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ABSTRACT 

 
Research investigating graduate teaching assistants’ (TAs’) knowledge of fundamental 
statistics concepts is sparse at best; yet at many universities, TAs play a substantial role 
in the teaching of undergraduate statistics courses. This paper provides a framework for 
characterizing TAs’ content knowledge in a sampling context and endeavors to raise new 
questions about TAs’ content knowledge and its potential impact on the teaching of 
undergraduate statistics. The participants in this study were sixty-eight TAs from 18 
universities across the United States. These TAs demonstrated considerable knowledge of 
theoretical probability distributions. However, they experienced tensions when attempting 
to quantify expected statistical variability in an empirical sampling situation and had 
difficulty explaining conceptual ideas of variability.  
 
Keywords: Statistics education research; Sampling distributions; Statistical knowledge 
for teaching; Teacher knowledge 
 

1.  INTRODUCTION 
 
 Over the past two decades, mathematics education researchers, statisticians, and 
statistics education researchers have devoted greater attention to research in statistics 
education. In part, this attention stems from concerns over the statistical literacy of the 
general population, as well as a broad scope of professions requiring more sophisticated 
statistical skills (Ben-Zvi & Garfield, 2004; National Council on Education and the 
Disciplines, 2001). Although more recent attention has been allocated to the field of 
statistics education in general, there is a dearth of empirical research specifically 
investigating the statistical content knowledge of teachers (Groth, 2007; Shaughnessy, 
2007). A review of the education research literature reveals a small number of studies 
(e.g., Canada, 2004; Heid, Perkinson, Peters, & Fratto, 2005; Liu & Thompson, 2005; 
Makar & Confrey, 2004) focused on K-12 teachers’ statistical content knowledge, and a 
void in research investigating college and university teachers’ statistical content 
knowledge.  

At universities across the United States, enrollment in introductory statistics courses 
is increasing (Lutzer, Rodi, Kirkman, & Maxwell, 2007), and introductory college 
statistics is likely to be the first exposure many students have to statistics. Moore (2005) 
suggests that students form their attitudes and beliefs about the use of statistics from these 
beginning courses and these courses serve as a potential recruiting ground for future 
statisticians. Many of these courses are taught by teaching assistants, either teaching their 
own course or teaching recitation sections. Thus, these introductory courses serve a 
critical function, and TAs’ role in the teaching team is integral (Lutzer et al.; Moore). 
Although TAs teaching undergraduate statistics courses is not inherently problematic, it is 
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not uncommon for TAs who majored in mathematics or the sciences as undergraduates to 
enter graduate school having never taken a statistics course. Green (2010) investigated 
statistics graduate TAs’ experiences and perceptions teaching introductory statistics and 
noted TAs wanted more direction and support when they first start teaching introductory 
statistics. Yet many universities do not offer mentoring or professional development to 
TAs for teaching specific courses, although more are starting to do so (see for example, 
Froelich, Duckworth & Stephenson, 2005; Gelman, 2005; Harkness & Rosenberger, 
2005). To be in a position to teach in a way that allows students to develop strong 
conceptual and procedural knowledge, teachers need to have a solid foundation 
themselves. Thus, it is imperative that TAs possess strong content knowledge before 
teaching introductory college statistics courses because these courses are fundamentally 
important for developing the attitudes and beliefs of future consumers of statistics. 
Consequently, improvements in statistics education are likely to remain limited without a 
careful examination of statistics TAs’ content knowledge. In addition, already existing 
professional development and TA training programs need empirical evidence 
documenting content areas that TAs need to think more deeply about. This study makes a 
contribution to statistics education research by taking a first step towards examining TAs’ 
content-specific subject matter knowledge in the context of sampling. This paper 
addresses the following research questions:  

1. What strategies do TAs employ in solving problems in an empirical sampling 
context?  

a. To what aspects of distribution do TAs attend?  
b. What connections do TAs make between empirical distributions and 

theoretical distributions? How do they grapple with, and resolve, 
differences between theoretical models and empirical data?  

2. What considerations about variability do TAs express in their thinking about 
sampling problems? 

 
2. BACKGROUND 

 
This section reviews two areas of the research literature relevant to the current 

study—teacher knowledge and research on the teaching and learning of sampling 
concepts.  

 
2.1. TEACHER KNOWLEDGE 

 
At the college level, statisticians and statistics educators (Cobb, 1993; Cobb & 

Moore, 1997; Zieffler, Garfield, delMas, & Reading, 2008) have called for reform in both 
the structure and content of introductory statistics courses. Statistics is fundamentally 
different from mathematics in that it must be taught with context in the forefront and must 
emphasize the omnipresence of variability—otherwise the subject loses all meaning 
(Cobb, 1998; Gould, 2004; Pfannkuch & Wild, 2004). But are statistics TAs prepared to 
teach their statistics courses in ways that meaningfully incorporate applications and stress 
the omnipresence of variability? This question points to a fundamental factor in teaching 
introductory college statistics courses—teacher knowledge and experience.  

Mathematics educators have long been interested in the issue of teacher knowledge 
and experience, and over the past 20 years there has been a paradigmatic shift in the way 
researchers have conceptualized teacher knowledge (see Ball, Lubienski, & Mewborn, 
2001; Shulman, 1986). Shulman described how past research on teacher knowledge either 
focused on teachers’ specific content knowledge (e.g., knowledge of particular 
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mathematical topics as measured by course work or grades) or their pedagogical 
knowledge (e.g., presentation of material, classroom management, etc.). Shulman’s 
construct of pedagogical content knowledge (PCK) provided a link between content and 
pedagogy. He provided a compelling argument that the expert knowledge of a 
mathematician is not sufficient for teaching mathematics, and that qualities such as 
classroom management, which is completely void of subject matter, would be insufficient 
for a thorough understanding of the knowledge required to teach mathematics. In 
particular, Shulman defined PCK as content knowledge that “goes beyond knowledge of 
the subject matter per se to the dimension of subject matter knowledge for teaching” (p. 
9).  

Ball and her colleagues (2001, 2008) built upon Shulman’s (1986) work and have 
been driving research on teacher knowledge through the construct of mathematical 
knowledge for teaching (MKT) by addressing the question of “what do teachers need to 
know and be able to do in order to teach effectively” (Ball, Thames, & Phelps, 2008, p. 
394). They argue that in order for teachers to be effective, their knowledge base must 
include subject matter knowledge, knowledge of pedagogy, knowledge of common 
student misconceptions, knowledge of student development, knowledge of common 
student solution strategies, and knowledge of curriculum and best practices for 
introducing material. They dissect MKT into six distinct components—common content 
knowledge, specialized content knowledge, knowledge at the mathematical horizon, 
knowledge of content and students, knowledge of content and teaching and knowlege of 
the curriculum. Figure 1 shows the domain map of Ball and her colleagues’ framework of 
MKT. 

 

 
 

Figure 1: Domain map of mathematical knowledge for 
teaching (Hill, Ball, & Schilling, 2008) 

 
Each of the six components of MKT is briefly defined below in order to situate the 

current study for the reader. The first three, common and specialized content knowledge 
and knowledge at the mathematical horizon, are types of knowledge that constitute what it 
means to know mathematics. Common content knowledge is defined as mathematical 
knowledge not unique to teaching. For example, the ability to subtract multi-digit 
numbers is necessary mathematical knowledge in many different settings. Specialized 
content knowledge is mathematical knowledge unique to teaching (Ball et al., 2008, p. 
400). Specialized content knowledge includes “looking for patterns in student errors,” 
determining whether a student’s nonstandard approach to a problem works, understanding 
different representations or ways of seeing a problem, and justifying mathematical ideas 
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(p. 400). For example, understanding why the algorithm for subtracting multi-digit 
numbers works is mathematical knowledge teachers need in their work, whereas a person 
balancing his checkbook only needs to know how to do the computation and not 
necessarily understand why it works. Finally, knowledge at the mathematical horizon is 
subject matter knowledge that goes beyond the specific content taught to the next level. 
For example, an algebra teacher should know something about calculus because that 
represents where the students are headed and is knowledge at the horizon. The other three 
components of Ball’s framework are considered pedagogical content knowledge 
components and define what it means to teach mathematics. Knowledge of content and 
students includes knowledge of common student misconceptions and common approaches 
students may take when learning a particular topic. Knowledge of content and teaching 
includes knowledge of how best to sequence instruction, examples that best highlight 
particular concepts or procedures, and what choices of representations to include during 
instruction (p. 401). Knowledge of curriculum includes global knowledge of the 
curriculum as well as how the curriculum plays out on a daily basis.  

