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ABSTRACT 
 

A fundamental aspect of statistical inference is representation of real-world data 
using statistical models. This article analyzes students’ articulations of statistical 
models and modeling during their first steps in making informal statistical inferences. 
An integrated modeling approach (IMA) was designed and implemented to help 
students understand the relationship between sample and population, as well as 
reasoning with models and modeling. We explore the articulations of a pair of primary 
school students, who had previously participated in the Connections Project 
exploratory data analysis (EDA) activities, and suggest an emergent conceptual 
framework for reasoning with statistical models and modeling. We shed light on ideas 
of statistical models and modeling that can emerge among primary students and how 
they articulate those ideas. Implications for teaching and research are discussed. 
 
Keywords: Informal statistical inference, Sample and population, Statistical model, 

Statistical modeling, Statistical reasoning, Statistics education research 
 

1. INTRODUCTION 
 
The understanding that an inference can be made about a population from a sample is 

a fundamental aspect of statistical inference. However, studies indicate that students can 
hold contradictory views about the relationships between samples and their populations 
(Pfannkuch, 2008). For example, when focusing on sampling representativeness students 
may believe that a sample completely represents the population. On the other hand, while 
focusing on sampling variability, students may believe that a sample does not represent the 
population at all. One way to facilitate students’ understanding of the relationship between 
samples and population is by modeling real-world situations with computerized tools and 
generating many random samples from these models (Garfield, delMas, & Zieffler, 2012). 

Two types of settings have frequently been used in statistics education research to 
examine young students’ reasoning with modeling: 1) scientific inquiry-based learning 
environments in which students are engaged in real-world data investigations (e.g., Lehrer 
& Romberg, 1996); and 2) probability inquiry-based learning environments in which 
students are engaged in manipulating chance devices such as spinners (e.g., Pratt, 2000). 
Modeling in the first setting refers to the construction and use of data to explain real-world 
phenomena. Modeling in the second setting refers to the construction of a distribution 
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model in a computer-based simulation to create reasonable approximations of phenomena. 
We suggest that there is a need to integrate these approaches to support students’ 
understanding of the relationship between samples and population, and their reasoning with 
statistical models and modeling in the context of informal statistical inference (ISI). 

In the next section we review the relevant theoretical background of modeling in formal 
and informal statistical inference. In section three, to explain the research method, we 
initially describe the research question and the participants. Next, we present our 
pedagogical approach that guided the design and analysis of the experimental tasks. 
Finally, we describe our data analysis method. In section four, to put the results of the study 
in context, we present the entire learning trajectory of the study and briefly describe what 
happened before the focused episodes of this article. Section five provides the main results 
of this study according to a conceptual framework that emerged as a result of the data 
analysis. In section six we discuss our insights regarding the chronological order of our 
conceptual framework dimensions throughout the learning trajectory. Theoretical 
implications and limitations are also discussed. 

 
2. THEORETICAL BACKGROUND 

 
Informal Statistical Inference (ISI) and Informal Inferential Reasoning (IIR) have 

recently become a focus of research (Makar, Bakker, & Ben-Zvi, 2011; Pratt & Ainley, 
2008). The goal is to give students, even at a relatively young age, a sense of the power of 
drawing reliable statistical inferences from samples, particularly due to the fact that 
statistical inference is challenging for most students (Garfield & Ben-Zvi, 2008). ISI is a 
data-based generalization that includes consideration of uncertainty and does not involve 
formal procedures (Makar & Rubin, 2009). IIR consists of the reasoning processes that 
lead to the formulation of ISIs, which includes “the cognitive activities involved in 
informally drawing conclusions or making predictions about ‘some wider universe’ from 
patterns, representations, statistical measures and statistical models of random samples, 
while attending to the strengths and limitations of the sampling and the drawn inferences” 
(Ben-Zvi, Gil, & Apel, 2007, p. 2). 

Understanding the logic behind ISIs includes ‘juggling’ several ideas, such as random 
sampling, sampling variability, and the relationship between samples and populations. 
However, students can hold two contradictory ideas about these relationships: 1) sampling 
representativeness: the expectation that a sample taken from a population will have 
characteristics similar to that population; and 2) sampling variability: the expectation that 
different samples taken from a population vary from each other and do not match the 
population (Rubin, Bruce, & Tenney, 1990). Although students can possess portions of 
these contradictory ideas, they may not understand the integration between them. Rubin et 
al. (1990) showed that senior high school students do not integrate these two ideas during 
their reasoning with distributions of sample outcomes, but instead focus on one idea at a 
time depending on the given task. To integrate these contradicting ideas, students need to 
envision a process of repeated sampling and understand “that the values of a statistic are 
distributed somehow with a range of possibilities” (Thompson, Liu, & Saldanha, 2007, p. 
209). One way to achieve this goal is by modeling real-world situations and simulating 
models by drawing many random samples (Garfield et al., 2012). 

Mathematics education and science education advocate modeling approaches because 
model-based reasoning can serve as a bridge that facilitates the shift from personal, 
intuitive knowledge to a more mathematical and scientific understanding of the world 
(Lehrer, Horvath, & Schauble, 1994). When students are engaged in constructing their own 
models they can develop conceptual understanding through a repetitive process by which 
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they continuously construct data from phenomena and reason about these data. Indeed, the 
generation, testing, and revision of models are at the very heart of what it means to think 
statistically (Lehrer & Romberg, 1996). 

One common approach to statistical modeling activities, the Exploratory Data Analysis 
(EDA) approach, involves students in scientific inquiries in such a way that they create 
surveys to study a question of interest (Ben-Zvi, 2006; Makar et al., 2011; Makar & Rubin, 
2009; Pfannkuch, 2006; Tukey, 1977). Using survey construction, students resolve 
modeling issues such as the translation of real questions into survey questions and 
statistical research (Lehrer & Romberg, 1996), as well as representations of data used to 
persuade others. Another approach, the probability-based approach to modeling activities, 
emphasizes how probability is used by statisticians in problem solving. For example, in a 
study done by Konold, Harradine, and Kazak (2007), students built models using 
computer-based simulations to create reasonable approximations of phenomena, taking 
into account signal and noise. The first approach (the EDA approach) lacks probabilistic 
considerations that are important for understanding the relationship between samples and 
populations. The second approach (the probability approach) lacks aspects of an authentic 
data exploration such as posing a research question. Our suggested integrated modeling 
approach (IMA, described below) integrates these two approaches with modeling-based 
instruction. 

 
3. METHOD 

 
This research is part of Connections (2005-2015), a longitudinal design and research 

project created in order to develop an inquiry-based and technology-enhanced environment 
for learning statistics in grades 4–6, and to study students’ emergent statistical reasoning. 
We focus here on the question, how can students’ articulations of models and modeling 
emerge while making ISIs? 

