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Teaching from an informal statistical inference perspective can address the 

challenge of teaching statistics in a coherent way. We argue that activities that promote 
model-based reasoning address two additional challenges: providing a coherent 
sequence of topics and promoting the application of knowledge to novel situations. We 
take a models and modeling perspective as a framework for designing and 
implementing an instructional sequence of model development tasks focused on 
developing primary students’ generalized models for drawing informal inferences 
when comparing two sets of data. This study was conducted with 26 Year 5 students 
(ages 10-11). Our study provides empirical evidence for how a modeling perspective 
can bring together lines of research that hold potential for the teaching and learning 
of inferential reasoning. 
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1. FROM INFORMAL INFERENCE TO MODEL-BASED REASONING 
 

Research over the past decade has argued that curricula based on informal statistical 
inference have the potential to provide a more holistic and coherent approach to teaching 
and learning statistics (Bakker & Derry, 2011). There are several reasons for this. First, 
predictions are an everyday activity, allowing students to draw on their personal 
experiences to make meaningful inferences (Makar, 2013; Zieffler, Garfield, delMas, & 
Reading, 2008). Second, as Watson (2006) argued, creating an inference from data requires 
students to draw on the big ideas in statistics. This implies that informal statistical inference 
has great potential for generating opportunities to learn foundational statistical concepts 
(e.g., Garfield, Le, Zieffler, & Ben-Zvi, 2015; Makar, 2014). Third, informal inferential 
reasoning places the focus on the process (statistical reasoning) rather than only the product 
(conclusion). Statistical reasoning is what allows statistical concepts to be applied and used 
effectively in data-based arguments (Abelson, 1995; Ben-Zvi, 2006; Garfield, 2002). It is 
well documented that statistical reasoning is often missing from the teaching and learning 
of statistics (Ben-Zvi & Garfield, 2004). As Gigerenzer (1993) argued, “Statistical 
reasoning is an art … When it is mechanized, as with the institutionalized hybrid logic, it 
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becomes ritual, not reasoning” (p. 333). Together, these three ideas—making personal 
meaning, integrating core statistical concepts, and focusing on reasoning—explain why 
informal statistical inference provides a powerful tool for creating a holistic and coherent 
approach to learning statistics. 

We see informal statistical inference as being characterized by: (1) a claim beyond the 
data; (2) the use of data as evidence for the claim; (3) an expression of uncertainty (Makar 
& Rubin, 2009). Researchers have argued that informal inferential reasoning, the reasoning 
that leads to informal statistical inference, is promoted by an inquiry-based environment 
that engages students with statistical tools, promotes norms of collaboration, and involves 
solving intriguing tasks that stimulate reasoning (Makar, Bakker, & Ben-Zvi, 2011; 
Paparistodemou & Meletiou-Mavrotheris, 2008; Zieffler et al., 2008).  

The opportunity to learn statistics by focusing on inferential reasoning is an important 
shift in direction for the field in light of Bakker and Derry’s (2011) three key challenges in 
statistics education: (1) avoid inert knowledge, where students can reproduce what they 
have learned but not apply their knowledge to novel statistical problems; (2) avoid 
atomistic approaches and foster coherence in curriculum from students’ perspectives; and 
(3) sequence topics in new ways to improve coherence from students’ perspectives. 
Although informal inferential reasoning may have moved the field forward with respect to 
Bakker and Derry’s second challenge of coherence, theoretical work is still needed to 
address the first (inert knowledge; applying knowledge to novel statistical problems) and 
third challenges (sequence topics for coherence). We believe that modeling can play an 
important role in extending the informal statistical inference framework to address these 
remaining two challenges by focusing on important elements that are left ambiguous in 
research on informal statistical inference—purposeful collection of data, development of 
useful representations, and applying disciplinary structures to new problems.  Our study 
illustrates how a perspective of model-based reasoning in statistics can bring these elements 
to the foreground more explicitly in the teaching and learning of statistics.  

In this article, we present the results of a study conducted by the authors within an 
inquiry-based primary classroom in Australia. The study adopted Lesh, Cramer, Doerr, 
Post, and Zawojewski’s (2003) ideas of teaching through a sequence of modeling activities 
to develop primary students’ informal inferential reasoning about comparing two 
distributions, an important structural model for solving a broad class of problems in 
statistics. Through this study, we argue for the importance of adopting a model-based 
approach to instruction to meet the challenges posed by Bakker and Derry (2011). The 
central research question we address in this article is: How did the model development 
sequence support students in developing a generalizable model for comparing two groups 
of observed data? 

 
1.1.  PERSPECTIVES ON REPRESENTATIONS 
 

Statistical modeling has typically been a topic addressed in advanced courses, although 
its use from kindergarten through introductory statistics has been an emerging development 
(e.g., delMas, Garfield & Zieffler, 2014; English, 2012; Fielding-Wells & Makar, 2015; 
Konold & Harradine, 2014; Lehrer, Jones & Kim, 2014; Lehrer, Kim & Jones, 2011; 
Makar, 2016; Peters, 2011). Our literature review focused on research relevant to the 
context of our study: developing the model-based reasoning of primary school children. 
We found resonance with informal inferential reasoning and informal statistical inference 
in Lehrer et al.’s (2011) characterization of data modeling: “Data modeling integrates 
inquiry, the generation of data, chance and inference” (p. 725). Our intent, therefore, was 
to seek literature that aimed for a broad interpretation of modeling that would capture 
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informal statistical inference, the generation of data through inquiry-based activities 
involving uncertainty, and the representations of data to support analysis and conclusions. 

Representations do not simply “represent” but also carry with them mathematical, 
cognitive and cultural activity (Font, Godino & D’Amore, 2007). Conventional 
representations often evolve out of a long history from repeated sequences of personal 
localized objects applied across different problems and contexts, until some characteristics 
become stable and then invariant as they are institutionalized within the disciplines of 
mathematics and statistics. The student is not usually privileged to experience this process 
and, therefore, does not have the opportunity to develop a personal meaning for the 
representation. Nonetheless, the student is expected to carry disciplinary meanings into an 
application of a representation to a local problem. 

Any personal meaning for representations arises “through a considerable amount of 
situated, lived work” (Roth & McGinn, 1998, p. 40). Referring to representations as 
inscriptions, making meaning of an inscription depends on “the degree to which individuals 
participate in purposive, authentic, inscription-related activities” (Roth & McGinn, p. 37). 
An inscription does not have its own meaning; its meaning arises from the context of its 
use and within the context of other inscriptions and language. Representations that emerge 
from activity may be “personal objects,” or they can be “institutional objects” if the 
practices that they represent are shared, or a hybrid of the two (Font et al., 2007). 
Nemirovsky and Tierney (2001) explained that when children add names and distinctive 
marks (with a key) to a graph or list data sequentially rather than using spacing, they 
demonstrate their need to hybridize between disciplinary aspects of a representation 
(number line with points ordered left to right) and personal ones (recognizable aspects or 
omissions that are not needed such as empty spaces where there are no data). Their hybrids 
allow children to preserve information that is important to them. We see representations as 
emerging from activity in mathematics and statistics, which once negotiated can be 
abstracted to be useful across a number of contexts.  

 
1.2.  PERSPECTIVES ON MODELS AND MODELING 

 
Models have a similar evolution to representations in emerging out of human activity. 