Ball and her colleagues have been studying elementary teachers in practice and 
finding ways to measure each of the different components of MKT. However, these 
distinctions are not really as mutually exclusive as their definitions suggest. For example, 
when a teacher is grading a student solution to a homework problem, it may be difficult to 
decipher whether she is using specialized content knowledge, mathematically examining a 
non-standard student approach, or using her knowledge of content and students, 
recognizing a common student misconception or stage of development, or a combination. 
Likewise, there are some mathematical concepts that may fall on the boundary between 
common content knowledge and specialized content knowledge. For example, one might 
argue that some professions need knowledge of why the algorithm for multi-digit 
subtraction works, a financial consultant for instance, and, thus, this knowledge is not 
unique to teaching. It is important to point out, though, that common and specialized 
content knowledge are both forms of subject matter knowledge.   

Given that there exist significant distinctions between the disciplines of statistics and 
mathematics that impact the way the subject matter should be taught, research 
investigating statistical knowledge for teaching (SKT) is an important field of study 
distinct from research investigating MKT. Yet, because “statistics utilizes mathematics,” 
and there is considerable overlap in the structure of statistics education and mathematics 
education, there is much that can be gleaned from research on MKT (Groth, 2007, p. 
427). Groth suggests applying Ball and her colleagues’ six components of MKT for use in 
statistics education research and he defines SKT as necessary knowledge for statistics 
teachers in order to be effective in their work. SKT then includes, but is not limited to:  

 Knowledge of the concepts and procedures of statistics—statistical literacy and 
statistical thinking skills; 

o Analysis of statistical solutions to problems and determination of whether 
the results are reasonable and what types of thinking or analysis might 
lead to particular results;  

o Knowledge of informal and formal statistical inference ideas including 
connections between probability, sampling distributions, and statistical 
inference; 

 Ability to formulate questions, collect data, analyze data, and interpret results; 
 Ability to recognize and account for the key roles of context and variability in 

solving statistical problems, including formal procedures for calculating 
variability and conceptual ideas of variability; 

 Ability to recognize the crucial role language plays in expressing statistical ideas; 
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 Ability to recognize common student misconceptions and understand how 
students come to  learn specific statistics content; 

 Ability to manage productive class discussions about statistics and answer student 
questions.  

The list outlined above represents a synthesis of numerous recommendations from 
statistics education researchers (Franklin & Garfield, 2006; Garfield & Ben-Zvi, 2008; 
Groth, 2007; Rossman, Chance, & Medina, 2006) regarding the teaching and learning of 
statistics. For the purposes of this paper, I focus solely on TAs’ subject matter knowledge 
of statistics in the context of sampling. Thus, this paper addresses aspects of TAs’ SKT 
that pertain to the first three primary bullet points outlined above. The first three primary 
bullets are content focused, and thus include both common and specialized forms of 
content knowledge. Although the research questions that guide this study did not include 
teasing apart common and specialized forms of statistical content knowledge, the findings 
do point to some potential distinctions and raise some questions about these two forms of 
content knowledge and, thus, are included in the discussion section at the end of the 
paper. Whereas subject matter knowledge, both common and specialized, are only two of 
the six components of SKT, they are important for statistics education researchers to 
study in order to glean insights that will support the evolution of quality professional 
development for statistics teachers.  
 
2.2. RESEARCH ON LEARNING SAMPLING CONCEPTS 

 
 Statistical inference is the central focus for college-level introductory probability and 
statistics courses. Statistical inference is the process by which conclusions about a 
particular population are drawn based upon evidence obtained from a sample of the 
population. Statistical inference is an important skill for those living in data-driven 
societies, and therefore a key topic in introductory statistics courses. Yet, research 
suggests there are substantial gaps in students’ (Chance, delMas, & Garfield, 2004; 
Pfannkuch, 2005) and K-12 teachers’ (Heid et al., 2005; Liu & Thompson, 2005) informal 
and formal understanding of statistical inference. Part of the difficulty lies in students’ 
ability to make connections between probability models and statistical inference. Students 
need a strong foundational understanding of distribution, variability, samples, sampling 
distributions, and populations and parameters in order to construct salient connections 
between probability and statistical inference. Sampling distributions and their properties 
play a key role in the theory behind the statistical analysis of single or multiple samples 
drawn from a population. Thus, sampling distributions are important for understanding 
how estimates of population parameters are derived and represent an important building 
block to a coherent understanding of statistical inference.  

Despite the fact that sampling distributions are foundational to introductory statistics 
curricula, the complexity involved in building a coherent understanding of sampling 
distributions is often underestimated. Saldanha and Thompson (2003) suggest two 
possible views of a sample—static and dynamic. They note secondary students’ 
proclivities toward a static view of sample, wherein students see a sample simply as a 
subset of the population from which it was drawn. Saldanha and Thompson suggest that it 
is a far more complex task to conceive of a sample dynamically, whereby one imagines 
the sampling process as being repeated and considers the variability inherent to the 
sampling procedure throughout the process. They argue that the second, more dynamic, 
concept image (in the manner of Tall & Vinner, 1981) of samples is necessary to support 
a coherent understanding of sampling distributions and informal notions of statistical 
inference.  
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In addition to a concept image of a sample that entails a dynamic image of repeating 
the sampling process, other researchers (e.g., Bakker & Gravemeijer, 2004; Pfannkuch & 
Reading, 2006; Rubin, Bruce, & Tenney, 1991; Shaughnessy, 2007; Wild, 2006) suggest 
that distributional reasoning skills are necessary in order to rationally negotiate more 
complex sampling tasks, and that distribution as a conceptual structure constitutes a 
unifying theme in the introductory statistics curriculum. Distributional reasoning is a 
complex task which requires (1) coordinating two or more key features of a distribution 
(e.g., center, shape, outliers, and spread/variability—including density and skewness); (2) 
coordinating ideas about sampling and randomness; and, (3) making connections between 
empirical and theoretical distributions. Research suggests that students often have trouble 
coordinating multiple attributes of a distribution and tend to rely on a single, elementary 
attribute to reason through more complex sampling situations.  

K-12 students’ difficulties in reasoning about distributions of data in sampling 
contexts appear to reside in their inability to appropriately apply measures of variability 
(Konold & Pollatsek, 2002; Reading & Shaughnessy, 2004; Rubin et al., 1991). Wild 
(2006) argues that “statisticians look at variation through a lens which is ‘distribution’” 
(p. 11), yet the insight with which statisticians account for variability and the ways in 
which they conceive of distribution are not easily acquired. Students do not appear to 
have prudent intuitions for how to quantify the expected spread in a sample and in a 
sampling distribution. A finding of major consequence in the research literature is that 
students’ conceptions of samples and sampling distributions fall within a spectrum, with 
measures of center at one end and measures of variability at the other (Konold, 1989; 
Reading & Shaughnessy; Rubin et al.). As students traverse this continuum, they must 
grapple with the role that sample size and sample selection methods play in the variability 
of sampling processes. Unfortunately, much of the research indicates that many students 
reason at the extremes of this spectrum and not in the middle. On the one hand, students 
tend to express the belief that there is more variability in a sampling distribution than is 
probable and, as a result, they appear to be overly focused on obtaining an unusual sample 
or sample statistic. On the other hand, students tend to express the belief that samples and 
their statistics are identical to the parent population; in these instances, students appear to 
believe the sample provides all the information one needs about a population because they 
fail to think about issues of variability (Rubin et al.). It is not necessarily surprising that 
students experience difficulties identifying and resolving tension between measures of 
center and variability. Indeed, statistics is, in a sense, the study of variability. Variability 
is a complex idea and, depending on the context, statisticians must decide to minimize, 
maximize, estimate, model, analyze and/or tease apart variability in data (Gould, 2004; 
Wild). It seems plausible, then, that statistics TAs (that is, apprentice statisticians) may 
have a tenuous, novice, and developing relationship with variability.  