To address this question, design-based research was implemented (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003). Two iterations of interventions were conducted in a 
primary school in northern Israel according to a pedagogical integrated modeling approach 
(IMA) learning trajectory that we designed to help students understand the relationship 
between samples and their population. During a five-week intervention, two pairs of 
seventh grade students, who had previously participated in the EDA activities of the 
Connections Project, experienced the IMA learning trajectory. Using the innovative 
software TinkerPlots2 (Konold & Miller, 2011), the activities emphasized reasoning with 
samples, and sampling in making ISIs. Based on insights from this first intervention, 
several significant modifications and improvements were made in the design of the IMA 
learning trajectory. A second six-week intervention was conducted the following year with 
three pairs of sixth grade students from the same school who had participated in the EDA 
activities of the Connections Project in fifth grade. 

In this article, we describe the work of one pair of students in the second iteration. They 
were chosen because our data analysis showed that they held conflicting notions regarding 
the issue of representativeness of random samples. While one argued that a random sample 
was likely to resemble the population, the other one argued that during random sampling 
any result was feasible and that it was impossible to predict the occurrence of a random 
sample result. These conflicting arguments are important elements in reasoning with 
sampling and modeling in the IMA learning trajectory, and assist us in categorizing 
articulations of models and modeling. In this article we study how the students built 
hypothetical probabilistic models of their explored population and compared these models 
with generated data from the Sampler in TinkerPlots2. The Sampler is a probabilistic 
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simulator that can be used to model probabilistic processes and generate data. Learners can 
build a data distribution of a population and draw random samples from this population in 
an animated and visual way. The students also compared real collected data and generated 
data from these models. We used an interpretive micro-analysis (Meira, 1998), a 
microgenetic method (Chinn & Sherin, 2014), to analyze students’ articulations of 
statistical models and modeling. 

 
3.1.  PARTICIPANTS 

 
This study involved one pair of students (Grade 6, age 12), Ohad and Ido, from a 

primary school in northern Israel. It is a school that focuses on science and the environment 
and utilizes curricula that present a holistic image of the natural world to the students. Ohad 
and Ido were selected due to their advanced communication and analytical skills that 
provided a window to their statistical reasoning. They had participated in Connections 
activities in fifth grade where they collected and investigated data about their peers, using 
TinkerPlots1 (Konold & Miller, 2005), and were gradually introduced to samples of 
increasing size to support their reasoning with ISI, as well as sampling following the 
growing samples heuristic (Ben-Zvi, Aridor, Makar, & Bakker, 2012). According to the 
growing samples heuristic, students explore small data sets to infer about a wider set of 
data. They are gradually given more data and asked what can be inferred regarding the 
bigger sample or the entire population. Therefore, by the teacher’s “what-if” questions, 
students learn about the limitations of inference (Bakker, 2004, 2007; Ben-Zvi, 2006; 
Konold & Pollatsek, 2002). 

  
3.2.  THE SETTING 

 
The IMA was developed to guide the design and analysis of the experimental tasks, 

help us deepen students’ reasoning with sampling and modeling when making ISIs, and 
guide the evaluation of this reasoning. 

The IMA rationale The Connections project was based for many years on the EDA 
pedagogic approach toward ISI. Students were drawing ISIs from real samples following 
the statistical inquiry cycle (the left cycle in Figure 1). To foster students’ appreciation of 
the power of inferences, we added a model-based perspective (the right cycle in Figure 1) 
to the EDA approach. During this inquiry cycle students build a model (a probability 
distribution) for an explored (hypothetical) population, and produce data of random 
generated samples from their model. Analyzing generated random samples and comparing 
them with the model, students can learn about the relationships between samples and 
populations. The aim of the right cycle is to enable students to explore key statistical ideas, 
such as sample–population relationships and sampling variability. 

The IMA aims to assist students in making connections between those two cycles. The 
students move from the left cycle to the right cycle to learn about the behavior of random 
samples. This move is initially facilitated by a guided activity in which the conclusion 
becomes a hypothesis. Subsequently, the students use the insights from the right cycle 
about sample–population relationships to improve their conclusions in the left cycle which 
is performed by increasing sample size or explaining their confidence level in the 
conclusions. 
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Figure 1. The rationale of the integrated modeling approach (IMA) 
 
The IMA in detail The IMA is comprised of data and model worlds to help students 

learn about the relationship between sample and population, as well as model and 
modeling. In the data world (red and dotted line in Figure 2), students collect a real sample 
using a random sampling process to study a particular phenomenon in the population. In 
this world, students choose a research theme, pose questions, select attributes, collect, clean 
and analyze data, make informal inferences about a population, and express their level of 
confidence in the data. In doing so, students begin to create statistical models from real-
world phenomena by shifting from informal questions to statistical ones. However, they 
may not account for probabilistic considerations, such as the chance variability that stems 
from the random sampling process. 

In the model world (blue dashed line in Figure 2), the students build a model 
(probability distribution) for an explored (hypothetical) population and generate random 
samples of data from this model. They pay attention to the model and the random process 
that generates the sample outcomes from this model. Due to randomness, the details vary 
from sample to sample, but the variability is controlled. Given a certain distribution of the 
population, the likelihood of specific results can be estimated. 

In the IMA, students iteratively create connections between the two worlds (purple 
continuous line in Figure 2) by working on the same problem context in both worlds and 
with the researchers’ guiding questions as support. These guiding questions include 
questions about the minimal sample size needed to draw conclusions about the population 
with high confidence level, or “what if” questions on optional real data results while 
exploring model-generated random samples. Being engaged in an authentic inquiry, 
students keep building, revising, and explaining models of phenomena before and after 
collecting real data, and simulating their models to verify the data collected in relation to 
the model and to real sample data. 

 



121 

 

 
Figure 2. The integrated modeling approach (IMA) learning process 

 
3.3. DATA ANALYSIS 

 
We performed a retrospective analysis after each session (to re-direct the next session) 

and following completion of the entire teaching experiment. Empirical data collection 
included students’ responses and gestures (captured using Camtasia), researchers’ 
observations, and students’ artifacts (e.g., their data representations). All student 
verbalizations were carefully transcribed. They were all translated to English because they 
were originally said or written in Hebrew. As part of the micro-analytic method, we closely 
examined the meaning of every word to make sure the translation was as close as possible 
to the original contributor’s intention. Interpretive micro-analysis (e.g., Meira, 1998), a 
microgenetic method (Chinn & Sherin, 2014), was used to analyze the data. It is a 
systematic, qualitative, and detailed analysis of the transcripts that takes into account 
verbal, gestural, and symbolic actions within the situation in which they occurred. 

The goal of the data analysis was to interpret student articulations of statistical models 
and modeling and to illuminate the students’ processes of learning while they built 
TinkerPlots2 models and drew from them random samples based on their conjectures. The 
data analysis was performed in three stages. During the first stage, the primary researcher 
(first co-author) transcribed all the Camtasia movies while searching for segments that 
were relevant to the research question. In this stage the exploration allowed the data to tell 
the story. At the end of this stage the researcher had a collection of segments for in-depth 
analysis. In the second stage, the primary researcher meticulously transcribed the relevant 
segments and analyzed them according to the principles of the microgenetic method. In 
order to interpret students’ articulations and emergent ideas, the researcher looked at the 
“history” of the emergent ideas, i.e., their previous appearance, origin (student or 
researcher) and context. The researcher formulated temporary localized assumptions about 
students’ emergent reasoning and validated them by exploring what happened before and 
after. Repeated students’ performances and similar verbalizations strengthened these 
assumptions and contradictions weakened them. 