Hestenes (2010) defined a model as a representation of structure in a given system, where 
a system consists of a set of related objects and the structure identifies the relationships 
among the objects. A model creates a sharable representation that provides a common 
language and referent for discussion. Working in scientific modeling, Hestenes argued that 
curriculum should be organized around a set of conceptual models as the basic units of 
scientific knowledge, with a small set of basic models as the core content. He further argued 
that theory should be taught as general principles for constructing models and that students 
should learn a modeling approach to scientific inquiry, which consists of developing 
proficiency with conceptual modeling tools, qualitative reasoning with models, methods 
for quantitative measurement, and facility with comparing models to data. The role and 
responsibility of the teacher, therefore, is to frame classroom activity in terms of models 
and modeling. An end goal of modeling activities is to build shared meanings of 
phenomena under investigation (i.e., the system that is modeled) through the comparison 
and evaluation of various models. Models involve more than just representations. To 
Hestenes, a model captures three important elements: (1) simplicity, to “minimize 
superfluous or empty relations” (p. 26) by focusing on aspects of the phenomenon that the 
modeler cared about and diminishing the rest; (2) generalizability, by capturing the 
structure of the phenomenon; and (3) applicability, seeing a model as providing a 
purposeful way of making sense of the world through applications to authentic problems.  
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Similar to Hestenes’ (2010) perspective, Lehrer and Schauble (2010) referred to model-
based reasoning as a type of explanation that is characteristic of science. From their 
perspective, models represent “analogies in which objects and relations in one system, the 
model system, are used as stand-ins to represent, predict and elaborate those in the natural 
world” (p. 9). Lehrer and Schauble stated: 

Model-based reasoning entails deliberately turning attention away from the object of 
study to construct a representation that stands in for that phenomenon by encapsulating and 
enhancing its theoretically important objects and relations. Instead of directly studying the 
world, one studies the model – the simplified, stripped-down analog. (p. 13) 

They contended that there is a wide range of representational forms, which comprise a 
language of expression for model-based reasoning, and include drawings, diagrams, maps, 
physical replicas, mathematical functions and simulations. They consider the invention and 
use of this “representational language” to be a critical precursor to students’ development 
of model-based reasoning. Lehrer and Schauble argued for experiences that help students 
develop a broad and powerful vocabulary for mathematizing situations. Students in model-
based reasoning activities are expected to build models (e.g., data representations in 
statistical investigations) that are convincing to other investigators (e.g., fellow students) 
and determine how much trust should be given to conclusions derived from the model. 

According to Lehrer and Schauble (2010), younger students do not naturally accept the 
representational validity of a model. For younger students, to represent is to copy, seeing 
is believing, and it is not obvious why a model needs to be constructed for something that 
can be observed directly. Because all representations and models involve trade-offs, 
students need experience with evaluating the pros and cons of various representations 
against the purpose of an investigation or task. This can lead to an understanding that theory 
can be regarded as hypothetical and needs to be evaluated against evidence. To this end, 
Lehrer and Schauble promoted the use of tasks that can be addressed with a variety of 
representations or representational forms. 

When students work with statistical models, the aim of a modeler is not to describe the 
data in front of them but rather to use the data they have to draw a conclusion about the 
context represented by the model (Pratt, Johnston-Wilder, Ainley, & Mason, 2008). 
Modeling (or model-based reasoning) includes an evaluation of both the fit and the misfit 
of a model, which can involve statistical ideas of sampling, variability, and uncertainty. 
Model evaluation drives model revision, which generally increases the explanatory power 
of a model and the scope of application as the model is fine-tuned to account for new data 
(i.e., evidence in scientific inquiry). From an instructional perspective, teachers need to 
identify modeling contexts that afford or promote the evaluation of models. 

Barbosa (2006) offered some additional perspectives on modeling activities with 
students. From Barbosa’s perspective, modeling must contain elements of purpose and 
authentic connection to context. He defined the boundaries of a modeling activity as having 
two main features:  

the activity has to be a problem (not an exercise) for the students;  
the activity has to be extracted from the everyday or other sciences that are not pure 

mathematics. (p. 294) 
Barbosa’s work speaks to the importance of embedding the context of the generation 

and application of the model in the everyday experience of the student so that modeling 
does not become simply an “exercise”. He suggests that in studying students’ modeling 
practices, “Rather than measuring how closely students approximate normative 
descriptions of modeling, their practices can be viewed as fertile ground for formulating 
theory about modeling in the schools, the conditions of its production, and the possibilities 
for constituting socio-critical practices” (p. 296-7). For Barbosa, the interest is not in 
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comparing student ideas to expert practices, but in studying the students’ development from 
their own experiences and within their school context. Barbosa’s work highlights that the 
modeler is part of the modeling process. This requires modeling activities that value the 
problems faced by the modeler, the contexts being modeled, and the modelers themselves. 
 
1.3.  MODEL DEVELOPMENT SEQUENCES 
 

A models and modeling perspective (Doerr & English, 2003; Lesh & Doerr, 2003) 
presents a framework for designing instruction that incorporates the modeling theory, 
model-based reasoning, and modeling activity perspectives of Hestenes (2010), Lehrer and 
Schauble (2010), and Barbosa (2006). From a models and modeling perspective, a model 
is defined as a system consisting of elements, relationships, rules and operations that can 
be used to make sense of, explain, predict, or describe some other system (Doerr & English, 
2003; Lesh & Doerr, 2003). An underlying assumption of this perspective is that learning 
occurs through the process of developing an adequate and productive model that can be 
used and re-used in a range of contexts. Similar to Lehrer and Schauble, the invention and 
use of representational forms (such as drawings, diagrams, maps, physical replicas, 
mathematical functions and simulations) are critical steps that learners need to take to 
develop model-based reasoning about phenomena. 

One category of modeling tasks that has been studied over a range of content areas is 
known as model eliciting activities (MEAs). These activities are designed to elicit students’ 
initial conceptions and representations about realistic and meaningful problem situations. 
Often students’ initial ideas are not very useful or sophisticated. However, as students 
discuss their approaches with other students or share them with the whole class, they have 
the opportunity to evaluate and reject initial conceptions and to revise them in ways that 
are increasingly productive and accompanied by useful representations. MEAs encourage 
groups of students to engage in an iterative process where they express, test, and refine 
their ways of thinking about meaningful problem situations. MEAs are designed to elicit a 
generalizable model that reveals the underlying structure of the problem situation.  

Six principles for guiding the design of an MEA developed by Lesh and colleagues 
have been widely used to develop MEAs at all grade levels K-16 and in many content areas 
(Lesh, Hoover, Hole, Kelly, & Post, 2000). Each principle is met by designing an activity 
to address a set of questions as follows:  

(1) The Reality Principle: Could this problem really happen in a real-life situation? 
Will students be encouraged to make sense of the situation based on their personal 
knowledge and experiences? 

(2) The Model Construction Principle: Does the task ensure that students will 
recognize the need for a model to be constructed, modified, extended or refined? 
Does the task involve describing, explaining, manipulating, predicting or 
controlling some other system? Is attention focused on underlying patterns and 
relationships, rather than on surface features? 

(3) The Model Documentation Principle: Will the responses that students generate 
explicitly reveal how they are thinking about the situation? What kinds of 
mathematical objects, relationships, operations, patterns and regularities are they 
thinking about? 

(4) The Self-Evaluation Principle: Are the criteria clear to students for assessing the 
usefulness of alternative responses? Will students be able to judge for themselves 
when their responses are good enough? For what purposes are the results needed? 
By whom? When? 
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(5) The Model Generalization Principle: Can the model that is elicited be applied to a 
broader range of situations? Students should be challenged to produce re-usable, 
shareable, and modifiable models. 

(6) The Simple Prototype Principle: Is the situation as simple as possible, while still 
creating the need for a significant model? Will the solution provide a useful 
prototype for interpreting a variety of other structurally similar situations?  