Shaughnessy and colleagues (2004a, 2004b, 2005) have identified three features in 
the development of students’ statistical reasoning in the context of sampling—additive, 
proportional, and distributional. To illustrate these characterizations, consider the 
following situation: A well mixed jar contains 100 candies, 60 red and 40 yellow; pull out 
a handful of ten candies, note the number of reds, put the candies back in the jar, mix 
them back up, and repeat this process 49 more times. Now predict the number of handfuls 
out of the 50 containing 0 red candies, 1 red candy, 2 red candies, … , 10 red candies. 
Shaughnessy et al. (2004a) used this task with middle and secondary school students (n = 
272). They observed that additive reasoners attend to absolute frequencies (e.g., “there are 
more red in the jar so I expect more red than yellow in each handful”). Proportional 
reasoners primarily use the underlying ratios of the population as they reason in sampling 
situations (e.g., “each handful should contain about 6 red candies because the ratio of red 
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to yellow candies in the jar is 60 to 40”). Distributional reasoners coordinate two or more 
attributes as they reason about sampling situations. For instance, a distributional reasoner 
might justify his/her predictions by discussing the ratio of red to yellow candies and the 
fact that one should expect the outcomes from handful to handful to differ slightly from 
that expected value. They also observed students in transitional stages. In these instances, 
students tended to focus on single attributes, such as mode, shape, and spread. For 
instance, if a student primarily attended to the shape of a distribution or the range of a 
distribution, then he or she was coded in the transitional category. Taken together the 
characterizations of additive, proportional, and distributional reasoning, along with 
transitional reasoning, these characterizations provide an initial conceptual framework, 
used in the present study, for how students come to form coherent statistical thinking 
skills when investigating distributions of data (see Figure 2).  
 

Other (0) 
 

Additive (1) 
 

Transitional Stage (2) 
Shape     Mode     Variation 

 
Proportional (3) 

Explicit connection between sample and the population proportion 
 

Distributional (4) 
 

Figure 2. Conceptual framework of Shaughnessy and colleagues (2004a, 2004b) 
 

The studies discussed in this section have been focused on K-12 students’, tertiary 
students’, or K-12 teachers’ statistical reasoning and development in sampling contexts. 
Evidence from the research literature suggests that students need focused instructional 
support in order to develop a dynamic conceptualization of sampling distributions, 
coordinate multiple attributes of a distribution, and reasonably quantify their expectations 
for variability in sampling situations. There appears, however, to be no research 
investigating how TAs reason in sampling contexts, what distribution means to them, 
what difficulties they may encounter when working with and analyzing empirical 
sampling distributions, and how they describe variation within and between empirical 
sampling distributions. What is needed now is research that helps us better understand 
how TAs, with considerable mathematics and statistics backgrounds, reason about 
distribution and variability in sampling distributions, and the practical implications of 
creating professional development for TAs that facilitates their statistical thinking. The 
study reported in this article makes a small contribution to this end by expanding on and 
refining current frameworks in order to model TAs’ reasoning. In addition, this study 
raises questions about the need for the statistics education research community to tease 
apart forms of common and specialized content knowledge.  
 

3. METHODS 
 
3.1. DATA COLLECTION METHODS AND STUDY PARTICIPANTS 
 
 TAs’ reasoning was explored through a task-based web survey and through semi-
structured interviews conducted with a subset of the survey population. The data corpus 



55 

 

 

consisted of 68 survey respondents from 18 universities across the United States, and five 
interview participants taken from the larger survey population. Contacts were made at 
universities targeted through the Research in Undergraduate Mathematics Education 
(RUME) list-serve, through the Consortium for the Advancement of Undergraduate 
Statistics Education (CAUSE) website, and from the list of graduate programs in statistics 
found at the American Statistical Association (ASA) website. Both the survey and 
interview participants comprised a volunteer sample. Survey participants were selected 
based on three criteria: (1) willingness to participate in the study; (2) experience teaching 
(or assisting with) at least one introductory statistics course; and, (3) the prior completion 
of at least one graduate statistics course (in fact, over 50% of the survey participants had 
taken eight or more graduate statistics courses). Interview participants were selected from 
the larger group of survey participants based on three additional criteria: (1) TAs’ 
willingness to participate in three hour-long interviews, (2) TAs’ location, due to 
budgetary constraints, and (3) the researcher’s selection of varied survey responses so as 
to represent as much of the gamut of responses as possible. The five interview participants 
were all from the same institution—a large research university in the Pacific Northwest. 
The TAs at this institution participate in a week-long orientation focused on general 
teaching strategies such as creating a syllabus, grading rubrics, consistency, and 
professionalism. The orientation does not cover specific mathematical or statistical topics 
because TAs may be teaching different courses. There is no mandatory mentoring 
program for TAs prior to teaching specific courses. Although some TAs are informally 
mentored by faculty prior to teaching a particular class, this was not the case with any TA 
in this study. The demographic information for the survey and interview participants is 
shown in Tables 1 and 2, respectively. 
 

Table 1. Demographic information on the survey participants (n = 68) 
 

ESL* Gender Undergraduate degree Current field of study 
Yes 14(21%) Male  36 (53%) Statistics 12 (17.6%) Statistics 54 (79.4%) 
No 54 (79%) Female  32 (47%) Mathematics 39 (57.4%) Mathematics  7 (10.3%) 
   Math Educ. 1 (1.5%) Math Educ. 3 (4.4%) 
   Other 16 (23.5%) Other 4 (5.9%) 
*ESL denotes English as a second language 
 

Table 2. Demographic information on the five interview participants 
 
Pseudonyms Amanda Andy Joe Sandy Sam 
Program of study Ph.D. 

Statistics 
Ph.D. 
Math 

Ph.D.  
Math Ed 

Master’s 
Statistics 

Master’s 
Statistics 

Courses taken      
    Undergraduate stat courses 1 4 0 4 2 
    Graduate stat courses 10+ 9 1 10+ 10+ 
Teaching experience      
    Introductory Statistics I 
    Introductory Statistics II 
    Statistics for engineers 

Once Once Once Multiple Once 
Multiple Never Never Multiple Never 
Once Never Never Never Never 

 
 The survey contained four tasks and took approximately 30 minutes to complete. 
Three 60-minute individual interviews were conducted with the five interview 
participants, for a total of 15 interviews. The interviews allowed the researcher to achieve 
the level of detail necessary for gaining a more robust understanding of these TAs’ 
knowledge of sampling distributions. The first interview consisted of a series of follow-up 



56 

 

 

questions to the survey tasks, and the second and third interviews contained four new 
sampling tasks, questions about definitions of different statistical terms, and questions 
about teaching statistics.  
 This paper reports on the survey responses to two of the sampling tasks that helped 
to provide a general framework that characterizes trends in the types of reasoning 
exhibited by these TAs. In addition, this paper includes excerpts from the first interview 
with Amanda, Sandy, and Andy to illustrate the conceptual framework. The interview 
excerpts provide deeper insight into these TAs’ reasoning strategies. Amanda’s interview, 
in particular, describes difficulties she experienced as she negotiated these two tasks. 
Although the information gleaned from the interviews is limited in scope, as it only 
applies to these specific TAs, the findings help corroborate some of the observations from 
the survey data, as well as pinpoint promising features of TAs’ knowledge worthy of 
future research and larger scale studies.  
 Of the five TAs interviewed, Amanda, Sandy, and Andy were ideal candidates for 
informing the framework because (1) they were exceptional at thinking aloud and could 
clearly articulate their thinking; (2) they had each taken a significant number of graduate 
statistics courses; (3) they had each taught at least one college-level introductory Statistics 
course; and, (4) each had a strong interest in teaching. Amanda is highlighted here 
because she appeared to struggle more with these two tasks and her ability to express her 
thinking aloud highlights her struggles. Joe and Sam were removed from consideration 
because: (1) both had difficulty thinking aloud, making it difficult to analyze their 
reasoning strategies and draw conclusions about their thinking; (2) Sam displayed 
significant difficulties with the tasks, which may account for his resistance in sharing his 
thinking aloud; (3) Sam was not a native English speaker (although neither was Sandy) 
and his English communication skills were poor; and, (3) Joe was different from the 
majority of TAs taking the survey and from the interviewees in that he had only taken one 
graduate level statistics course and his graduate studies were not focused on statistics— 
thus, he was less representative of the larger survey population.  
 