In the third stage, triangulation was performed by a small group of expert statistics 
education researchers (including the second author) and novice peers. The primary 
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researcher presented the chosen segments to this group without her opinion or 
interpretation to enable unbiased interpretations by these experts. These researchers 
discussed, presented, advanced, and/or rejected hypotheses, interpretations, and inferences 
about the students’ reasoning and articulations. During these triangulation meetings, 
hypotheses that were posed by the researchers were advanced or rejected, until a consensus 
was reached. The group of researchers looked for agreed interpretations, but also focused 
on disagreements and examined contradicting interpretations, Triangulation was attained 
only after multiple sources of data validated a specific result (Schoenfeld, 2007), achieving 
“trustworthiness” (Lincoln & Guba, 1985). 

 
4. PUTTING RESULTS IN CONTEXT 

 
4.1.  THE LEARNING TRAJECTORY 

 
The first co-author observed and guided the students during eight activities that lasted 

about 15 hours (Table 1). In the data world, the students planned a statistical investigation, 
which consisted of choosing a research theme and population, posing research and survey 
questions, formulating a conjecture, and deciding upon the sampling method and sample 
size (Activity 1). Due to the fact that some of the students’ sampling methods in Activity 
1 were biased, we added an activity to explore the meaning of biased sampling versus 
random sampling (Activity 2). This activity also served as the first interaction with the 
model world and the idea of sampling distribution. As a result of Activity 2, students 
refined their sampling methods, reformulated their conjectures, and implemented a sample 
survey in their school (Activity 3). Using TinkerPlots2, the students explored their real 
sample data to make conclusions about the population in response to their research question 
(Activity 4). In their second encounter with the model world, they used the Sampler to 
build a hypothetical model for the population distribution. Based on their conjecture, they 
drew random samples from this model, compared them to the model and their real sample 
data, and explored sampling distributions (Activity 5, which is the focus of the current 
study). To encourage them to examine the connections between the worlds, they were 
asked “what if” questions on real data results while exploring generated random samples. 

Because students found it difficult to connect between generated random samples and 
the real sample, they were given a sixth activity in which they were asked to use the 
TinkerPlots2 Sampler to draw many random samples from a hidden sampler in order to 
make ISIs. (Activity 6, see Manor Braham, Ben-Zvi, & Aridor, 2014). A hidden sampler, 
one of the TinkerPlots2 options, hides some attributes’ distributions of a model. The hidden 
sampler can hide a representation of the distribution of a particular attribute of a model. 
Thus, the hidden model can stand in for a hidden population. Including a hidden population 
in this activity causes the sample-population relationship to resemble the relationship in 
real-life situations in which the population is unknown. Then the students returned to their 
own investigation, explored different sample sizes from their TinkerPlots2 model to 
compare between them and decide about the minimal sample size needed to draw 
conclusions about the population. According to the results of their chosen sample size, the 
students collected more real data (Activity 7). Finally, they simultaneously explored data 
and models in the two worlds by examining the real larger-sample data in relation to their 
conclusions in the model world. For example, in their conclusions about the population 
from the real larger-sample data, they used likelihood estimation with the given sample 
size and under the hypothesis of a certain population distribution (Activity 8). 
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Table 1. The actual IMA learning trajectory 
 

Act. 
No. 

Activity Title  Session’s Themes Statistical Ideas and Concepts Length 
(min) 

1 Learning about 
teenagers (part 
1) 

Session 1.1: Choose a research 
theme and a research 
population, pose research and 
survey questions, choose 
sampling method and sample 
size 

Considerations in formulating 
a research question, choosing 
sampling method, random 
sampling, and sample size 
(absolute size vs. population 
percentage) 

45 

Session 1.2: Formulate a 
hypothesis and express 
confidence level in the results 

Research hypothesis (verbal 
and visual expressions of flow 
chart) and confidence level 

45 

2 Random 
sampling (The 
Strings 
Activity) 

Estimate the proportion of 
short strings in a bag that 
contains long and short strings 
by drawing strings from the 
bag with closed eyes. 
Explore the proportion of blue 
beads in samples of beads 
drawn from a bag that contains 
an equal number of blue and 
red beads 

Random sampling vs. biased 
sampling, sampling with or 
without replacement, sample 
size, confidence level, and 
visual expression of sampling 
distribution 

60 

3 Learning about 
teenagers (part 
2) 

Refine sampling method, 
reformulate conjectures, and 
implement a survey in the 
school 

Sampling methods (random 
vs. biased, sample size and 
stratified sampling), research 
hypothesis (verbal and visual 
expressions of flow chart), 
and confidence level 

25 

4 Learning about 
teenagers’ art 
shows 
preferences 
(part 1) 

Explore real sample data, draw 
conclusions about the 
population, and estimate level 
of confidence in the 
conclusions 

Distribution, variability, 
context and data, sample size, 
and level of confidence in 
conclusions about the 
population 

65 

5 
 

Modeling art 
shows 
preferences 
among 
teenagers (part 
1) 

Session 5.1: Build a TP2 
model of relationships 
between several attributes in 
the population 

Presentation of frequencies 
with numbers or with 
percentages 
A model as a reduced finite 
population 
Dependency between 
attributes  

80 

Session 5.2: Draw and explore 
samples of different sizes from 
the model 

Comparison of samples (from 
the model to the model) 
Comparison of samples from 
the model to real sample 
Sampling variability 

120 

Session 5.3: Compare samples 
from the model and explore 
sampling distribution 

Sampling distribution, 
probability of sample results, 
and degree of inaccuracy 

105 

6 Teenagers in 
social networks 

Draw ISI by exploring samples 
of a hidden model 

Relation between sample size 
and sampling variability, 
control and quantify sampling 
variability 

120 

7 Modeling art 
shows 

Explore samples of different 
sizes from the model and 

Relationship between sample 
size and sampling variability. 

125 
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preferences 
among 
teenagers (part 
2) 

decide about the minimal 
sample size needed to draw 
conclusions 

The sampling distribution 
range and variability, sample 
size, and frequency of sample 
results 

8 Learning about 
art shows 
preferences 
among 
teenagers (part 
2) 

Explore real sample data in 
relation to a sampling 
distribution and draw ISI 

As the population is larger, a 
certain percentage of the 
population will be more 
similar to the population 
Informal hypothesis testing 

90 

Total time (minutes): 880 
 

4.2. WHAT HAPPENED BEFORE THE FOCUSED EPISODES? 
 
In the following episodes, which took place predominantly during Activity 5, we 

focused on students’ initial experiences with models to trace: 1) what types of models they 
built before and after working with the TinkerPlots2 Sampler; 2) how they explained the 
models of the population; 3) what changed in their modeling articulations as they began to 
generate random samples from their TinkerPlots2 models; and 4) what changed in their 
modeling articulations as they began to compare between generated and real random 
samples, or between generated random samples and their model. 