However, a single MEA is not enough for students to develop fully a generalized model 
that can be used in a range of contexts (Ärlebäck, Doerr, & O’Neil, 2013; Doerr & English, 
2003). To achieve this goal, students need to engage in a sequence of model development 
activities (see Figure 1). Such sequences are structurally related tasks, beginning with an 
MEA and followed by one or more model exploration activities (MXAs) and model 
application activities (MAAs). These sequences provide a way of organizing instruction 
on a central concept such as inferential reasoning or variation and distribution. The MEA 
elicits students’ initial models. The MXAs engage the students in thinking about the models 
that were elicited. The MXAs focus on the underlying structures of the models and on the 
strengths of various representations and ways of using them productively. After thinking 
about their models, MAAs engage students in thinking with their models by applying them 
to new contexts. As Lehrer and Schauble (2010) pointed out, “A good representational 
solution for one kind of problem may not work well for another” (p. 16). MAAs engage 
students in making adaptations to their models, extending or modifying previously 
explored representations, and refining language for describing and explaining phenomena. 
Each component of a model development sequence (Figure 1) engages students in multiple 
cycles of descriptions, interpretations, conjectures, and explanations that are revised and 
refined while working with other students. As illustrated in Figure 1, the initial MEA can 
be followed by an MXA or an MAA, which can then be followed by any order of additional 
MXAs and MAAs that promote the development of a targeted conceptual system. 

 
Model Development Sequences 

 

 
 

Figure 1. The general structure of a model development sequence 
 

2. METHODOLOGY 
 
2.1.  DESIGN AND PARTICIPANTS 
 

In this collaborative research study, we draw on a view of educational design research 
that focuses simultaneously on the design of a product (in this case the design of an 
instructional sequence focused on developing students’ generalized models for drawing 
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informal inferences when comparing two sets of data) and on the generation of theory or 
principles about the teaching and learning of model-based inferential reasoning. A design 
experiment (e.g., Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Gorard, Roberts, & 
Taylor, 2004; Hovan & Palalas, 2011) approach was used, developing the activities through 
an iterative process of initial task design based on theory, field testing, updating theory, 
redesigning the task, and repeating the process. As Kelly, Baek, Lesh, and Bannan-Ritland 
(2008) observed: “design researchers may learn not only how to improve an innovation, 
but also how to conduct just-in-time theory generation and testing within the context of 
design processes and in the service of the learning and teaching of content” (p. 5). We are 
explicitly locating our work in the messy context of a classroom, with all of its constraints, 
as the research team itself worked to understand a modeling approach to informal 
inferential reasoning and the application of task design principles to the innovation.  

Participants were 26 Year 5 students (18 males and 8 females, ages 10-11) in an 
inquiry-based classroom from a primary school in a suburb of Brisbane, Australia. One 
member of the research team (Makar), who knew the classroom teacher and her students, 
taught the instructional sequence. The research team met with the classroom teacher, who 
also took an active role in the teaching and contributed much to the work of the team. 
Similar to other work in the tradition of design-based research, the research team met after 
each lesson, shared observations about students’ emerging ideas, identified modifications 
to be made in the instructional activities, made decisions about which student 
representations to draw on in class discussions, and shared ideas about questions to ask the 
students and general teaching strategies. In this way, cycles of testing and revision occurred 
as we implemented the innovation (the instructional sequence) and theory building 
occurred as we sought to understand what a modeling approach brings to the development 
of students’ informal inferential reasoning. 
 
2.2.  THE MODEL DEVELOPMENT SEQUENCE 

 
The modeling activities were based on the paper helicopter experiments introduced by 

Box (1992). The research team reviewed articles on paper helicopter experiments (e.g., 
Ainley, Pratt, & Nardi, 2001; Annis, 2005; Erhardt, 2007; Siorek & Hafta, 1998). The 
overall learning goal of the sequence of activities (MEA, MXA, MAA) was to have 
students develop a model for comparing groups; the purpose of each modeling activity is 
shown in Table 1.  

 
Table 1. The three types of modeling activities 

 
Modeling Activity Abbreviation Purpose 
Model Eliciting MEA Elicit initial conceptions and representations 
Model Exploration MXA Engage students in thinking about the models 
Model Application MAA Students adapt, modify, or extend models 

 
Field notes taken during each lesson and student-generated artifacts (e.g., dot plots, 

written predictions, written conclusions) were analyzed and discussed by the researchers 
to inform modifications to the next lesson prior to implementation. We briefly describe 
each of the activities that comprise the model development sequence. 

The model eliciting activity (MEA) The initial MEA engaged the students in 
investigating the question: How long does a paper helicopter stay in the air? The intent of 
the investigation was to have students aggregate, describe, and explain the data from 
multiple groups of students collecting data about their paper helicopters. Rather than 
specify a particular procedure for collecting and representing the data, we planned to have 
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the students create identical helicopters (see Figures 2 and 3) and to make available a range 
of tools, including meter sticks and stop watches, for collecting the data. No instructions 
were given on how to “launch” the helicopters or on how to measure flight durations as we 
wanted to begin with students’ initial conceptions and to support them in developing a need 
for a process to generate, collect, and represent data in order to respond to the question 
under investigation.  
 

 
 

Figure 2. Template students used to create a paper helicopter 
 

 
 

Figure 3. An assembled paper helicopter 
 

The model exploration activity (MXA) Dot plot representations were new to this group 
of students. Building on the outcome of the MEA, the MXA focused on the creation and 
interpretation of meaningful dot plots as a first type of representation that would allow the 
students to address the inquiry question. Following from a discussion of aggregated data 
from the MEA, the students were given the following task: Collect enough data from two 
different heights to show evidence with dot plots that height matters. The intent of this 
MXA was on guiding the students to explore the usefulness of dot plots as a means to 
compare two groups, thus drawing on Hestenes’ (2010) ideas of model (e.g., a 
representational structure that identifies relationships among a set of objects involving 
quantitative measures and to which qualitative reasoning can be applied). Students worked 
in small groups of three to four to collect data and create dot plot representations, which 
were publicly displayed on poster paper. The researcher, with the aid of the classroom 
teacher, led a whole class discussion where students (a) interpreted the data and (b) 
evaluated the representations by comparing and identifying features that facilitated 
comparison of flight durations for the two heights. This discussion was designed to promote 
Hestenes’ and Lesh et al.’s (2003) modeling activity goals of building shared meanings and 
evaluating models. 
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The model application activity (MAA) The MAA had students work in pairs to apply 
what they learned from the MEA and MXA to design and carry out a method for collecting 
evidence of a difference in flight durations between two types of helicopters – helicopters 
with long wings and with short wings. They were told the manufacturer of the paper 
helicopters needed an answer to the following question: How big of a difference is there 
between the flight duration of short-wing and long-wing paper helicopters? Their system 
(or model) for answering this question had to be described in such a way that the 
manufacturer could carry out their plan for studying this question. In addition to providing 
an estimate of the difference in flight durations, the student groups had to provide a 
statement of “how sure” they were about the size of the difference. Students were 
encouraged to include graphs or pictures that would help the manufacturer understand their 
estimate. The students worked in pairs with two helicopters, one long-wing and one short-
wing, and collected data to draw conclusions and support their conclusions with evidence.  

 
2.3.  DATA COLLECTION AND ANALYSIS 
 

Data collected during the activities described above included video recordings of each 
session, field notes, students’ recorded predictions and conclusions in the MEA, dot plots 
produced during the MXA, and the comparative dot plots made during the MAA. These 
artifacts were analyzed to address our central research question: How did the model 
development sequence support students in developing a generalizable model for comparing 
two groups of observed data? 