3.2. TASK DESIGN 

 
 The two sampling tasks are referred to as the Prediction Task and the Real/Fake Task 
(see Figures 3 and 4, respectively). These tasks were originally used with middle and high 
school students (see Shaughnessy et al., 2004a, 2004b, 2005). Similar tasks have appeared 
previously in the literature (see Reading & Shaughnessy, 2004; Rubin et al., 1991). These 
tasks were chosen because they emphasize core statistical concepts such as reasoning 
about empirical data, variability, and distributions of data, and they align with 
recommendations made in the Guidelines for Assessment and Instruction in Statistics 
Education (Franklin et al., 2007). In addition, the tasks align with the framework 
suggested by Zieffler et al. (2008) for tasks that support the development of informal 
inferential reasoning. In particular, these tasks require informal statistical inference skills, 
inductive reasoning, and the ability to reach reasonable conclusions under uncertainty. 
Rossman et al. (2006) argue that “[s]tatisticians often come to different but reasonable 
conclusions when analyzing the same data” and that the “ quality of conclusions lies in 
the analysts’ ability to support and defend their arguments” (p. 329). It is equally 
important for teachers of statistics to be able to reason and communicate their statistical 
thinking in a sophisticated manner in order to assist their students’ development of robust 
statistical thinking skills. Thus, the tasks used in this study provided the opportunity to 
assess how TAs reason and communicate about fundamental statistics concepts. In 
addition, because these tasks present opportunities for reasoning about statistical ideas 
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both formally, through probability models, and informally, they provide opportunities to 
investigate whether or not TAs have multiple strategies and ways of reasoning about these 
tasks, as well as an opportunity to discuss which types of statistical knowledge are unique 
to teaching and which are not. The tasks are limited in the sense that the theoretical 
probability is known, and thus they do not provide an opportunity to study TAs’ strategies 
when only empirical data are present.  
 
3.3. THE PREDICTION TASK 
 
 The Prediction Task (see Figure 3) can be a straightforward application of a binomial 
or hypergeometric probability model, and thus, it was anticipated the majority of TAs 
would apply one of these two models. The nature of the task suggests that it measures 
common content knowledge. The task was designed to address the following questions: 
 Would TAs reason more formally (apply a particular probability model) or 

informally (generally discuss the distribution’s center, shape, and/or spread) when 
justifying their predictions? (Corresponds to research questions 1 and 2)  

 To which aspects of the distribution would TAs attend? (Corresponds to research 
questions 1 and 2) 

 Would TAs’ reasoning strategy be consistent with their prediction? (Corresponds 
with research question 1b) 

 
A jar contains 1000 candies, 750 are red and 250 are yellow. The candies are mixed 
well. Suppose that you pull a random sample of 10 candies from the jar, record the 
number of reds, put the candies back in the jar and mix them up. Suppose you do this 
50 times. How many times out of 50 do you think you would get a handful of 10 
candies with: 
 

Number of Red Candies 
in Handfuls of 10 

Prediction 

0 red  
1 red  
2 red  
3 red  
4 red  
5 red  
6 red  
7 red  
8 red  
9 red  
10 red  
Total 50 

 
Figure 3. Prediction Task 

  
 Prior to analyzing TA predictions, the author and another statistics educator created a 
rubric, quantifying what would constitute a reasonable prediction based on criteria 
previously established by Shaughnessy and colleagues (2004a, 2004b, 2005) (Table 3).  
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Table 3. Criteria for assessing reasonable predictions  
for the empirical sampling distribution 

 
Criterion 1: 
Whole Number 
Predictions 

The predictions should be whole numbers, as decimals do not make sense in 
the context of the problem. 

Criterion 2: 
Appropriate 
Center 

The center should be located between 7 and 8 red candies because the 
population proportion is 75% red. Somewhere between 40% (20 handfuls) and 
68% (34 handfuls) of the outcomes should be placed at 7 or 8 red candies. If 
there are fewer than 40% or more than 68%, the sampling distribution has an 
unreasonably low or high number of outcomes at 7 or 8 red candies, 
respectively. 

Criterion 3: 
Appropriate 
Spread 

The distribution should be concentrated in the 6 to 9 red candies range with a 
few handfuls containing 3, 4, 5 and/or 10 red candies. An interval length of 3 
or fewer units constitutes an unreasonably narrow range for the sampling 
distribution. For example, it is highly unlikely that all 50 outcomes would be 
stacked at 6, 7, and 8 red candies. An interval length of 9 or more units 
constitutes an unreasonably wide range for the sampling distribution. For 
example, it is highly unlikely that the 50 outcomes would be spread from 0 or 1 
red candy through 10 red candies. 

Criterion 4: 
Appropriate 
Shape 

The distributions should be approximately mound-shaped around the 
population center. The distribution should not look too uniform or have a large 
‘spike’ at 7 and 8 red candies. Drops in frequency of more than 9 units from 
the 7 and 8 to the 6 and/or 9 constitutes an unusually large change in frequency 
and a change of 2 or fewer from the 7 and 8 to the 6 and 9 constitutes an 
unusually small change in frequency. Likewise, too much density at the low 
end of the distribution would be unlikely. For example, placing 3 or more 
outcomes at 2 or 3 red candies would be unreasonable, or placing 0 outcomes 
at 10 red candies and only 1 or 2 outcomes at 9 red candies would be 
unreasonable. 

 
3.4. THE REAL/FAKE TASK 
 

The Real/Fake Task (see Figure 4) is an extension of the Prediction Task. The 
experimental situation is the same, but the Real/Fake Task evaluates TAs’ abilities to 
detect fraud by determining a reasonable expectation for the shape, center, and spread of 
the sampling distributions. Graphs 1 and 3 were manufactured (‘fake’) and Graphs 2 and 
4 were generated via computer simulation (‘real’) (see Shaughnessy and colleagues, 
2004a, 2004b). Graph 1 was designed with an appropriate range, but shifted to the left. 
Thus, Graph 1 has an unusually high number of outcomes at four and below and too few 
at nine and ten. Graph 3 was designed to have a ‘smooth’ distribution in terms of 
frequencies, as well as a range that is unusually wide.  

Based on previously established criteria (see Shaughnessy et al., 2004a, 2004b), 
Table 4 illustrates one method for assessing the empirical sampling distributions in the 
Real/Fake Task. The criteria in the table focus on variability and the tails of the 
distribution. For example, the table shows that the probabilities for a simulation producing 
graphs with criteria similar to Graphs 1 and 3 are less likely than for Graph 2. If we 
consider the population proportion it makes sense that we should expect more outcomes 
with 9 and 10 red candies than outcomes with 2, 3, and 4 red candies.  
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Figure 4. Real/Fake Task 
 

Table 4. Criteria for characterizing unlikely classes of graphs: P(red)= 0.75 
 
Types of distributional outcomes Quantifying types of outcomes in the tails Probability 
Many outcomes at the low end of 
the distribution  

6 or more of the 50 samples of size 10 result 
in 4 or fewer red candies (e.g., Graphs 1 and 
3)

0.0004 

Many outcomes at the high end of 
the distribution 

17 or more of the 50 samples of size 10 
result in 9 or more red candies 
(e.g., Graph 2) 

0.0782 

Few outcomes at the high end of 
the distribution 

2 or fewer of the 50 samples of size 10 result 
in 9 or more red candies (e.g., Graph 1) 

0.00013 

 
 Although we were interested in whether or not TAs would correctly identify the 
computer simulated graphs versus the fraudulent ‘knockoff’ graphs, the task served a 
greater purpose: investigating the ways in which TAs utilize statistical thinking when 
reasoning about empirical sampling distributions. In some sense this task is more 
pedagogical than the Prediction Task in that it is a task designed for teaching about 
variability in distributions of data and can be used with beginning statistics students. The 
task is certainly statistical in nature, but may better assess the kinds of statistical 
knowledge a teacher of statistics may need rather than other professionals who use 
statistics. In particular, this task was designed to answer the following questions: 
 What types of sampling distributions, if any, would TAs conceive of as unusual 

for this situation? How narrow or wide could the distribution be before a TA 
considered it unusual? (Corresponds with research questions 1 and 2) 
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 How much variability would TAs expect in the percentage of occurrences at the 
center or how much variability do TAs expect in a left-skew shape? (Corresponds 
with research question 2) 

 Would TAs expect the shape of the graph to be smooth or would they expect 
‘bumps,’ ‘dips’ and ‘ups and downs’? (Corresponds with research question 2) 

 What are TAs’ expectations for the statistical variation of the data set? 
(Corresponds with research question 2) 

 
 Table 5 provides a brief description of the framework for characterizing TAs’ 
reasoning on the Prediction and Real/Fake Tasks. Much of the framework shown in Table 
5 was built upon the work of prior statistics education researchers (e.g., Reading & 
 

Table 5. Statistical reasoning framework applied to TA justifications 
 
Category Description
Idiosyncratic (I) 
 

No reasoning supplied, reasoning was unclear, or not pertinent. 