To illustrate our case, this article focuses on one pair of students’ articulations of 
statistical models and modeling during Activity 5. We also use examples from Activities 3 
and 4 to illustrate the shift in the students’ reasoning with statistical models and modeling. 
To put these episodes in context, in the next few sections we briefly describe what occurred 
prior to these activities. 

 
Activity 1. Learning about Teenagers: From a sample to population In the first 

activity, we asked the students to plan a research study on a subject that is relevant to 
teenagers and interested them. Ohad and Ido decided to study art show preferences (music 
concerts, theatre, etc.) among fourth- to ninth-grade students in their school. Their goal was 
to be able to offer a better and more interesting choice of shows that were brought to their 
school. They formulated 11 survey questions to study what attributes may be related to the 
favorite shows. In planning their sampling method, the students were asked not to interrupt 
the school schedule and take out only a few students for their survey. Therefore, they were 
forced to decide on a minimal sample size, and were asked to explain how they chose 
sample students in order to draw reliable inferences about their school. Ido and Ohad 
suggested randomly drawing ten students from each class in fourth, sixth, seventh, and 
ninth grades. They did not choose fifth and eighth grades because they argued that they 
were well-represented by the other grades. 

 
Activity 2. The Strings Activity: Random sampling The researchers added the Strings 

Activity to impart the meaning of biased versus random sampling. The students were asked 
to estimate the proportion of short strings in a bag of long and short strings by drawing 
with closed eyes a few strings with replacement. Students underestimated the proportion 
due to the biased sampling method (long strings are more likely to be selected). After they 
were told the real proportion of long strings in the bag (50%), they discussed the biased 
sampling method and how to avoid it. They experienced and discussed an unbiased 
sampling method using equal-sized red and blue beads instead of strings. 

During the Strings Activity, Ido claimed that random sampling is the best sampling 
method, but in response to the researcher’s question, he estimated his confidence level that 
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a random sample represented the population as 50%. In the case of red and blue beads, Ido 
said that the proportion of red beads could be anything because every result had the same 
chance. In contrast, Ohad argued that there was a greater chance to get a result that was 
equal to the real proportion of red beads in the bag. Finally, Ido and Ohad decided to collect 
data randomly from 12 cases in each grade. They also prepared and implemented an online 
questionnaire that included their show preferences survey questions. 

 
5. MAIN RESULTS 

 
In this section, we provide an analysis of Ido and Ohad’s reasoning with statistical 

models and modeling. We present the scenes not in chronological order, but according to 
the dimensions of a framework that emerged as a result of the data analysis (Figure 3). 

 

 
 

Figure 3. A framework of reasoning with models and modeling 
 
We found three dimensions in the students reasoning with statistical models and 

modeling (Figure 3): 
1. Reasoning with phenomenon simplification. This dimension includes different 

types of representations that the students used to simplify a phenomenon. In the 
data world, the students described their hypothesis regarding the phenomenon 
verbally and visually before and after the data collection. In the model world, using 
theTinkerPlots2 Sampler, the students built and ran a model that included three 
attributes, according to their hypothesis. The students also refined the model as a 
result of their simulations. 

2. Reasoning with sample representativeness. This dimension includes various issues 
that the students explored regarding sample representativeness. In the data world, 
students explained how they compared the real sample data to their image of the 
population in order to decide how confident they were in the real sample data. In 
the model world, students compared generated random samples from the model to 
the model itself. This motivated them to study how to decide whether, and to what 
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extent, the samples and the model were similar and how confident they could be in 
the sample representativeness. 

3. Reasoning with sampling distributions. This dimension includes different students’ 
views of sampling distributions. In the model world, trying to describe a sampling 
distribution, the students discussed probable sample results that may stem from 
different types of population distributions. 

 
5.1.  REASONING WITH PHENOMENON SIMPLIFICATION 

 
Ido and Ohad were asked to draw a representation that described their hypothesis 

regarding the phenomenon of art show preferences among teenagers in the population 
before and after they collected the data. We identified four elements of phenomenon 
simplification in the students’ reasoning: a reality mirror, a “most of” model, a probabilistic 
prediction of a phenomenon, and a dynamic model (Figure 3). 

 
A reality mirror is an exact description of the phenomenon with a detailed depiction of 

the attributes and their relationships. It reflects a deterministic view of the phenomenon 
with no uncertainty, and was typical in the students’ preliminary investigation stages. For 
example, when students were asked to make conclusions about the population, they argued 
that the population would be identical to the sample data. The “reality mirror” view 
diminished quickly at the beginning of Activity 5 when they compared random simulated 
samples to the model from which the samples were drawn and became aware of sampling 
variability. 

 
A “most of” model view describes the phenomenon by providing details on most of 

the population elements. A “most of” model includes a description of the signals in the 
phenomenon with a small reference to the noise. Ido and Ohad presented a “most of” model 
view during Activity 3 when they were asked to describe their conjecture about the 
population verbally and visually before they collected real data. 

Because the students were accustomed to drawing flowcharts in science and computer 
lessons in their school, the researcher asked them to draw a flowchart of their conjecture 
prior to using the Sampler. The flowchart they drew (Figure 4) expressed their first 
conjecture. It contained four attributes: gender, grade, favorite show type, and preferred 
manner of watching a show (on a screen or attending the show). Even though they did not 
explicitly mention the attribute names, they drew the values of each attribute in a different 
row and drew arrows to show the relationship between the attribute values. The last three 
arrows at the bottom of the chart that point to “go to a show” represent the fourth attribute 
and the conjecture that all the students will prefer to go to a show (Figure 4). 

Describing their conjecture, Ido said: “Girls in grades four to six will prefer to go to a 
singing concert.” When they were asked whether they assumed that all girls prefer singing, 
Ido explained that, “if you are a girl in grades four to six, there is a greater chance that you 
prefer a singing concert.” Although the first quote shows that they meant “the most” rather 
than all the students, the second quote actually depicts that their model was not 
deterministic describing most of the elements in the phenomenon with small variability. 
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Figure 4. Ido and Ohad’s conjecture regarding the relations between favorite show types, 
gender and grade (translated to English on the right) 

 
A probabilistic prediction of a phenomenon In Activity 4, the students collected and 

explored real sample data (N=48), which they used to create a graph (Figure 5) and learn 
how the attribute “favorite type of show” is distributed by gender and grade. Ido and Ohad 
were surprised to see that in contrast to their conjecture, very few children preferred music 
shows and therefore they expressed low confidence in the sample results. 

 

 
 

Figure 5. A real sample of favorite show types organized by gender and colored by grade 
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In Activity 5, the students were asked to learn about sample-population relationships 
by using the Sampler to build a model that described their conjecture. A model in 
TinkerPlots2 is built by several chosen attributes and the relationships among them. The 
students can represent the attribute distribution in the Sampler by one of optional devices 
(e.g., spinner, curve). The students’ model (Figure 6) contained three attributes (the same 
as the first three attributes in “most of model”, Figure 4) and the relationship among them. 