The artifacts and videos were analyzed, first separately and then increasingly in an 
intertwined process. The video analysis followed a process similar to the seven-stage model 
described by Powell, Francisco, and Maher (2003): attentive viewing, description, 
identifying critical events, transcribing, coding, construction of a storyline, and composing 
narrative. Although the analysis is described here as an ordered process, in practice it was 
non-linear and overlapping. Some stages were begun but then left incomplete and returned 
to later to fill in gaps or temporarily skipped if needed. The drafted narrative, as explained 
by Powell et al., was developed from the beginning alongside the other stages of analysis 
to assist with meaning-making, and clarifying or modifying key ideas as insights were 
gained from analysis and discussion among the authors.  

The researchers each watched the three lessons multiple times to re-familiarize 
themselves with the general content of the lessons. Although all three authors were present 
during the lessons, viewing of the video assisted with clarifying details from a common 
source. A brief video log was created including timestamps, screen shots, and short 
descriptions of lesson segments to facilitate the location of critical events. The major 
learning objectives were identified for each of the three lessons. The beginning and end 
point at which a change or shift occurred in classroom discourse that moved the class in 
the direction of a learning objective was called a milestone. Five milestones were identified 
across the three lessons (see Table 2).  

 
Table 2. Major milestones across the model development sequence 

 
Milestone Description Activity 
1 Attending to variation MEA 
2 Collectively representing evidence MXA 
3 Does drop height matter? MXA 
4 Identifying useful characteristics of representations for 

comparing groups 
MXA 

5 Applying the students’ model for comparing groups MAA 
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The field notes and video logs were used to identify segments of the video recording 

of a lesson where a milestone occurred. Narrative accounts consisting of transcriptions and 
still video frames were created to produce a storyboard for each milestone. The narrative 
transcripts were used to identify how students interacted with the paper helicopters, and the 
nature of interactions between the teacher/researcher and the students. After each lesson, 
the student-generated artifacts (dot plots, written predictions, written conclusions) were 
analyzed to identify characteristics of students’ representations and thinking about 
comparing groups across the model development sequence. The field notes, narrative 
transcripts, and artifact analyses were used to provide evidence of the development of the 
students’ understandings relative to each milestone. 

The main artifacts from the MEA were the students’ initial predictions, their estimated 
flight times and statements of conclusions after experience with measuring the flight times 
of the paper helicopters, and a whole class dot plot of measured flight times. Predictions 
were coded for whether or not they represented an interval estimate. Conclusions were 
coded for whether or not estimates were stated as a type of average (using the words 
“average,” “about,” or “around”), a statement of clustering (stating where “most” or “more” 
of the flight times were located), if variability in the flight times was noted, and if a 
statement indicating that the flight times depended on the drop height was included.  

The main artifacts from the MXA were conclusions written by each student after a 
discussion of the whole class dot plot from the MEA and dot plots produced by each small 
group of students after collecting flight times from two different drop heights. Students’ 
individual conclusions were coded for whether or not they: explicitly stated that flight time 
depends on drop height, provided a range or interval estimate for flight time duration, based 
their estimated flight times on where values clustered, and stated that the original inquiry 
question was not specific or that there was not a single answer to the inquiry question. The 
group dot plots were coded for the number of points on each dot plot, if two number lines 
were used (one for each drop height), and if number lines were divided into equal intervals 
or if flight times were placed in rank order along a number line. If two number lines were 
used, dot plot representations were coded for whether or not the number lines were aligned 
vertically and if the same scale was used on each number line (e.g., both went from 0 to 2 
seconds).  

The main artifacts collected from the MAA were the dot plot representations and 
conclusion statements produced by each small group to compare the flight times of short-
wing and long-wing paper helicopters. The same characteristics coded for in the MXA dot 
plots were coded for in the MAA dot plots. In addition, dot plots were coded for whether 
or not an “average” was reported for each type of helicopter, the estimated difference in 
flight times, and the degree of overlap between the distributions for the two types of 
helicopter (complete or almost complete, some, or none). The conclusion statements were 
coded for whether or not the degree of overlap was acknowledged and whether or not a 
group stated that there was a difference between the flight times of short-wing and long-
wing helicopters. 
 

3. RESULTS 
 

We draw on the empirical data from this study to address our central research question: 
How did the model development sequence support students in developing a generalizable 
model for comparing two groups of observed data? We report our findings in terms of five 
milestones that occurred over the three days of the instructional sequence, beginning with 
our analysis of the MEA. Students’ conclusions are reported exactly as they were written, 
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which includes their misspellings of words. Each student’s real name has been replaced by 
a pseudonym. 

 
3.1.  MILESTONE 1: ATTENDING TO VARIATION 

 
We wanted to begin our research on the development of students’ models for 

comparison from their initial strategies for representing and comparing data. We wanted to 
create a need for collecting, representing, and interpreting data that would respond to the 
inquiry question about flight times for helicopters and ultimately to support students in 
using data representations to make meaningful comparisons. The MEA engaged the 
students in playing with paper helicopters to investigate the inquiry question posed by the 
teacher: How long does a paper helicopter stay in the air? Twenty-three of the 26 students 
were in attendance during the MEA. Before actually playing with the helicopters, the 
students were shown a typical paper helicopter and asked to predict how long it would stay 
in the air (see Figure 3). There was a large range in the first prediction given by each 
student, from a low of two seconds to a high of one minute (see Table 3). Only three 
students provided an interval for their predictions (2-5 seconds; 3-5 seconds; 30-45 
seconds), thus the majority of students provided a point, or single value, prediction. This 
initial prediction was intended to focus students’ attention on the inquiry question: the 
length of time a paper helicopter would stay in the air.  

 
Table 3. First predictions for how long a paper helicopter stays in the air  

 

Prediction 

Estimate Type Total 
Single Value Interval  
N (%) N (%) N (%) 

Value(s) between 2 and 6 seconds 7 (30%) 2 (9%) 9 (39%) 
Value(s) between 10 and 15 seconds 7 (30%) 0 (0%) 7 (30%) 
Value(s) between 30 and 60 seconds 6 (26%) 1 (4%) 7 (30%) 
Total 20 (87%) 3 (13%) 23 (100%) 

 
Following their written predictions, students created and launched their paper 

helicopters (see Figure 2) to collect evidence to answer the inquiry question. After working 
in small groups to make sense of the flight times of the paper helicopters, students were 
again asked to write down their prediction about how long a paper helicopter would stay in 
the air. These estimates, based on their observed data, not surprisingly were less variable 
than their first predictions, ranging from 1.24 to 3 seconds. The most common response 
was a point estimate of 2 seconds given by 12 students (52%). Three other students (13%) 
gave intervals that had a midpoint of 2 seconds (one student wrote 0.20 – 3.8 seconds, and 
the other two each estimated 1 to 3 seconds). Of the remaining students, six (26%) gave a 
point estimate between 1.24 and 1.8 seconds, and two others gave point estimates of 2.44 
and 3 seconds, respectively. In contrast to the first predictions, seven (30%) of the students 
provided an interval of values for their estimate. After playing with the paper helicopters, 
there was less variation in estimated flight times relative to the predicted flight times, and 
more students expressed their second predictions as intervals. 

Each student also wrote a conclusion about the investigation of the flight times. 
Although the majority of students still provided point estimates for the flight times, nine 
(39%) of the conclusion statements qualified their estimates with words and phrases such 
as “about,” “around,” “mostly,” “most people,” “more times,” or “most of the time.” 
Examples of statements that identified a qualified estimate are: 

 



 

 

97 

 

Ankita: The results show that the average amount of time the paper helicopter stayed in the air 
for was about 2 seconds. The way we found out this data is we had a results page and 
measured the height and how many seconds it stayed in the air and recorded it. 