Additive (A) Primary reasons give attention to frequencies, “more red,” primarily 
additive or frequency only type reasoning. 

Si
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 Center (C) Reasoning states or strongly implies the use of centers (e.g., modes, %, 

probability) or mention of population proportion. 
Shape (S) Overall attention appears to be based on the shape of the distribution. 

Shape language includes skewness, normally distributed, too perfect, 
too formulaic, evenly distributed, smooth, not smooth, bumpy, goes up 
and down, gaps, piled up. Shape language also relates to the 
distribution’s density—relative frequencies, modes. 
If a survey respondent uses the term variability, but appears to be 
referring to the graph’s frequencies this would be coded as shape.  

Spread (V) Variation responses reference ideas of statistical variation such as 
range, standard deviation, interquartile range, and spread. A separate 
code of Tails was used when TAs focused on one or both of the ends 
of the distribution.  

Tails (T) A separate code of T if the reasoning refers to tails, normally the 
number of 3s, 4s, and/or 10s. If TAs paid attention to both ends of the 
distribution, their response was just coded T. However, often they 
expected more or fewer outliers at either the high or low end of the 
distribution, and in those cases the secondary codes were added: 

MH—expect more high (10s) 
LH—expect fewer high (10s) 
ML—expect more low (3s, 4s) 
LL—expect fewer low (3s, 4s)  

Informal Distributional 
(ID) 

Explicit distributional reasoning involves the coordination of at least 
two of the attributes of a distribution (S, C, V, T) on the same graph. 
For example, if a TA says “mostly 7 and 8s, but will decrease from 
there” that would be evidence of ID because the TA mentioned the 
center and is acknowledging some spread around that center.  

Formal Distributional 
(FD) 

Mentioning the binomial or hypergeometric probability distribution 
and/or written use of these formulas. Also, mention of combinations of 
different outcomes would be evidence of FD. If a survey participant 
mentions computing the probability of a certain event then that would 
also be coded as FD and the type of event should be noted. For 
example if a survey participant computes the probability (or says they 
have computed the probability) of getting four handfuls containing 
four red candies that would receive a code of FD-tails. 



61 

 

 

Shaughnessy, 2004; Shaughnessy et al., 2004a, 2004b, 2005). However, the original 
framework (recall Figure 2) was further developed and refined during the data analysis of 
this study. The author and another statistics education researcher reviewed the survey 
data, using the previous framework (recall Figure 2), looking for new categories of 
thinking as well as discrepant events. Once the first author developed a detailed 
framework, the second coder independently reviewed the survey responses in order to test 
the coding scheme. Inter-rater reliability scores are given with each task in the sections 
that follow. The result of that analysis is the framework presented in Table 5.   

Most survey and interview participants identified the underlying probability 
distribution when the population parameters were known, and subsequently a formal 
probability distribution category naturally developed and the additive category essentially 
disappeared. Thus, the original framework of Shaughnessy and colleagues (2004a, 2004b) 
(Figure 2) was further refined for use with TAs by distinguishing both a formal 
probability distribution (FD, when explicit reference was made to probability models) 
and informal probability distribution (ID, the distributional reasoning classification as 
described in the literature review) category. FD was applied when TAs made explicit 
reference to the underlying probability distribution. The next section illustrates the 
framework via specific survey and interview responses.  
 

4. RESULTS 
 

 What is particularly compelling is that certain trends in reasoning among K-12 
students and teachers also appeared among TAs, and thus, the initial framework was both 
relevant and useful for categorizing TAs’ reasoning about introductory statistics concepts. 
What follows is an analysis of TAs’ reasoning for each task applying the author’s 
framework from Table 5 (as well as the other scoring criteria established in Tables 3 and 
4). In addition, the TAs’ predominant forms of reasoning are discussed. 
 
4.1. PREDICTION TASK ANALYSIS 
 

During coding of the Prediction Task, TAs received a reasoning code (Table 5) and a 
score of 0-4 for their predictions (Table 3), with one point provided for each criterion that 
was met. For two coders, the inter-rater reliability was 95.6%. Table 6 provides examples 
of TA predictions. For instance, survey respondent #68 identified the Prediction Task as a 
hypergeometric situation (last column of the table), and was coded as FD; yet, his 
predictions are inconsistent in that they sum to more than 50 trials, and the range he 
provides extends from two handfuls containing 1 red candy to 17 handfuls containing 10 
red candies. His prediction score is one out of four as he only satisfied Criterion 1. Survey 
participants #23, #65, and #68 had unreasonably wide predictions because the number of 
outcomes they predicted at four and fewer red candies in a handful is highly unlikely. In 
fact, when pulling 50 samples of size 10 the probability that one would draw a handful 
where none or one of the candies is red is extremely low (0.0000416 and 0.00129 
respectively).  

As expected, most (approximately 68%) of the TAs provided an FD justification and 
their predictions appeared to be based on their calculations of the binomial or 
hypergeometric probability distribution function (see Table 7). In general this suggests 
that these TAs had strong common content knowledge on this task. Yet, several of these 
FD and ID reasoners provided overly wide ranges in their predictions. 
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Table 6. Examples of survey and interview participants’ responses to the Prediction Task 

 
 

Survey 
participant 

Prediction 
score(Table 3) 

Number of Red Candies Predicted in 50 samples of size 10 Justification and reasoning code (Table 5) 

0 1 2 3 4 5 6 7 8 9 10 

#54 4 0 0 0 0 1 3 8 11 15 9 3 
“This is a binomial distribution prob with n 
= 10 each trial” – FD 

#68 
1 

(Fails Criteria 
2, 3, 4) 

0 2 4 5 7 9 10 12 14 15 17 “Hypergeometric distribution” – FD 

#52 Sandy 4 0 0 0 0 1 3 8 13 14 9 3 
“Find prob to get x red at one draw; 
multiply by 50 to simulate the number of 
times out of 50 we get x red.” – FD 

#06 Andy 
3 

(Fails Criterion 
1) 

0 0 0 0.1 0.8 2.9 7.3 12 14 9.4 2.8 
“Hypergeomtric. Compute expected values: 
50*Prob(x=#of red candies).” – FD 

#08 Amanda 4 0 0 1 1 1 3 7 12 13 9 3 

“It’s highly unlikely that we will get 0 or 1 
red, so out of the 50 tries I do not expect 
any draws to turn out that way. However, 
for each draw I expect 7 or 8 reds, so I 
think most of the draws will have that 
results.” – ID 

#65 
1 

(Fails Criteria 
2, 3, 4) 

1 1 2 3 4 5 6 8 9 6 5 

“Have to be honest, I assumed that for the 
most part you would pick 7 or 8 (75%) of 
the red ones, and just kind of distributed it 
evenly about 7 and 8.” – ID

#23 
2 

(Fails Criteria 
3, 4) 

0 1 2 3 4 5 6 15 15 5 4 
“7 or 8 red candies, since the probability 
that we get a red is 0.75.” – C 
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Table 7. Survey results for types of reasoning in the Prediction Task (n = 68)* 
 