 
After they finished building the model (Figure 6), they explained it: 

 
589 Ido: We actually did a flow chart of our guesses. We wrote what will happen, in our 

opinion, in the population that we are examining. 
607 Ido: We made here a flowchart of what will happen. If you are a male and you are 

[learning] in na na na [a certain] grade, then between fourth to this [sixth], the 
chances that you will like it [a certain show] are this and that, that is in our 
opinion. 

608 Ohad: This is not the chances that you will like it. 
610 Ohad: This is what we assume on the population. 
611 Ido: This is the way in our opinion it will be distributed. And if you are between 

seventh to ninth [grade] then it will be distributed in this way, the population. 
612 Ido: Of course it [the model, Figure 6] was not exact because it could be completely 

different, but in our opinion it will resemble [the population]. These are our 
assumptions. We don’t know. 

613 Ido: We are basing ourselves here with a relatively high level [of confidence] on 
what we actually took from here [the real sample] and on general knowledge. 

 

 
 

Figure 6. Ido and Ohad’s first model in TinkerPlots2 
 
Ido mentioned two different purposes for building the model (Figure 6): 1) describe 

their hypothesis about the population [line 589]; and 2) predict the chance of events 
happening [line 607]. The first purpose of the model was to describe: The model is a 
descriptive simplification of a phenomenon that depicts relative frequencies of specific 
values in the population. The second purpose of the model was to predict: The model is a 
predictive simplification of a phenomenon that predicts the chance that certain values occur 
in the population. 

 
A dynamic model During Activity 5, after generating small random samples from the 

model (Figure 6), and comparing them to that model to examine the representativeness of 
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the random samples, the students changed the devices used to represent the first two 
attributes, gender and grade, from spinners to counters (Figure 7). 

They explained that they wanted the Sampler to generate samples in the same way they 
had drawn their real random sample because otherwise “it would not show in a good way 
what happened [the sampling method] at school” [Ido, Line 887]. In other words, they 
wanted the Sampler to draw an equal number of males and females and an equal number 
of students from each grade. We assume that this request may be an indication of the 
connection they began to create between sampling in the data and the model worlds. This 
request also hints at a dynamic view of a model with which one can generate data in order 
to examine the representativeness of random samples. 

In this section we presented four depictions of models that the students used to simplify 
a phenomenon. The four depictions indicate a gradual shift from a deterministic to a 
probabilistic to a dynamic view of a model. 

 

 
 

Figure 7. Ido and Ohad’s second model in TinkerPlots2 
 

5.2.  REASONING WITH SAMPLE REPRESENTATIVENESS 
 
We identified four main questions explored by the students regarding sample 

representativeness: Can the population be envisioned based on a real sample? Is the 
generated sample representative? How representative is the generated sample? How 
confident am I in the representativeness of the generated sample? 

 
Can the population be envisioned based on a real sample? The following episode 

happened during Activity 4 (See Table 1). When the students analyzed their real sample 
data (N=48, Figure 5) they were surprised to see that in contrast to their conjecture, most 
students did not prefer music shows. Looking for an explanation, they decided to explore 
students’ favorite music. They created a graph of a new attribute “favorite music show 
types” organized by gender and ordered by grade (Figure 8). 

While exploring this graph (Figure 8), the students said that they could infer about the 
population only from unequivocal evidence in the sample. Noticing that all fourth grade 
males do not like music shows, they concluded that most of the fourth grade males in the 
population did not like music shows. However, because they could not find further 
unequivocal evidence in the sample, they stated that their confidence level in their 
conclusions was only 50% or 60%. 
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Figure 8. A real sample of favorite type of music show organized by gender and colored 
by grade 

 
At this point we initiated learning about sample-population relationships (Activity 5). 

Initially, they were asked to think about simulations in their daily life. Then they were 
asked to think about a simulation they can use to check whether a sample can represent a 
population. In response Ido said: “We can simply multiply it [the sample size] several times 
until it gets to the number of students that is exactly the number [of the size of the 
population]… but with the same ratio of students. We multiply it [the sample] in our head 
and we check if this [the multiplied sample] matches [our conjecture]. This [process] works 
if the sample was exact.” Ido described a decision rule about how to judge the 
representativeness of a sample. He explained that they “multiplied” their sample data to 
see how the population results would look if the sample was accurate and compared the 
multiplied sample to their conjecture. 

 
Is the generated random sample representative? The following episode took place 

during Activity 5. The students drew small random samples from their TinkerPlots2 model 
(Figure 6) and examined sampling representativeness by comparing the random samples 
results and the model. The sample in Figure 9 was the first sample (size 10) that they drew 
from the model. 
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Figure 9. A first random sample of size 10 taken from the first model (Figure 6) in 
TinkerPlots2 

 
Ido interpreted the sample graph (Figure 9): “So this [the generated sample] looks as 

we expected. Many [girls] came out [were chosen] in the movie as we really expected. But 
we also gave chances [set chances in the model] to sporting event [for girls]. But sporting 
event didn’t come out [was not chosen] because we gave it [set in the model] very low 
chances.” They noticed that the sample results were similar to the model in categories with 
rather large relative frequency. Furthermore, in comparison to their initial description of 
the model (see the third sub subsection in section 5.1), their reference to the relative 
frequencies in the model (Figure 6) acting as the chance of certain results occurring made 
more sense to them. Referring to relative frequencies as chances helped them explain why 
the sample represented the model. 

 
How representative is the simulated random sample? After the students had explored 

simulated samples of size 10, they asked to increase the sample size to 48. They drew a 
sample of 48 cases (Figure 10) from the model in Figure 7 and compared between the 
generated sample and the model. They organized the graph of the generated sample (Figure 
10) in such a way that enabled them examine the percentages of the attribute “favorite type 
of show”, for each category, within a certain gender and grade. After comparing several 
generated samples to the model, they were asked, “To what extent do you think that these 
random samples represent the model?” Ohad responded: “They represent the model by 
50%” and explained: “Half [of the percentages in the generated sample in Figure 10] are 
similar [to the appropriate percentages in the model in Figure 7]”. Ido added: “But like, it 
depends upon what you consider similar. But it’s not that I have a definition [decision rule]. 
Every [percentage in Figure 10] for example [that] is in a range of 5% above, 5% below 
[the appropriate percentages in the model in Figure 7] is considered as similar… and I am 
examining how many are similar and how many are not similar.” As seen in the quote 
above, Ido found a way to quantify the level of representativeness of the generated random 
sample. 
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Figure 10. A first random sample of size 48 taken from the second model (Figure 7) in 
TinkerPlots2 

 
How confident am I in the representativeness of generated random samples? After 

the students tried to compare among four samples of size 48 to decide how confident they 
were in the representativeness of the generated random samples, the researcher showed the 
students how to collect repeated sample measures to create a sampling distribution. They 
collected the percentage of males whose favorite type of shows was standup (%STANDUP 
in abbreviation). They collected measures from 100 samples and tried to define what can 
be considered a “good” result by organizing the sampling distribution accordingly (Figure 
11). 

 

 
 

Figure 11. A %STANDUP sampling distribution, sample size 48 
 

1135 Ido: Let’s call these [results in 36-45.999], the good results [meaning close enough 
to the real value in the model] and they are almost 50%. 