Noah: Our groups result was around 1.25. All three of us stood as high as we could then 
dropped it while another member used a stop watch to time. 

Anna: Mostly 2 seconds. The hellicopter stays in the air for 2 seconds most of the time but 
depends on the height. 

Jordan: 2.0 seconds because there were more times in the 2.00 sec mark 
 
An additional 11 students (48%) described or stated a range of values, or stated that the 

values were not all the same. Examples of these types of statements are: 
 

Simon: The paper helicopter was in different time all round, because we dropped it at 
different heights so it had different times 

Riley: Our group found out that the paper helicopter stayed in the air for 3 seconds, the 
most and 2 seconds the least. 

Vijay: Our group found out that our paper helicopter stayed in the air for 1-3 seconds when 
[TEACHER] stood on a chair and dropped it at the ceiling height. 

Wei: Between 0.20 seconds and 3.80 seconds, the helicopter had stayed in the air. 
 
Thus, a majority of the students expressed recognition of the variability in the flight 

times even though a majority of the estimates were reported as point estimates. At the same 
time as students recognized the variability in flight times, new ideas about sources of 
variation were elicited by the task. Our viewing of the video recording of the students’ play 
with the helicopters revealed a variety of ways in which the paper helicopters were 
launched. For example, some groups threw the helicopter up into the air resulting in varying 
heights from which the helicopter started to fall. Others dropped the helicopter from 
varying heights, with some of these groups using measuring sticks to determine and record 
the drop height. In their written conclusions about their investigation of the flight times, 11 
of the students (48%) made a statement indicating a relationship between the height at 
which the paper helicopter started and the flight time. Below are some examples of 
statements that indicated recognition of the relationship between these two quantities: 

 
Matt: I think that the higher the helicopter gos the longer it flys in the air. If the 

helicopter is thrown in the air it took about 3 seconds to reach the ground. 
Martin: The paper helicopter varried in time because there needs to be a specific height 

to drop from and there was no particular height. The higher the helicopter was 
dropped from the more time it took to get to the ground. 

Beth: Our results prove the time a paper helicopter stays in the air is determined by the 
height that we through [threw] it from and the way the helicopter is throughn 
[thrown]. 

The variation that occurred in how the students launched the helicopters into flight 
made visible to the students that the height from which the helicopter is dropped matters in 
terms of the flight time. Thus, at the end of this first task, we found that the students were 
beginning to shift from point estimates of flight times to interval estimates and to a 
recognition that the drop height is now a variable of considerable interest for answering the 
model eliciting question about how long a paper helicopter stays in the air. 
 
3.2.  MILESTONE 2: COLLECTIVELY REPRESENTING EVIDENCE 
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The students’ work on the MEA created the need for the students to look collectively 
at their data on flight times for helicopters. To meet this need, the teacher introduced a 
common number line on which students could record their data, as shown in Figure 4.  
 

 
 

Figure 4. A number line for sharing students’ data on flight times 
 

This in turn led to a whole class discussion that focused on the interpretation of the 
representation and an evaluation of the representation’s usefulness in supporting the 
drawing of conclusions from evidence. The students’ interpretations and evaluations of this 
representation formed the core of the MXA, as described earlier. All of the 26 students 
were in attendance during the MXA. The teacher drew the students’ attention to the 
variability in the flight times and asked if the class could give an answer to the inquiry 
question: “How long does a paper helicopter stay in the air?” There was a mixture of “yes” 
and “no” responses from the students. The students then paired up and discussed whether 
or not the dot plot allowed them to come to a conclusion. After about five minutes of 
discussion, the teacher directed the students to each write down a conclusion, emphasizing 
that students needed to explain why they came to their conclusions. 

Our analysis of the students’ written conclusion statements showed that 17 (65%) of 
the 26 students made a statement that was coded as “height matters” with respect to flight 
times. Examples of such statements are: 

 
Lucy: It depends on what height you drop it from because if it was a hiar height it could go 

for 1 second and if you drop it from the roof it could be 3 seconds. 
Jack: I think that it would be Beetween 1 sec and 3 secs But it Depends on how high you 

throw the helicopter. 
Sarah: If we all put it from the same hight we might get about the same answers. 

 
These statements suggest that students recognized that different groups of students 

dropped the helicopters from different heights and that this variability in drop height 
contributed to the wide variation in the flight times that students recorded. Four of the 
students who made a “height matters” statement also indicated that the inquiry question did 
not specify a drop height and two other students noted that there was no single answer to 
the inquiry question. Thus, the students concluded that “drop height matters” and that the 
dot plot representation did not adequately capture the variability in drop height.  

We also note that in their second set of conclusions, after discussing the whole-class 
dot plot, the students continued to provide both point (single value) estimates and interval 
estimates (see Table 4). Half of the students stated an interval, with three students 
essentially stating the flight times could be anywhere from 0 to infinity, while the other 10 
students expressed intervals within the range of observed flight times. Of the nine students 
who provided single value point estimates, six made qualifying statements that their point 
estimate was based on where most of the values were on the dot plot or recognized that 
there was a range of values.  

 
Table 4. Type of predictions made in students’ second conclusions  
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Type of Predication N (%) 
Interval estimate 
 Anywhere from 0 to infinity 
 Interval within the range of observed flights 
 Total 

 
3 (12%) 
10 (38%) 
13 (50%) 

Point estimate 
 1 second 
 2 seconds 
 1.05 seconds and 2.34 seconds 
 Total 

 
2 (8%) 
6 (23%) 
1 (4%) 
9 (35%) 

No estimate 
 Because flight time depends on the height 
 Statement not relevant to the inquiry question 
 Total 

 
3 (12%) 
1 (3%) 
4 (15%) 

Total 26 (100%) 
 

Four of the students did not provide an estimate. Three of these students stated that they 
could not give an estimate because the flight time depends on the height at which the 
helicopter was dropped: 

 
Angus: I think there is no average because you can drop the helicopter form 1m and get 2 sec 

but you can drop off a building it could take 1 hour so it depends on the height you drop 
it from. 

Riley: It depends on the hight of were your droping it from e.g. if you drop it from a 10m tree 
it might be 10 or 20 seconds. 

Simon: My conclusion is that I can't answer because people got different times at different 
heights cause the question was not very specific. 

 
The conclusion written by the fourth student did not address the inquiry question (“The 

height of the helicopter when you drop it”). Thus, a majority of the students indicated that 
they were aware of the variability in the flight times and that the variability was related to 
the height at which a helicopter was dropped or launched. 
 
3.3.  MILESTONE 3: DOES DROP HEIGHT MATTER? 
 

The students’ conclusion that drop height matters when answering the question posed 
in the MEA (How long does a paper helicopter stay in the air?) led the research team to 
design a new question for the teacher to pose in the MXA: “Drop height seems to matter. 
How can we tell this from the class data?” This question continued the MXA by pressing 
for the collection and representation of data that would provide evidence to answer this 
new inquiry question. The teacher recorded the students’ conclusion on the board in the 
front of the classroom: “the helicopter will stay in the air longer if it is dropped from a 
higher height.” She then posed a new task for the students that focused the students’ 
attention on collecting evidence from two different heights and on creating a representation 
that would allow the students to draw conclusions based on their data or evidence: “Collect 
enough data from two different heights to show evidence with dot plots that height 
matters.” As with the previous inquiry question, the students were not given specific 
heights to use, nor were they told how much data to collect, nor were they told how to 
represent their data on dot plots. Not surprisingly, this MXA led to more variation as both 
drop heights and the number of drops made when collecting evidence varied across student 
groups. 
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Our analysis of each group’s dot plots showed noticeable variation in how the 
distributions of flight times were displayed. The seven groups did not use exactly the same 
two drop heights. Four of the groups used 1m and 2m as the respective drop heights. The 
other three groups used drop heights of 0.5m and 1m, 1.5m and 2m, and 1.44m and 2.67m, 
respectively. Additionally, the number of drops from each height varied considerably, with 
six of the groups making between 5 and 15 drops from each height, and one group that 
made only two drops at each height. 