FD ID Center Other (includes the additive and 
idiosyncratic responses)

46(67.6%) 10(14.7%) 5(7%) 7(10.3%) 
*Inter-rater reliability 95.6% 

 
Approximately 17.6% (12 of the 68 participants) of the survey responses failed to 

meet Criterion 3, providing predictions that were unusually wide. Of the 12 predictions 
that were coded as unusually wide, 8 were made by participants coded as FD or ID, 
suggesting that these TAs’ predictions were inconsistent with their reasoning.  
 Survey respondents #06, #08, and #52 represent Andy, Amanda, and Sandy, 
respectively. During the first interview, participants were asked to elaborate on their 
thinking, describe how they interpreted the Prediction Task, and to judge the 
reasonableness of other predictions. Andy and Sandy were coded as FD reasoners and 
during the interview continued to judge predictions based on computing probabilities. 
Amanda was coded as an ID reasoner on the survey, but during the interview she 
indicated that she did some calculations with the binomial distribution function in order to 
help guide her predictions. However, Amanda appeared to struggle when she reasoned 
informally about the left tail of the distribution. During the interview, she mentioned that 
she imagined the sampling situation by picturing a big jar filled with red and yellow 
candies all mixed up, and it was just as difficult for her to imagine pulling out a handful 
containing all 10 red candies as it was to imagine a handful containing no red candies. 
When queried further about this comment Amanda retracted it; yet, the following 
discussion of how she visualized the sampling situation ensued:  
 
Interviewer: Do you think it is more likely that you would get a handful with 3 red 

candies or with 10 red candies? 
Amanda: I have a harder time imagining 10 red candies.  
Interviewer: Okay. So you’re thinking it’s more likely I’m going to get 3 red candies?  
Amanda: Just in a visualizing sense, yeah. 
Interviewer: Okay, so when you say that, in a visualizing sense, that might not have 

anything to do with how the actual theoretical probabilities work out?  
Amanda: Right, exactly. … and actually, when you phrase it in terms of do you 

feel like it would be more likely then instantly my gut reaction is to say, 
well I can’t say that because I would have to sit down and calculate 
probabilities. But just in my mind’s eye, visualizing way. 

 
 In this excerpt, Amanda made a distinction between her statistical knowledge with 
regard to the sampling situation versus her concept image (in the manner of Tall & 
Vinner, 1981) and intuition of the situation. This excerpt provides some evidence that 
Amanda was experiencing difficulty balancing her expectations for sample to sample 
variability versus sample representativeness—a finding consistent with studies involving 
K-12 students (e.g., Reading & Shaughnessy, 2004; Rubin et al., 1991). Amanda did not 
appear to coordinate the population proportion with her expectations for variability in this 
context. Several of the TAs from the survey also provided overly wide ranges for their 
predictions despite using FD or ID arguments, which may be an indication that Amanda is 
not the only TA who may struggle with finding balance between sample 
representativeness and sampling variability. Amanda’s struggle to balance her 
expectations of representativeness and variability, as well as several overly wide ranges in 
the predictions of TAs taking the survey, lend some small support for the author’s 
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hypothesis that TAs (novice teachers of statistics) may have similar developing 
conceptions as their students.  
 
4.2. REAL/FAKE TASK ANALYSIS 

 
The Real/Fake Task provided an additional opportunity to investigate TAs’ 

expectations for variability in empirical sampling situations. Responses on the Real/Fake 
Task were given two codes, a score of 0-4 for the number of correct identifications, and a 
reasoning code (recall Table 5). Table 8 provides examples of responses coded as FD, ID, 
S, and/or T reasoning along with the number of correct identifications. Some TAs focused  
their reasoning on different attributes from graph to graph (e.g., shape on one graph and 
tails on another graph). These TAs were given multiple reasoning codes depending on the 

 
Table 8. Examples of survey responses to the Real/Fake Task 

 
Participant Reasoning code and TA responses # Correct 
#48 Code: FD & ID (Tails LL and Shape) 

Response: “Graph 1—There are too many low samples. The 
probability of getting 3 reds in a sample of 10 is 0.0031. Just getting 
one of these samples is very unlikely, so it is even more unlikely that 
they would get three of them. Graph 2—This is a very reasonable plot 
given the expected values. Graph 3—Again there are too many low 
samples. The probability of getting 2 reds out of 10 is 0.0004. It is 
highly unlikely that the students would get one sample with 2 reds 
and two samples with 3 reds. The overall distribution is also a little 
too perfect. Graph 4—Although this graph is a little too heavily 
concentrated in the 7-9 range, it does appear to be a reasonable graph. 
Even though I have speculated that two of these graphs are made-up, 
they are all theoretically possible.” 

4 

#24 Code: ID (Tails MH and LL; Shape; Center) 
Response: “1: Too few 10s and possibly too many 3s. 2: Seems to 
have the right shape center and spread. 3: Too smooth for just 50 
simulations (like my own prediction earlier—made up). 4: Seems to 
have the right shape, center, and spread, and the gap at X=5 is 
something only a very clever student would include.” 

4 

#45 Code: S & T (Shape & Tails; LH and ML) 
Response: “1 seems roughly in line with expected values. The tails of 
the normal distribution are about where they should be. 2 weights the 
high values too heavily—there are a large number of 9s and 10s, and 
only one 4 with nothing below. 3 seems like a smooth distribution, but 
almost too smooth. 4 has large disparities between the number of 6s 
and 5s, and seemingly too many 9s.” 

0 

#08 
Amanda 

Code: S & T (Shape and Tails; LH) 
Response: “2 seems to have too many observations for 9 and 10, and 
it makes me feel uncomfortable with the graph. 3 just looks too 
perfect.” 

2 

#52 
Sandy 

Code: S (Shape) 
Response: “Graph 3 seems to be too close to the expected results. It 
doesn’t seem to account for empirical variation like the other three 
graphs do.” 

3 

#06 
Andy 

Code: S (Shape) 
Response: “The last two graphs seem too perfect. Real data samples 
have lots of variance to them. The first one seems the most correct. 
Graph 2 is biased somehow. Graph 3 and 4 are idealized.” 

2 
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attributes to which they attended. Some TAs coordinated two or more attributes of the 
distribution (e.g., shape and tails) on the same graph. TAs who specifically coordinated 
two or more attributes of the distribution on the same graph were coded as ID (or FD if 
they applied a probability model). For example, survey participant #48 was coded FD and 
ID because she coordinated the attributes of Tails and Shape on Graph 3—indicating that 
there were too many low samples and that the shape was too perfect. In addition, she 
computed the probability of getting two reds out of ten and three reds out of ten to justify 
why there should not be as many low samples. Survey participant #45 also reasoned about 
the shape and tails of the graphs, but did not coordinate those attributes on the same 
graph. For instance, on Graph 3 he only reasoned about shape and on Graph 2 he only 
reasoned about the right tail—expecting fewer nines and tens. The last three rows in Table 
8 show the responses of Amanda, Sandy, and Andy. Italics were added to highlight 
typical language survey respondents used to justify their conclusions. Inter-rater reliability 
for two coders was 92.6%. 
 Recall that on the Prediction Task, 82% of TAs used FD or ID arguments to justify 
their predictions (see Table 7). Yet, only 22% (n = 68) of TAs used a FD or ID argument 
to justify their real/fake identifications (see Table 9).  

 
Table 9. Results of Real/Fake Task (n = 68):  

Correct identifications broken down by reasoning codes* 
 

Number 
Correct  Center Tails Shape 

Shape 
& Tails 

ID & 
FD 

Idio-
syncratic Total % 

0 0 0 1 1 0 1  3 4.4 
1 1 0 2 0 1 0  4  5.9 
2 1 1 10 4 3 4 23 33.8 
3 0 0 15 1 2 0  18 26.0 
4 0 1 1 8 9 1  20 29.4 

Total 
% 

2 
2.9 

2 
2.9 

29 
42.6 

14 
20.6 

15 
22.0 

6 
8.8 

 68 
100.0 

*Inter-rater reliability 92.6% 
 

Of the fifteen responses coded as ID or FD, six coordinated Shape and Center, and 
the remaining nine coordinated the Tails and the Shape of the graphs or the Tails and 
Center of the graph. Interestingly, the six who attended to Shape and Center made one, 
two, or three correct identifications, where as those who attended to Tails in normative 
ways made four correct identifications. Responses that were coded FD tended to compute 
the probabilities of the Tails of the different graphs and as a result they often made four 
correct identifications.  
 TAs appeared to attend to either or both the Shape (typically with Graph 3) and the 
Tails (typically with Graphs 1, 2, and 4) more than any other attributes of the distribution. 
The discussion that follows unpacks typical Shape and Tail responses and provides a 
characterization for how TAs used these attributes to make their real/fake decisions.  
 