1136 Ohad: Yes. 
1137 Ido: It [47%] is very good. 
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1139 Ido: We shall call these two [the results in the intervals 26-35.999 and 46-55.999] 
reasonable. 

1140 Int.: Near the good [results]? 
1141 Ido: Yes. 
1142 Ido: And let’s call these [the results in the intervals 16-25.999 and 56-66] bad 

[results]. We see that we have 47% here [good results], 40% [reasonable 
results] and only 13% [bad results]. 

 
The students defined good, reasonable and bad results. They noticed that there were 

many more good and reasonable results than bad results (Lines 1135, 1137, and 1142). It 
seems that exploring this sampling distribution (Figure 11) increased their level of 
confidence in sampling representativeness. 

In the questions asked by the students in this dimension, we can see a gradual growth 
in their articulation of sampling representativeness. In the first stage, the students used an 
intermediate representation to judge the sample representativeness. They examined 
representativeness by comparing multiplied sample results to their conjecture. In the 
second stage, they examined sampling representativeness by comparing samples generated 
by the model to the model. By connecting the incidence of results in the sample to their 
relative frequency in the model, the students increased their confidence level in their 
random samples. In the third stage, they examined the influence of sample size on sampling 
variability and invented an initial method to quantify the accuracy of sample results (the 
difference between sample result statistics and the model parameter) and sampling 
representativeness. During the fourth stage, they refined this method to discover the 
chances of “bad,” “reasonable” and “good” results to quantify their level of confidence in 
samples of size 48. 

 
5.3.  REASONING WITH SAMPLING DISTRIBUTIONS 

 
During their learning progression, the students discussed the issue of repeated samples 

by “what if” questions or by exploring repeated samples. In the following section we 
discuss the students’ articulation about signal, noise, and shape of sampling distributions. 
We identified three different views of sampling distributions held by the students: 
Relativistic view of sampling distributions, uniform sampling distribution, and normal 
(bell-shaped) sampling distribution. We use the term relativistic view of sampling 
distributions in the sense suggested by Ben-Zvi at al. (2012) to describe instances when 
students had no confidence in random samples, suggesting that any sample result could 
happen by chance. 

 
Relativistic view of sampling distributions The following episode was taken from a 

scaffolding activity (see Activity 2, Table 1) that supported students’ understanding of 
random versus biased samples. During one of the tasks in this activity, the students drew 
samples of size 10 from a bag that contained an equal number of red and white beads and 
discovered the percentage of red beads in each sample. After drawing six samples, the 
students documented the resulting percentage of red beads in each one of the samples. They 
were then asked to suggest what the results would be if they drew 100 samples of size 10. 

Ido explained that “for every [result] there are equal chances. It [the samples results] 
will be completely randomly scattered. It could be that all [the results] will fall here [he 
pointed with his hand to the right side of an imaginary graph]. It could be that all [the 
results] will fall in the middle. It might happen that they will completely scatter.” As Ido 
explained above, because any result was possible, he was unable to describe the graph and 
draw a suggested sampling distribution. 
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Later in the learning trajectory (Activity 5) when the students drew a second sample of 
size 10 from the TinkerPlots2 model (Figure 6), Ido reinforced his relativistic view about 
sampling distributions: 

A fourth–fifth grade was not chosen [in the random sample] (Figure 12). By chance… 
in principle this actually proves what I said. In situations where every [result] has equal 
chances [pointing at grades distribution in the model in Figure 6], anything can happen. 
What happened before just proves that I was right. No fourth-fifth grade [student] was 
selected at all. 
Unlike his previous comment, Ido limited his opinion to uniform phenomenon, namely, 

if the distribution of the population was uniform, any result was possible. 
 

 
 

Figure 12. A second random sample of size 10 taken from the first model (Figure 6) in 
TinkerPlots2 

 
Uniform sampling distribution The following episode took place in Activity 5 

(Table 1) after the students built their first TinkerPlots2 model (Figure 6) and before they 
generated random samples from the model. They explained how they decided whether to 
build their model (in Figure 6) based on their real sample or on their context knowledge. 
Pointing at the graph of their real sample (Figure 5), Ido gave an example of a situation in 
which he did not rely on the real sample result for building the model in the Sampler: 

So there are three boys [sixth grade students that prefer sporting events, Figure 5] out 
of six [sixth grade boys]. So the chance it [the real sample] represents half [of] all the 
45 [sixth grade students in the population], half of them, I mean 22.5, one boy is 
divided, prefer sporting events, is small, since half is a lot. 
To better understand Ido’s view, the following discussion took place: 
 

208 Int.: And if I ask it [in the] opposite [way]? You know that there are half [in the 
population]. Okay? You have 22 students in the sixth grade population that like 
sporting events out of 44 [students in the population]. Now we drew a sample. 
What is the chance that we will get exactly such a result? That we get three out 
of the six students [in the sample]? 

209 Ohad: Fifty fifty. 
210 Int.: That means, there is a possibility that it will be zero (students who like sporting 

events). That is what I am asking. 
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211 Ido: It will be equal. 
 
Ido’s response to the interviewer’s question reflected a different view of sampling 

distribution than the one he held previously. As we discussed above (see the first 
subsubsection in section 5.2) Ido used the “multiply method” to explain why the sample 
result was not representative. He multiplied the real sample result to see what the 
conclusions could look like in the population based on the sample. Because the result in 
the multiplied sample was not similar to his conjecture, he concluded that the sample result 
was not representative. In the current episode, the researcher asked the question in an 
opposite way: Given a certain situation of the population, what is the likelihood of specific 
results? Unlike Ido’s previous answer, he now said that each sample result had the same 
chance to be selected, which depicted his view of a uniform sampling distribution of the 
proportion of students who prefer sporting events. 

 
Normal (bell-shaped) sampling distribution Ohad also answered the interviewer’s 

question as follows: 
 

219 Int.: If [we imagine that] there are 44 students in the population of sixth grade, and 
22 of them like sporting events. If we drew a sample, what will we get there? 

220 Ohad: How many [children] in the sample? 
221 Int.: Like this [points to the real sample graph, Figure 5]. We took 12 students from 

[sixth] grade. Six boys and six girls. In your opinion, how many students of 
each group will be selected in the sample? 

222 Ohad: It is not possible, there isn’t a large percentage that we won’t see any boy in 
the sporting events [category]. 

225 Ido: So still he [Ohad] assumes that in his opinion it [the sample result] will come 
out more similar to the real [result in the population].  

226 Int.: Is it more likely that it will be 3? More likely to be 2? 1? 0? Maybe 4? 
227 Ohad: Three 
228 Int.: Do you think it is more likely that it will be similar (to the population) than it 

will be 0? Or [than] it will be 6? 
229 Ohad: Yes. 
230 Int.: Why? 
231 Ohad: Because among the six [students] not all the children are the same. There is a 

possibility that it will be everybody, that all six will [like] sporting events, but 
then it means that we fell exactly on [got sample results of] the children that 
like sporting events… it is less likely that we will fall [will get results] only on 
[of] them. Then [the possibility] is that we will fall [will get results] on [of] 3, 
2 or 4. Something in the middle. 