All of the dot plots were based on horizontally oriented number lines, similar to the 
number line that the teacher provided for the whole class dot plot of flight times shown in 
Figure 4. Five of the seven groups used two separate number lines, one for each of the two 
drop heights, and aligned the two number lines vertically. Among these five pairs of dot 
plots, only two of the groups used the same scale for both dot plots (e.g., the number line 
for both dot plots went from 0 to 2 seconds) with each number line drawn to approximately 
the same physical width, and with equal intervals as shown in Figure 5.  
 

a. 

b. 

 
 

Figure 5. Dot plot pairs where with the same scale for each dot plot 
 
Two other groups marked off equal intervals on the number lines. One of these groups 

used two vertically aligned number lines where the physical width of both number lines 
were the same but the intervals were not (from 0 to 2 seconds for a 1m height, but from 1 
to 2 seconds for a 2m height; see Figure 6). The other group used a single number line that 
went from 1 second to 2.4 seconds marked off in 0.1-second increments (Figure 7). This 
group made two drops at each drop height, but only a single flight time was plotted for each 
drop height. During class discussion the students in this group said that the flight times for 
both drops at a particular height were very close to the plotted point. 
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Figure 6. Dot plot pair with a different scale for each dot plot 
 

 
 

Figure 7. Dot plot with a single number line 
 

Of the remaining three groups, two groups placed all or some of the flight time values 
in rank order along their respective horizontal lines. One of these groups used only a single 
line to rank order 12 flight times at a 1m drop height and 13 flight times from a 2m drop 
height (see Figure 8a). All of the 1m flight times were less than all of the 2m flight times. 
A vertical line indicated each flight time with the drop height recorded at one end of the 
line (e.g., the top) and the flight time recorded at the other end (e.g., the bottom), alternating 
the positions of the labels from one vertical line to the next. The vertical lines were evenly 
spaced so that the distance between the vertical lines did not represent actual differences 
between flight times. The other group used a separate horizontal line for each drop height 
(Figure 8b). The two lines were of the same physical width but had different start and end 
values. Flight times were placed along each horizontal line in rank order, but they were not 
located relative to the end points.  

 
a. 
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b. 

 
 

Figure 8. Examples of dot plots that marked flight times in rank order 
 
In summary, although the majority of the groups created pairs of dot plots that could 

be used as evidence to argue whether or not flight time was related to drop height, some of 
the representations made the comparison easier than others (e.g., those shown in Figure 5). 
Some groups continued to use a single number line for their dot plot, labeling the dots to 
convey additional information about drop height. This variation in dot plot representations 
and the idea that some representations facilitated comparing groups better than others set 
the stage for the next part of the MXA. 

 
3.4.  MILESTONE 4: IDENTIFYING USEFUL CHARACTERISTICS OF 

REPRESENTATIONS FOR COMPARING GROUPS 
 
The representations generated by the students for showing evidence that “drop height 

matters” led to a continuation of the MXA, focusing on the useful characteristics of the 
various representations created by the students. The next question that was posed by the 
teacher was “which ones of these [representations] is the easiest to be able to tell, and most 
convincing, that [drop] height matters?” This question aligns with Hestenes’ (2010) three 
elements of models (simplicity, generalizability and applicability) and focused students’ 
attention on interpreting their graphs and using them to draw “convincing” conclusions. 
This question also aligns with the principles put forward by Lesh et al. (2003) for engaging 
students in self-evaluation of their models and model generalizability. The teacher also 
asked “what are some of the properties of some of these [representations] that make that 
[height matters] easy to see?” Here, the teacher focused the students’ attention on the salient 
characteristics of the graphs (such as using the same scale, and alignment of the scales; see 
Figure 5) that make a representation easier to interpret. In other words, a dual focus was 
made possible by variation in the representations that the students generated: (1) How do 
you interpret these representations to answer the question about whether drop height 
matters? (This drew the students’ attention to making sense of what they personally did 
and how they chose to represent their own data); (2) How can we evaluate the usefulness 
of the representations that were created by the class as a whole? By engaging students in 
this evaluative phase, the teacher provided the broad guidance necessary for students to 
explain what characteristics of the representation (e.g., same scale for both drop heights, 
labeling the drop height for each graph, consideration of the number of data values shown 
on the graph) are useful in making conclusions based on a comparison of two different drop 
heights.  
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After all of the representations were discussed, the teacher focused on the 
representations of the two groups that each had two vertically aligned number lines on the 
same scale and with equal intervals (shown in Figure 5). At this point, the teacher asked: 

So, if we were going to sit back and look at all of these, and see which ones of these is 
the easiest to be able to tell, and most convincing that height matters, what are some of 
the properties of some of these that make that easy to see? 
In reference to the group’s representations shown in Figure 5b, the teacher asked 

questions such as, “Can you see anything that makes that one easier to interpret? What is 
it that that group has done that makes it clear to you?” One student noted that the clusters 
of points between the two drop heights were not overlapping. When the teacher asked what 
the group did that allowed the class to see the distributions were not overlapping, another 
student stated that the same scale was used for both dot plots. The teacher then drew 
students’ attention to other groups’ representations where the scales were not the same for 
the two drop heights (e.g., see Figures 6, 7, and 8) and asked the students to contrast the 
ease of judging the difference. For example, in discussing the dot plot in Figure 6:  

 
Teacher: And if you’re standing in the back of the room, is that something you can see right 

away from these two? That these ones [pointing to 2-metre dot plot] took longer 
than these ones [pointing two 1-metre dot plot]? What makes it hard, Martin? 
You’re shaking your head. 

Martin: Um, well, maybe it’s, um, we did the first one from 0 to 2 and then we did the 
second one from 1 to 2, so they’re both kind of in the middle. 

Teacher: OK.  
Martin: Except the second one actually got more time [speaking too soft to transcribe] 
Teacher: So, it is a little bit hard when you have different scales on your number lines to see 

that immediately. You have to really pay attention to the numbers. Is there another 
observation that you have about this data, by the way, besides just the middle? 
Anything else you notice about it? Simon, you’re sort of mouthing to yourself. 

Simon: It’s kind of all spread out. 
Teacher: This [2-meter dot plot] is kind of more spread out than that one. Do you see that? 

The scale makes it a little difficult to see, because if you had this [2-meter dot plot] 
go from 0 to 2 it would have been a bit more squished up [squeezing gesture with 
index finger and thumb]. But what does it tell you when it’s more spread out? What 
does it tell you about those two flights? What does spread out mean [shrugging 
shoulders]? Ethan. 

Ethan: They’re far apart, they’re not close. 
 
By the end of the model exploration portion of the model development sequence, the 

students’ models (or systems) for comparing groups now included the use of paired dot 
plot representations. They had identified useful characteristics of representations for 
comparing groups such as using equal scales on both dot plots and the vertical alignment 
of the scales.  
 