4.3. ATTENTION TO SHAPE 
 
 One might consider the 15 TAs who obtained three “correct” real/fake identifications 
using the single attribute of shape (see Table 9) as a signal of its power for assisting in 
this particular task. However, it is worth considering that these TAs appeared to eliminate 
Graph 3 on account of it being “too perfect” to be a real graph and then subsequently 
concluded that the other three graphs were all possible. Three of the four shape responses 
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provided in Table 8 account for instances where TAs primarily focused on the “perfect” 
shape of Graph 3 as their reason for identifying it as fake and the other three graphs as 
real, automatically giving them three correct. Successful navigation of this task requires 
the ability to coordinate multiple attributes of a distribution and identify reasonable 
bounds for the spread of the distribution by quantifying the expected variability.  
 Most survey participants tended to use language of “too perfect,” “too smooth,” “too 
expected,” “not random enough,” without “bumps” or “ups and downs,” or “too little 
variability” to describe Graph 3 and justify why it was likely to be a made up graph. TAs’ 
primary justification for accepting a graph as real was based on finding graphs with 
“imperfections” in their shapes. TAs appeared to measure imperfections in a graph’s 
shape by looking for unevenness in the frequency of a graph. For example, Graph 1 was 
often identified as “real” because more handfuls contain four red candies than five red 
candies, noting that; “the graph goes up at four and drops back down at five,” or “there is 
a dramatic drop in frequency from eight red candies to nine red candies.”  
 TAs’ descriptions of variability in relation to Graph 3 are, in some sense, confusing 
because the word “variability” might refer to the spread and density of the graph or it 
might refer to the “bumps” and “ups and downs” in the graph. TAs who indicated that 
they expected variability and randomness in real graphs and concluded Graph 3 was made 
up because of its lack of this kind of “variability” were coded as Shape, because their 
descriptions did not appear to attend to statistical variability. The interview data provided 
additional evidence that these TAs were indeed reasoning about the Shapes of the graphs 
when they referred to “variability in the graphs”; consider the next excerpt, for example.  
 
Interviewer: When you say Graph 3 is too perfect, what do you mean by too perfect? 
Amanda: I expect in a real graph that they’re not going to be in order 0, 1, 2, 3, 4 

etcetera. Some are going to be higher than the one next to them and 
some are going to be lower. 

Interviewer: So the even steps up in frequency? 
Amanda: Yes, it goes up very smoothly. It doesn’t have any dips in terms of 0 [red 

candies] up to the 7, 8 [red candies] and then from the 7, 8 [red candies] 
it’s decreasing back down. … Compare that to Graph 1 where we 
increase [in frequency] from 3 to 4 [red candies], but then we decrease 
from 4 to 5 [red candies]. So it increases too smoothly and too evenly. I 
just don’t buy this. … It’s just increasing and then just decreasing. 
Which if I could repeat the experiment to infinity, I might expect to 
happen. 

 
The italicized utterances suggest that the steady, smooth increase, followed by the steady, 
smooth decrease is the type of shape Amanda expected to see in theoretical models. Also, 
worth noting is Amanda’s comparison of the smoothness of Graph 3 to the unevenness in 
Graph 1. Amanda appeared to identify Graph 1 as real, in large part because of the dips in 
frequency, something she seemed to expect in empirical data.  
 
Interviewer: So is this [Graph 3] also your image of what the ideal graph would look 

like, sort of in line with your own predictions? 
Amanda: Yes. 
Interviewer: And experimentally this is … 
Amanda: Not going to happen [laughs]. 
Interviewer: [Laughs]. So Graphs 1 and 4 were real because they have these things 

that do occur experimentally? 
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Amanda: Yeah, all these little quirks. We have in Graph 1, more piled on 4 [red 
candies] than we do on 5 [red candies]. [In] Graph 4 we don’t have 
anything at 5 [red candies], these are things that occur in an actual 
testing situation. 

 
Amanda’s focus on, and subsequent comparison of, smooth versus uneven graphs 
suggests her main criterion for identifying the real versus the fake graphs is based on the 
“quirky” shapes that she expects to see in empirical situations.  

Sandy and Andy also indicated that Graph 3 was “too perfect” to be real, and Graph 
3, at least in terms of shape, seemed to match their image of the theoretical distribution.  

 
Interviewer: What do you mean by too perfect [pointing to Graph 3]? 
Sandy: Because, too perfect is like what you expect it to have this shape. … 

Because it has, look, [makes a sketch of a left skewed distribution over 
the Graph 3] this kind of shape, you see—close to 0 and then mounds up 
and then decreases. 

  
Andy: It’s going to have like defects, all sorts of holes, funny anomalies [makes 

a gesture—draws a distribution curve in the air with lots of vertical ups 
and downs]. … Like maybe a case out here [pointing to the 1, 2, and 3 
red candies range on graph 1] or maybe like this one [pointing to Graph 
1 at the 3, 4, and 5 red candies spots], like this divot [where Graph 1 dips 
down at 5]. I mean you could almost draw a nice curve over this 
[pointing to Graph 3].

 
In both of these excerpts, Sandy and Andy made similar comments as those made by 
Amanda about the qualities of the ‘ideal’ graph. It seems that Amanda, Sandy, and Andy 
have strong expectations for the variability in the shapes of empirical distributions of data. 
The detail of reasoning observed in these interview excerpts supports the conjecture that 
the survey responses from TAs expecting “more randomness” or “variability” in the 
distribution of Graph 3 were likely referring to the changes in heights rather than the 
spread of the distribution. Garfield, delMas, and Chance (2007) observed that 
undergraduate statistics students expressed a similar propensity for thinking about real 
data as having variability in vertical frequencies rather than thinking about statistical 
variation. 
 
4.4. ATTENTION TO THE TAILS OF THE DISTRIBUTION 
 
 Analysis of the data suggests that TAs were also drawn to the tails of the distribution 
in making their real/fake decisions. Some TAs focused on the low end (2, 3, and 4 red 
candies), the high end (9 and 10 red candies) or both. TAs expected more lows, fewer 
lows, more highs, or fewer highs. There may be an implicit attention to the population 
parameter when the expectation for the tails of the distribution is more highs and fewer 
lows; because the mixture is 75% red, one should expect more highs and fewer lows. 
Table 8 also illustrates examples of TA responses focused on the tails of the distribution. 
For example, survey respondent #45 appeared to expect more handfuls with 2, 3, and 4 
red candies and fewer handfuls with 9 or 10 red candies. Given that this TA’s 
expectations for the tails of the distribution were opposite of what one should expect, it is 
not surprising that he made 0 correct identifications. Perhaps this TA is also not 
coordinating the center and spread when reasoning about the distribution. 
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 Amanda also gravitated to expecting more lows and fewer highs. In the next excerpt, 
she discusses why she believes Graph 2 is fraudulent.  
 
Amanda: I’m expecting to see something down here [referring to the 2, 3, and 4 

red candies spots on Graph 2]. Especially taken in conjunction with the 
fact that I have, how many are piled here on 9? A lot. Twelve, oh, 11 in 
the 9 slots on Graph 2, and 6 in the 10 slot. And I feel like this is a little 
disproportionate. I’ve got nothing here [in 2s, 3s and 4s] and a lot going 
on at 9 and 10. And I would feel more comfortable. Watch this. This is 
just going to be awful. If I removed some off 9 and 10 and moved them 
over here [to the 2, 3 and 4 red candy slots] so that it looked more like 
Graph 3. The theoretical one [laughs] that I think is implausible … . I’m 
having a battle in my head about theoretically what I expect to happen, 
which would look like Graph 3, and reasonably in practice what I have 
seen happen. … I’ve spent many, many hours drawing samples on a 
computer and seeing what they look like. … and they’re always a little 
quirky. 