 
Ohad described sample results as resembling a “bell-shaped distribution” and explained 

why he thought that it was more probable to get sample results that were close to the 
population parameter. 

The students built a sampling distribution of the percentage of males that preferred 
stand-up comedy shows (%STANDUP in abbreviation) based on 100 samples of size 48 
(Figure 13) drawn from their second TinkerPlots2 model (Figure 7). It was the first time 
they explored a sampling distribution with the TinkerPlots2 Sampler. Initially, they 
compared the mode of the sampling distribution to its appropriate parameter in their model 
and found that the values were very close. In the following discussion, the researcher 
attempted to learn what they understood about this sampling distribution (Figure 13). 
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1099 Int.: What do you say now if we take a sample size of 48? What can we learn from 
this graph [Figure 13]? 

1100 Ido: These 100 samples came out very similar to this (parameter in the model). It 
just strengthens my feeling that, maybe not one sample, but if we examine 
several samples and then produce their mean, the chance it [the difference 
between the mean of the statistics and the parameter] would be closer is 
greater. 

1101 Int.: Yes, but in reality you take one [real] sample. What can you see here from the 
graph [Figure 13] and can it help you somehow? 

1102 Ido: One sample can fall here [point to an extreme result of 16% on the left side of 
the graph] which is not accurate or here [points to an extreme result of 58% 
on the right side of the graph], but it could be that it [the sample] will turn out 
to be very precise [close to the parameter in the model which is 40%], and the 
chance that it will be precise is bigger than the chance it will be imprecise. 
But still there is a chance that it [the sample] will be imprecise. 

 

 
 

Figure 13. A %STANDUP sampling distribution of 100 samples of size 48 
 
Ido’s articulation depicts a change in his perception of sampling distributions. He began 

to realize that there was a greater chance to get a statistic that is similar to the parameter in 
the model than to get an extreme statistic that is different. 

In summary of this dimension, we identified three perceptions of sampling 
distributions. The students’ explorations in the model world enabled them to explore and 
refine their perceptions of sampling distributions. We were interested mostly in Ido’s view 
of sampling distribution because he began with a relativistic viewpoint. After building a 
model with the Sampler, Ido presented a new insight. He distinguished between two 
situations, one in which the model was uniform and another in which the model was 
normal. In the first situation, Ido thought about repeated sample results in a relativistic way 
(any result can happen), and in the second situation, Ido envisioned a uniform sampling 
distribution (every statistic has the same chance of happening). In the last stage, after the 
students drew samples from the model and presented a sampling distribution of 100 
samples, Ido seemed to embrace a normal view of sampling distribution. It was the first 
time he said that there was a greater chance for statistics that were similar to the parameter. 

 
6. DISCUSSION 

 
The main research question of this study was: how can students’ articulations of models 

and modeling emerge while making ISIs? To answer this question we carefully examined 
Ido and Ohad’s work in the IMA learning trajectory according to a framework for reasoning 
with models and modeling that emerged as a result of the data analysis. Describing the 
chronological order of the dimensions throughout the learning trajectory, we first discuss 
the relationship between the three dimensions of students’ reasoning progression with 
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models and modeling. Then, we examine how the students’ views about modeling changed, 
expressed by their articulations, while they moved between the data and model worlds. 
Finally, we present implications of the framework and the limitations of this study. 

 
6.1.  A CHRONOLOGICAL ORDER OF THE FRAMEWORK DIMENSIONS 

 
The framework dimensions are presented in a chronological order in Figure 14. The 

students entered the data world with a relativistic view of sampling distribution and a 
simplification of a “most of” model. After they engaged in data exploration, they thought 
of sample-population relationships as a multiplicative relationship. When they entered the 
model world, their understanding of the data converged with their context knowledge, and 
they described their first model in TinkerPlots2 as a probabilistic prediction of the 
phenomenon. However, they had two different views about this model. Whereas Ido 
described the model as a predictive simplification of a phenomenon that predicts the 
chances of values occurring in the population, Ohad disagreed and stated that the model 
described their hypothesis about the population distribution. 

A meaningful change in the students’ reasoning with models occurred when they 
refined their probabilistic prediction of the phenomenon model to a dynamic model. That 
is seen when the students asked to change the generated sampling method of the model 
according to the sampling method of the real sample. This refinement in their methodology 
implies that the students began to make connections between generated random samples 
from their model and the real sample they drew from the population. However, when 
looking at the chronological order of the dimensions, we can see that this change happened 
following their exploration of generated random sample representativeness. Before the 
students refined their model to a dynamic one, they drew repeated samples from the model 
and examined whether the generated random samples were representative by comparing 
them to the model. This may signify that the students drew an analogy between the 
mechanisms of random sampling in the model and the real world. 

Looking at the chronological order of the dimensions, we can see two appearances of 
the “relativistic view of sampling distribution,” in the data and in model worlds. The first 
manifestation occurred in the data world, with Ido’s relativistic view of sampling 
distributions. Ido stated that in random sampling any result could happen and there is no 
way to predict the likelihood of results. The second manifestation occurred in the model 
world and was a result of a connection Ido had made between the worlds. Ido observed the 
generated random samples in the model world due to his desire to examine his relativistic 
view regarding sampling distribution, because it influenced his confidence level regarding 
the inferences that could be made by a real random sample in the data world. By drawing 
generated random samples in the model world, Ido realized that when sampling randomly 
from a certain model, “the chance that it [a sample statistic] will be precise is greater than 
the chance that it will be imprecise.” This caused a change in his sampling distribution 
view. 
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Figure 14. A chronological order of the framework dimensions’ elements 
 

6.2.  DIFFERENT VIEWS ABOUT MODELS AND MODELING 
 
We identified four main issues that evolved in the students’ reasoning with statistical 

models and modeling during the learning trajectory: 1) a descriptive versus a predictive 
model view; 2) a dynamic model view; 3) subjective versus objective confidence level; and 
4) intuitive versus scientific understanding of sample-population relationships. 

 
Descriptive vs. predictive model The first time the students refined their model 

happened after they explored real sample data. They refined their “most of” model to a 
“probabilistic prediction of phenomenon” model (Figure 6) using the TinkerPlots2 
Sampler. This refined model had the same attributes as the “most of” model, but instead of 
presenting only “most of” the students preferences, it described all the possible attribute 
values and percentages for the attributes’ relative frequencies. When Ido explained how 



139 

they built this model, he said that the model described the likelihood of event occurrence. 
Ohad corrected him and said that the model did not describe chances. Therefore, Ido 
suggested that the model described the way in which the results would be distributed. 

We suggest that these two ways of describing the model (descriptive model and 
predictive model) depict two different views of phenomenon simplification. A descriptive 
model illustrates how attributes in a phenomenon are distributed. A predictive model 
presents a phenomenon distribution in order to predict the chance of events happening. 
Ohad had not yet made the connection between relative frequencies and chances, therefore, 
in his opinion, chances were not part of this model. 