3.5.  MILESTONE 5: APPLYING THE STUDENTS’ MODEL FOR COMPARING 

GROUPS 
 

The last portion of the model development sequence was an MAA where the students 
had to apply the model for comparing groups that was elicited and explore a new inquiry 
question: How big of a difference is there between the flight duration of short-wing and 
long-wing paper helicopters? Short-wing versions of the helicopters were made by 
trimming the wings at the vertical line marked on the wings in Figure 2. The 24 students 
who attended this lesson worked primarily in pairs, with one group of three students and 
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one student who worked alone. All of the groups attended to drop height by selecting a 
fixed drop height (most commonly of one meter) for dropping their long-wing and short-
wing helicopters. All of the groups created graphical representations that consisted of two 
horizontal number lines, one for each type of helicopter, that were of the same physical 
width, used the same scale, and were aligned vertically one above the other. 

These representations furthered the development of students’ models for the 
comparison of groups as they now had to account for the overlap in the distributions and 
draw conclusions based on the extent of the overlap. The distributions of flight times for 
the short-wing and long-wing helicopters overlapped almost completely for six of the 
groups (see Figure 9), with only a small portion of the two distributions overlapping for 
another three groups (Figure 10), and complete separation of the distributions for the 
remaining three groups (Figure 11).  

Only two of the groups that had almost complete overlap of the two distributions 
acknowledged the overlap in their conclusion statement (“Some of the results were even 
the same”; “a lot of other short winged ones are bigger than the smallest long winged 
helicopter”). Both of these groups stated there was no difference between the flight times 
of the two helicopter types (“no real big difference”; “there similar”). 

Of the four remaining groups with almost complete overlap in the distributions, one 
group (Figure 9a) concluded “that long-winged helicopters stay in the air roughly close to 
the short-winged helicopters by an estimate of 0.055.” Another group (Figure 9b) estimated 
the average difference to be “around 0.10 second”, but also stated “which isn’t long.” Of 
the two remaining groups, one simply stated a very small estimated average difference 
(2/100 of a second) but without commenting if that represented a meaningful difference. 
The last group (Figure 9c), contrary to all other groups, stated, “Our evidence shows us that 
the short-winged helicopter stays in the air the longest. The highest in the short winged is 
1.95 seconds,” even though two of the long-wing helicopter flight times were greater than 
1.95 seconds. Overall, the five of the six groups with almost completely overlapping 
distributions of flight times concluded their evidence did not indicate a meaningful 
difference in flight times between the two types of helicopters, with two groups supporting 
this conclusion with an estimate of the amount of overlap between the distributions. 

a. 
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b. 

 
c. 

 
 
Figure 9. Examples of dot plots from the MAA with almost complete overlap in the 

distribution of short-wing and long-wing helicopters 
 
As stated earlier, only a small portion of the distributions of flight times for the two 

helicopter types overlapped for three groups, and there was complete separation of the 
distributions for the remaining three groups. Five of these groups stated that their evidence 
“shows” or “proves” that the long-wing helicopters stayed in the air longer than the short-
wing helicopters.  
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a. 

 
b. 

c. 

 
 

Figure 10. Examples of dot plots from the MAA with slight overlap in the distribution of 
short-wing and long-wing helicopters 
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a. 

 
b. 

 
c. 

 
 

Figure 11. Examples of dot plots from the MAA with no overlap in the distribution of 
short-wing and long-wing helicopters 

 

In addition to their graphical representations, most (9, or 75%) of the groups also 
reported an estimated difference between the flight time of the short-wing and long-wing 
helicopters. However, they had various ways of estimating and reporting the difference. 
Five of these groups reported an “average” value for each helicopter type and the reported 
difference equaled the difference between the two averages (note that students had not yet 
been taught how to calculate the mean). Three groups described how they estimated the 
averages: two groups calculated the mid-range value (i.e., the midpoint between the 
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minimum and maximum values) for each type of helicopter, whereas the third group 
“visualised the averages, from the dot plot.” For the four groups that provided an estimated 
difference but did not report an average for each type of helicopter, one group reported the 
difference between the maximum flight times for each type of helicopter. For the other 
three groups, the estimated difference was close to the difference between the two mid-
range values. We note that for some groups of students, when doing calculations, they 
tended to return to single-value estimates of the difference in flight times for short-wing 
and long-wing helicopters.  
 

4. DISCUSSION 
 
In this article, we have addressed the following research question: How did the model 

development sequence support students in developing a generalizable model for comparing 
two groups of observed data? We respond to this question by focusing on three aspects of 
the question: (1) the role that the model development sequence had in supporting students; 
(2) the development of students’ models over the three lessons; and (3) the generalizability 
of the students’ models for comparing two groups.  

 
4.1.  THE ROLE OF THE MODEL DEVELOPMENT SEQUENCE 

 
The lessons were designed around Lesh and colleagues’ (Lesh et al., 2003) model 

development sequence of an MEA, an MXA, and an MAA. This model development 
sequence provided an instructional design framework that supported students through a 
process of needs-based revision and refinement of their models. Our application of the 
model development sequence built on the modeling perspectives of Hestenes (2010), 
Lehrer and Schauble (2010), and Barbosa (2006) to promote development of a model that 
could productively be applied and re-used across a range of contexts. The model 
development sequence guided the research team to design a meaningful task that elicited a 
need for a process or system for comparing two groups (MEA), then explored and improved 
on representations that compared two groups (MXA). Finally, the application of students’ 
models to a new situation with a similar structure (MAA) further strengthened the 
generalizability and abstraction of the model.  

The model development sequence provided a focus and goal for each lesson. In each 
stage of the sequence, the lessons were revised to adapt to outcomes of the prior lesson and 
capitalize on opportunities that emerged. Collectively, the model development sequence 
provided us with an instructional design process to elicit, explore, and apply a sequence of 
improvable models that were authentically integrated with students’ experiences. The end 
goal of the sequence was to support students to create shareable and generalizable models 
for comparing two groups. The sections below further elaborate on this goal. 
 
4.2.  THE DEVELOPMENT OF STUDENTS’ MODELS 
 

In Section 3, we described the details of how the students’ models developed over the 
three lessons. Students’ models began from their initial ideas about the context they were 
investigating: How long does a paper helicopter stay in the air? To address this question, 
students grappled with a number of contextual factors that would challenge a direct 
response. Wrestling with these factors fueled discussion and allowed students multiple 
opportunities to scrutinize their ideas and improve their models. In this way, the 
development of students’ models went through a number of milestones in which new 
insights were gained that provoked a need for model improvements.  



 

 

109

 

The students’ initial work with flying the helicopters in the MEA appeared as 
unstructured and unsystematic play, with a large variety of techniques used to launch the 
paper helicopters. This “play” revealed a number of important insights for students that 
assisted them to select aspects of the context to attend to for the initial model that mattered 
to them (or to ignore, if it did not) (Nemirovsky & Tierney, 2001), such as the need to 
measure and record drop times, the need to consider variability and its possible sources, 
and noticing (conjecturing) that drop height affected flight time.  

