students are often required to take statistics courses, such as 

biostatistics or psychology, an initial understanding of their experiences with variability could be 

useful to the instructor. Not only would it provide details on their prior knowledge of statistics 

and variability, it would allow the instructor to adjust course materials to emphasize areas of 

weakness. Alternatively, using the methodology from this study as an end of course assessment 

to determine how students understand variability after instruction would provide useful feedback 

to the instructor.  

Conclusion 

Overall, this dissertation helped develop a starting point for how U.S. secondary students 

in high-performing districts understand the concept of variability and contributed empirical 

evidence that understanding of variability plays a significant role in overall understanding of 

statistics. Throughout this study, many questions were raised that will require future research to 

help the field fully understand how students understand variability. The results of this and future 

studies will assist in the development of plans of action to ensure students from all areas are 

walking away from statistics courses with a coherent way of thinking about data in the face of 

variation. Despite the limitations of this research, the findings suggest that even some of the best 

students' understanding of variability is not yet robust across the board, and that is an important 

area of research worth pursuing.  
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APPENDIX A 

INFORMED CONSENT LETTER 

Informed Consent 

 

Please read this consent document carefully before you decide to participate in this study. 

 

Purpose of the Research Study: 

The purpose of this study is to explore what students understand about statistics. This project is 

developing an assessment that will eventually be used to help improve the way statistics is taught 

in schools. 

 

What students will be asked to do in the study: 

Students will be asked to complete a written test related to statistics content and a survey related 

to how much exposure they have had to statistics. 

 

Time required: 

Each written test will take approximately 90 minutes (broken up into two 45 minute sessions) for 

students to complete. 

 

Risks and Benefits: 

There are no risks associated with participating in this project. 

Potential benefits include exposure to statistics concepts more related to everyday life. 

 

Compensation: 

Each student will receive a $5 gift card for returning a consent form signed by the student and 

her/his parent/guardian. Students who choose to participate in the study as well as those who 

choose not to participate in the study are eligible for the gift card. 

 

Confidentiality: 

Student identity will be kept confidential to the extent provided by law. Student information will 

be assigned a code number. Student names will not be used in any report. 

 

Voluntary Participation: 

Your participation in this study is completely voluntary. There is no penalty for not participating. 

 

Right to withdraw from the study: 

You have the right to withdraw from the study at anytime without consequence. 

 

Whom to contact if you have questions about the study: 

Tim Jacobbe, Assistant Professor, School of Teaching and Learning, University of Florida 

PO Box 117048, 2403 Norman Hall, Gainesville, FL 32611; ph: 352-273-4232; e-mail: 

jacobbe@coe.ufl.edu 

 

mailto:jacobbe@coe.ufl.edu
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Whom to contact about your rights as a research participant in the study: 

UF IRB Office, PO Box 112250, University of Florida, Gainesville, FL 32611-2250; ph: 352-

392-0433 

 

Signatures: (Please place an X on the appropriate lines.) 

 

____ I have read the procedure described above. I voluntarily give my consent for my child, 

________________________________, to participate in the study. I have received a copy of this 

description. 

 

____ I have read the procedure described above. I do not give my consent for my child, 

________________________________, to participate in the study. I have received a copy of this 

description. 

 

 

Parent/Guardian: __________________________________ Date: _________________ 
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APPENDIX B 

SCORING PROCEDURE FOR CR ITEMS 

Item 1: Department Store - 

Part (a) - Score a 1 for DP3 if response addresses controlling for variability in the study design 

using random selection. Score a 0.5 if the response addresses an appropriate stratification 

technique, but does not address randomness. Otherwise, score a 0. 

 

Notes: random selection is used to select the sample, and/or a method is described for how this 

could be done by numbering the credit card holders from 1 to 5300. Student only needs to 

specify random selection. If the student specifies random selection, but then describes a process 

in detail that would NOT result in a random selection, no points given for random selection.  

 

Part (b) - Score a 1 for DP3 if response explains why random assignment to treatments is 

important in the design of a statistical experiment. Otherwise, score a 0. 

 

Notes: indicates that flipping a coin to determine which advertisement is read results in random 

assignment to treatments and therefore the study is able to conclude cause and effect. Response 

must conclude something about the purpose of random assignment. If the response alludes to the 

idea of confounding variables or cause and effect conclusions, a 1 can be given.  

 

Item 2: Student Council 

Part (a) - Score 1 for DP1 if the response contains a survey question that anticipates variability in 

the responses. Otherwise, score 0.  

 

Notes: Response is a question that asks a student which of the listed activities they prefer. The 

survey question must be relevant to the context. 

 

Part (b) - Score 1 for DP3 if the response describes a reasonable way to select a random sample 

of students. Score a 0.5 if the response addresses an appropriate stratification technique, but does 

not address randomness. Otherwise, score 0. 

 

e.g., recognizes the need for random sampling and clearly describes a process that would result 

in a random sample from an appropriate population, or the response may stratify the population 

(divide into subgroups) based on sex or grade level and then select a random sample from each 

of these groups 

 

Part (c) - Score 1 for DCP1 if the response shows anticipation of reasonable variability in the 

data by considering the context. 

 

e.g., response creates a table or graph where hypothetical responses are in more than one 

category. The graph or table does not necessarily have to be completely accurate as long as it's 

clear that the response anticipates variability in the data. 
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Part (d) - Rare scenarios may consider variability but problem does not inherently address the 

concept. Therefore, do not score.  

 

Notes: There were no responses that showed evidence of understanding of variability on this 

part.  

 

Item 3: Boss Preference 

Do not score. This item does not require students to understand variation from the design or data-

centric perspectives.  

 

Item 4: Hearing Loss 

Part (a) - Does not require understanding of variation. Do not score. 

Part (b) - Requires understanding of variation from the modeling perspective. Do not score. 

Part (c) - Score 1 for DP3 if the response that indicates that it is not reasonable to conclude that 

listening to music at high volume is the cause of hearing loss and provides an explanation that is 

linked to the study design (lack of experimental design). Otherwise, score 0. 

 

Notes: Response states that this was not an experimental study/this was an observational study, 

or mentions the possibility of confounding variables (i.e., variation was not well controlled). 

Stating that it was not reasonable to conclude cause and effect due to a small sample size did not 

receive a 1. If student alludes to interference from outside variables that were not controlled for, 

score a 1. A very small number of responses showed evidence of understanding from other cells 

of the framework. These responses were recorded, but since there were no other similar 

responses, they were still scored a 0 for DP3 and were not within the focus of this study.  

 

Item 5: Extended School Day 

Part (a) - Does not consider variation from the design or data-centric perspectives. Do not score.  

 

Part (b) - Score 1 for DCP3 if the response acknowledges that the sample means in the dotplot 

vary. 

 

Notes: Response indicates counting the number of responses as or more extreme than 24% or 

explicitly discusses variability in the shown sampling distribution. Any response that 

acknowledged appropriate variability, for example by counting points or shading, around the 

24% mark on the plot received credit.   

 

Part (c) - Score 1 for DCP3 if the response acknowledges sampling variability in their 

justification of their answer. Otherwise, score 0. 
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e.g., Response indicates that the difference between the observed sample percentage of 24% and 

the hypothesized percentage of 30% is not statistically significant or that it could be explained by 

sampling variability/random chance alone.  
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