 
Static vs. dynamic model A dynamic model is a model that can generate samples. After 

the students built the first model in TinkerPlots2 and generated samples from it, they 
explained how the measurements of relative frequencies of particular events in the 
generated sample were related to chances that they set in the model. For example, Ido 
explained that “[the result of] sporting events didn’t appear [in the sample] because we 
gave it [in the model] very low chances.” The connection made between chances set in the 
model to relative frequencies in the generated sample indicates a different view, a dynamic 
one, the students had acquired about the model. 

We refer to the first two models: descriptive and predictive models as static, and to the 
third one as a dynamic model. We argue that the change from a static to a dynamic model 
view stemmed from a change in the purpose of building a model. Although the purpose in 
presenting the static model was to describe the population or predict the population 
behavior, the purpose in presenting the dynamic model was to examine the model validity, 
meaning, and how confident the students were in their inference based on a random sample. 
Because the dynamic model the students presented was based mainly on a random sample 
they drew in reality, their reason to simulate samples from the model was to examine to 
what extent and under what conditions they could trust random samples. 

 
Subjective vs. objective confidence level The process of modeling a phenomenon in 

the context of ISI is accompanied by probabilistic language (Makar & Rubin, 2009) 
including reference to the confidence level regarding a conclusion that is drawn from a 
single sample. One important finding of this study is that the students gradually moved 
from articulating a subjective confidence level to articulating a more objective confidence 
level. When the students explored their real sample, they expressed uncertainty 
accompanied by a low confidence level. The confidence level was usually expressed by a 
percentage such as 60%. However, their confidence level stemmed from a conflict between 
context and data and was based mainly on subjective feelings regarding the sample 
representativeness. The first time the students expressed an objective confidence level in 
random samples occurred after they explored generated random samples of size 48 (Figure 
10) from their TinkerPlots2 model. They realized the need to decide whether a sample 
result is similar enough to the model. They gave an example of a decision rule for similarity 
between each statistic in the sample and its appropriate parameter in the model, a range of 
5% above and 5% below the parameter (see the third sub subsection in subsection 5.2). 
Then they suggested a quantification of the confidence level based on the number of 
statistics that were similar to their appropriate parameters. Later, when they built a 
sampling distribution, they used this range once again and quantified their confidence level 
in samples of size 48. 

 
Intuitive vs. scientific understanding of sample-population relationships This study 

supports the argument of scientific educators that modeling reasoning can serve as a bridge 
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that facilitates the shift from personal, intuitive knowledge to a more mathematical-
scientific understanding of the world (Lehrer et al., 1994). In the beginning of the IMA 
learning trajectory students thought of sample-population relationships as a multiplicative 
relation. The students’ use of the Sampler created new possible explorations regarding 
random sampling. After the students drew samples from the model and realized that the 
Sampler drew data randomly, they decided to change the two first attributes in the model, 
gender and grade, from devices to counters (Figure 7). The rationale for this action was 
that they wanted the Sampler to draw samples from the model using the same method used 
by the students to draw real sample data. The real sampling method chose an equal number 
of females and males from each of the fourth, sixth, seventh, and ninth grade classes. We 
believe that the last refinement reflects the students’ new statistical understanding of the 
world (Lehrer et al., 1994). The students realized that a model was a dynamic machine that 
can create generated data and that the model structure influenced the way data were created. 
Furthermore, they began to think about the mechanism of random data creation also in 
reality. In other words, the students made the connection between real random samples 
from a population (the data world) and generated random samples from a model (the model 
world). 

 
6.3.  IMPLICATIONS OF THE FRAMEWORK 

 
Researchers draw attention to the necessity of probability models in developing 

informal inferential reasoning (Fielding-Wells & Makar, 2015; Rossman, 2008), and 
helping students integrate data and chance (Konold & Kazak, 2008). Although most studies 
emphasize the importance of using models in making probabilistic predictions about 
chance situations, this article sheds light on the role of statistical models and modeling in 
developing students’ informal inferential reasoning with real-world phenomena. This 
article depicts how the transition from static models to dynamic models enables students 
to learn about the underlying mechanism of random sampling and thus opens a new line of 
inquiry about the representativeness of random samples and the validity of the model. 

The suggested framework for reasoning with models and modeling discussed in Section 
5 (Figure 3) emphasizes the importance of making students aware that the exploration of 
the behavior of real-world phenomena includes not only the attribute distributions and the 
relationship among them, but also the behavior of random sampling. Learning about the 
representativeness of samples (the second dimension of the framework) can help students 
to refine their phenomenon’s simplification in the first dimension (“reasoning with 
phenomenon simplification”) and can also change students’ views about sampling 
distributions in the third dimension (“reasoning with sampling distribution”). Exploring 
sampling distributions can help develop students’ understanding about repeated sampling 
and thus can help them validate the phenomenon’s simplification. Therefore, we argue that 
learning about attribute distributions of the explored phenomena as well as learning about 
the behavior of random samples are both linked and required. 

Learning about attribute distributions of the explored phenomenon includes looking for 
signal and noise in data, as well as searching for patterns, trends, and relationships among 
attributes in order to learn about real-world phenomena. Learning about the behavior of 
random samples includes exploration of random sampling variability, and examination of 
the role of random sample size on sampling variability. It is essential to learn the 
relationship between the two to deepen reasoning with sampling and informal inferential 
reasoning. This article also sheds light on the potential of the IMA in helping students 
integrate both concepts of attribute distributions and behavior of random samples. 
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Researchers and teachers who would like to repeat the activities of the IMA need to 
take into account that our students were involved in EDA activities during the previous 
year and therefore were exposed to ideas of sample size and inferences that can be drawn 
informally from the sample. We suggest that in the IMA learning trajectory, students’ 
experience with an exploratory approach to data is essential for entering the model world 
and dealing with the complex idea of uncertainty (Pfannkuch, Wild, & Parsonage, 2012). 
Reasoning with uncertainty in the context of informal statistical inference is an ongoing 
discourse aimed to convince others regarding inferences that can be made, and the level of 
confidence in making those inferences. The fact that our students were accustomed to a 
learning environment of open discourse during the previous year prepared them to discuss 
and deepen their reasoning with uncertainty and inference in this study. 

 
6.4.  SUMMARY 

 
The findings of this article are based on a pair of students with excellent communication 

and thinking skills. More research is needed to study students’ reasoning with models and 
modeling using the IMA learning trajectory in a classroom format. We are currently 
conducting another study of sixth grade students to test the case presented in this article. 
Further research is also needed to refine and extend our understanding of: 1) design 
considerations that can support teaching or learning of informal inferential reasoning about 
real-world phenomenon with the addition of a modeling perspective; and 2) how students 
understand and use statistical models when they make informal inferences on real-world 
phenomena, and what ideas are needed to understand and use models. 

In this empirical study we strove to deepen our understanding of the development of 
students’ reasoning with models and modeling in the context of ISI. The suggested 
framework can shed light on the role of reasoning with models and modeling on students’ 
understanding of key issues of IIR such as: sample-population and data-chance 
relationships. We believe that the IMA may contribute to the body of design research in 
statistics education by helping to develop students’ understanding of modeling, sampling, 
and uncertainty in the context of ISIs. 
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