Initially to answer the problem they were addressing, the teacher asked students to 
record their group’s data on a single number line for the whole class. This initial 
representation of data (Figure 4) provided a first common artifact for the class to interpret 
and critique (Moschkovich, 2008). The students’ play in the MEA gave them experiences 
to connect the context of their helicopter flights to the data on the number line. The 
experiences, connections, and insights that emerged from students’ play and classroom 
discussion promoted a need for further development of their models. Throughout this and 
later milestones, students had to identify and articulate their thinking, make meaning of the 
specifics and abstractions of issues that arose (e.g., think about an appropriate sample size), 
test ideas, contend with conflicting information, attend to evidence, and make decisions 
based on their model. In the MXA, students used what they learned from the MEA to 
develop improved models that included useful representational structures for sharing their 
models of the helicopter phenomena (Figures 5-8). These representations acted as common 
artifacts to promote fruitful discussion and negotiation around theoretically useful and 
personally meaningful aspects of each model (Barbosa, 2006; Lehrer & Schauble, 2010; 
Moschkovich, 2008). In this way, the models students produced in the MAA in the third 
lesson were more likely to adapt aspects of previous models that were seen as productive 
for responding to a new problem situation (Doerr & English, 2003; Lehrer & Schauble, 
2010). Therefore, the children’s models were situated in and shaped by the context of their 
activities (Font et al., 2007; Roth & McGinn, 1998).  

The teacher played a key role in each lesson activity by encouraging students to play 
and make sense of the flight of paper helicopters, introducing representations (a common 
number line for class data), asking students to interpret and critique representations (e.g., 
“Drop height seems to matter. How can we tell this from the class data?”), selecting 
representations to compare, asking questions about characteristics of useful representations 
(e.g., “what are some of the properties of some of these [representations] that make that 
[height matters] easy to see?”), and privileging aspects of each discussion that promoted 
the overall goals of the sequence of activities (e.g., “Can you see anything that makes that 
one easier to interpret? What is it that that group has done that makes it clear to you?”), 
thus structuring and guiding the overall development of students’ models. These aspects of 
the teacher’s role highlight two important instructional implications for using a modeling 
approach. First, as seen in the unstructured play during the MEA and in the openness of the 
initial question for investigation, the students were free to approach the problem situation 
in ways that made sense for them. This generated a multiplicity of approaches as students 
engaged in deciding how and what data to collect, in interpreting those data, and in 
critiquing the usefulness of various representations of the data. Second, the multiplicity of 
student approaches provided the teacher and, more importantly, the students, with 
opportunities to compare representations and their usefulness in conveying information to 
others (how is “that one easier to interpret?”) and in providing evidence for conclusions 
(“how can we tell?”). Thus, the modeling approach engaged students in the critical activity 
of the evaluation of the goodness and usefulness of their models.    
4.3.  STUDENTS’ GENERALIZABLE MODELS FOR COMPARING GROUPS  
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Our research question included a third aspect—a generalizable model—that ensured an 
outcome for students that would deepen their theoretical knowledge of statistics and facility 
with data-based models (appropriate to their age). Generalizable models represent key 
structures of a discipline that appear across multiple contexts. In this study, the 
generalizable model was that of comparing two groups. Statistical situations that can be 
modeled by comparing two groups are common. The students’ journey through the model 
development sequence provided them with a useful model for comparing two groups. The 
sequence ended with the application of their specific and situated model being adapted and 
re-used for a different type of group comparison in the same context. With additional 
experiences and instructional support for making group comparisons in new contexts, it 
would be anticipated that students would be more likely to recognize a situation that called 
for group comparisons and have a general model at hand that they could modify and apply 
to the situation.  Transfer of problem solving knowledge and skills to novel contexts, 
however, is known to be difficult to achieve and dependent on many factors, such as the 
development of rich schema, intentional application of learned methods in new contexts, 
and large amounts of experience (e.g., Bransford, Brown, & Cocking, 2000; Lovett & 
Greenhouse, 2000; Singley & Anderson, 1989). Research is needed on conditions that 
promote effective transfer of models developed through model development sequences. 

Having a target of a generalizable model—an outcome of the model development 
sequence—provides a systematic approach for statistics educators to design learning 
experiences that address the key structures of the discipline. Rather than isolate concepts 
and skills such as graph construction and interpretation, calculation of center and spread, 
and managing samples and sampling, a models and modeling approach that includes 
generalizable (and useable) models places an emphasis on statistics as both powerful and 
relevant. The journey towards a generalizable model included multiple discussions about 
the useful characteristics of representations that were authentic to the students for 
addressing the problem under investigation. These explicit conversations were critical in 
facilitating the students’ journey and thus point to an important implication for instruction 
based on model development sequences.  The instructional goal of such sequences is not 
the particular solution to a particular problem situation.  Rather the goal of instruction is 
for the development of a model that can be used and re-used in a range of structurally 
similar problem situations.  Hence, the design of activities and the concomitant role of the 
teacher is to make visible the use and re-use of the model through its initial creation (MEA), 
representation (MXA), and application (MAA). In other words, a modeling approach to 
instruction has at its core the design of tasks and classroom activity that is focused on 
generalizability and applicability as instructional goals. 

 
4.4.  ADDRESSING KEY CHALLENGES IN STATISTICS EDUCATION 
 

We end our discussion by returning to the issues raised in the introduction, that of 
addressing Bakker and Derry’s (2011) three key challenges in statistics education: avoiding 
inert knowledge, avoiding atomistic approaches and fostering coherence in students’ 
learning experiences, and sequencing topics to improve this coherence for students. We 
argued that research in statistics education around informal inferential reasoning has moved 
the field forward on the second challenge. That is, research over the past decade has 
provided numerous examples of how informal inferential reasoning provides a more 
holistic approach to curriculum, thus fostering coherence. Therefore, informal inferential 
reasoning holds tremendous potential for improving the teaching and learning of statistics. 
On its own, however, informal inferential reasoning does not provide sufficient guidance 
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to instructors on how to support students in applying their statistical knowledge to novel 
problems nor how to sequence topics to improve coherence.  

By building on research about informal inferential reasoning with a perspective of 
model-based reasoning (Lehrer & Schauble, 2010), we see opportunities for addressing 
Bakker and Derry’s two remaining challenges. The first challenge—avoiding inert 
knowledge to allow students to apply what they know to novel problems—is addressed by 
modeling because the focus of modeling is meaningful application that captures 
generalizable structure of a phenomenon (Hestenes, 2010). The third challenge put forth 
by Bakker and Derry—sequencing topics for improved coherence for students—is 
addressed by using model development sequences (Lesh et al., 2003) to organize 
instruction around eliciting students’ initial conceptions about their experiences (an MEA), 
exploring useful and productive representations of their concepts (an MXA), and applying 
and modifying their models in new situations (an MAA). Working with a generalizable 
structure of a phenomenon—as the children in our study did in comparing two groups—
supports them to recognize isomorphic elements within novel situations having the same 
(or similar) structure. The final problem in our study—seeking comparisons between the 
flights of short-wing and long-wing helicopters—was similar to the problem of comparing 
helicopter flights dropped at different heights. The common structure—comparing two 
groups of observed data—enabled the students to work with the isomorphic elements from 
the problem of comparing times from helicopters with different wingspans—stacked 
distributions, common scale, collecting enough data, measuring systematically—that had 
served them in the problem of comparing times from different drop heights. 

The models and modeling perspective used in this study integrated informal inferential 
reasoning as a natural aspect of modeling. If informal statistical inference is seen as a 
holistic approach for integrating topics in statistics education (Bakker & Derry, 2011), then 
modeling shifts the notion of sequencing topics to sequencing students’ modeling 
experiences. Researchers have illustrated how students’ experiences with informal 
statistical inference and modeling, even at a young age (Fielding-Wells & Makar, 2015; 
Makar, 2016; Paparistodemou & Meletiou-Mavrotheris, 2008), overlap and build key 
topics over time rather than sequence them. The model development sequence—MEA, 
MXA, MAA—developed by Lesh, Doerr, and their colleagues (Doerr & English, 2003; 
Lesh et al., 2003) that was used in this study provided a framework for meaningfully 
sequencing students’ instructional experiences.  
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