 
Amanda clearly recognized that she was grappling with how to reconcile her theoretical 
expectations with her knowledge for variability in a sampling environment. The previous 
excerpt suggests that her primary criterion for variability continues to be rooted in the 
shape of the graph. In addition, she appeared to believe that there should be more 
outcomes at 2, 3, and 4 red candies (i.e., she expects more lows and fewer highs). This 
belief provides some evidence that Amanda expected greater statistical variability than is 
actually likely in this scenario. Despite the fact that the population proportion is 75% red, 
and thus, it is more likely one would draw handfuls with 9 or 10 reds than with 2, 3, or 4 
reds, she appeared to think otherwise. Her expectation may go back to her “mind’s eye 
visualization” that she expressed during the Prediction task and which she acknowledged 
may not be how the “actual” probabilities work out.  
 The survey and interview evidence suggest that many of these TAs either ignored 
statistical variation altogether or experienced difficulty estimating the likely distance a 
collection of sample statistics would fall from the population parameter. In many 
instances, TAs expected a wider range of outcomes than is likely to occur and expected 
more outcomes in the left tail of the distribution, perhaps an indication that they did not 
coordinate the population proportion with their expectations of variability.  
 

5. DISCUSSION 
 
Table 10 summarizes the key findings from the survey data and case studies. The 

remainder of the paper synthesizes the important findings, discusses distinctions between 
common and specialized content knowledge in light of the findings and task design, 
discusses limitations of the research, and concludes with directions for future research.  
The survey and interview tasks provided a context to better understand how TAs use their 
statistical knowledge and apply their understanding of theoretical models to make sense 
of empirical data. With only a few exceptions, the survey and interview participants 
demonstrated considerable knowledge of the underlying probability structure in the candy 
jar context and appeared capable of attending to multiple aspects of the distribution. This 
is not surprising given their statistical background. However, the survey responses to the 
Real/Fake Task and the follow up interview questions to this task indicated that several of 
them experienced difficulty as they attempted to make inferences using the empirical 
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Table 10. Summary of key findings 
 

Task  Typical Reasoning Approaches Key Difficulties 
Prediction 
Task 

Applying hypergeometric or 
binomial probability distribution 

Making predictions that are inconsistent 
with their reasoning—in particular wide 
predictions

Real/Fake 
Task 

Shape  
 Emphasis that empirical 

distributions should be bumpy, 
not smooth 

Tails  
 More or fewer high 
 More or fewer low 

Evaluating and quantifying expected 
spread 
 Expect greater spread than is likely to 

occur or more in the low end of the 
distribution than is likely to occur 

 Focus on Shape only and ignore 
issues of spread when evaluating 
graphs 

 
sampling distributions. The source of this difficulty appeared rooted in their expectations 
of variability in empirical sampling situations. Most of the TAs in this study did not 
coordinate multiple attributes of the distributions when reasoning about the Real/Fake 
Task. Their survey responses suggest that most often they focused on Shape. In particular, 
the focus was on variability in the frequencies of the different outcomes for each sampling 
distribution, rather than on statistical variation. The three case studies provided additional 
evidence that the language “random,” “variation,” and “idealized” were in reference to 
variation in the heights of columns in the graphs of the sampling distributions and not in 
terms of the range or spread of the data. Garfield et al. (2007) also noted undergraduate 
students’ attention to variation in heights of graphs at the expense of attention toward 
statistical variation. Each of the interview case studies suggested Graph 3, in the 
Real/Fake Task, was the ideal graph based solely on its shape. The fact that Graph 3 has 
an unusually high number of outcomes placed at 2, 3, and 4 red candies did not appear to 
bother the respondents.  

In some instances, TAs’ survey responses did attend to statistical measures of 
variability. For instance, many responses focused on the tails of the distribution. Yet, 
many of these TAs expected more at the low end of the distribution and fewer at the high 
end. For example, Amanda believed there should be more outcomes with 2, 3, or 4 red 
candies than with 9 or 10 red candies. Also, in some instances TAs provided wider 
predictions than is actually likely to occur in the experiment.   

This study provides new insights into the ways in which TAs reason about 
foundational topics in the introductory statistics curriculum. There is evidence from both 
the survey and interview data that in novel, empirical situations, TAs may reason in 
similar ways to college students, high school students, and/or high school mathematics 
teachers. Despite their strong statistical knowledge of formal probability distributions, 
many of the TA survey participants, as well as the interviewees, did not appear to apply 
their statistical knowledge when making predictions using empirical sampling 
distributions. The research presented in this paper suggests that these TAs may have 
compartmentalized their theoretical knowledge of statistics and have difficulty applying 
that knowledge when working with empirical data. It could also be that these TAs simply 
do not have multiple approaches for thinking about these problems and/or cannot easily 
articulate the concepts behind the theory with which they are familiar.  

This study also raises questions about SKT and distinctions between common and 
specialized forms of content knowledge. Is the knowledge that these TAs seemed to lack a 
form of specialized content knowledge, unique to teaching introductory statistics courses, 
or common content knowledge needed in other professions that require statistics? The fact 
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that many of the TAs expressed strong knowledge of the formal probability model in the 
Prediction task may indicate that they have common content knowledge and that their 
difficulty in discussing conceptual ideas of distribution in terms of center, shape, and 
variability in the Prediction and Real/Fake, as well as their difficulty deciding on criteria 
for assessing the graphs in the Real/Fake task may be an indication of weak specialized 
content knowledge (i.e., statistical knowledge unique to teaching introductory statistics). 
On the one hand, the ability to explain concepts, to explain why a particular procedure 
works, or to have different ways of representing problems is in part how Ball et al. (2008) 
defined specialized content knowledge. In addition, one could argue that the Real/Fake 
Task is set up as a pedagogical task with particular introductory statistics concepts in 
mind. On the other hand, one could easily place the Real/Fake Task in a different context 
where a statistician is programming a computer simulation looking for glitches in the 
program. She may look at outputs of sampling distributions for unusual results in order to 
determine whether the program is functioning properly. Further, statistics is very much an 
applied field and requires working with uncertainty and making inferences set in a 
particular context with a given set of data. In both the Prediction and Real/Fake Tasks 
TAs had access to the underlying theoretical model, but often this is not the case and only 
empirical data are available. How would TAs reason when only the empirical data are 
available? This is certainly a situation that statisticians need to deal with on a daily basis. 
Thus, one could also argue some of the types of reasoning with which these TAs 
struggled are in fact part of common content knowledge not necessarily unique to teaching 
introductory statistics. It is clear that both these knowledge forms are necessary for 
teaching introductory statistics in line with current curricular reforms, but it may also be 
that developing such habits of mind as described above would also serve TAs well as 
practicing statisticians.  

It is not all together surprising that TAs, novice teachers of statistics, and apprentice 
statisticians would experience difficulty resolving differences between theoretical models 
and empirical data and struggle with their expectations for variability in sampling 
problems. It is likely that TAs need more experiences with empirical data, as well as 
mentoring opportunities with expert statistics educators, in order to support their 
evolution toward constructing better intuition, more sophisticated reasoning strategies, 
and the integration of multiple attributes of a distribution into their thinking about 
empirical data.  

The primary limitation of this study is that the participants comprise a small 
convenience sample. Thus, the results presented here do not necessarily generalize to the 
larger population of statistics TAs. The survey sample contained a small number of 
international students, which may not be representative of the larger population. In 
addition, the data collected in the surveys are limited in scope because in most cases the 
written responses were brief and it is difficult to make definitive conclusions on TA 
reasoning on the basis of those written responses. The interviews provide more detail on 
what some TAs were thinking when they discussed issues of shape and variability in the 
graphs of empirical sampling distributions. The sample size for the interviews was small 
and all the interviewees were TAs from the same institution, where there is no mentoring 
or training for teaching introductory statistics. The results may have been different if 
interviewees came from an institution where statistics TAs do receive training in teaching 
introductory statistics. However, the details in the interviews provide some likely 
roadmaps for the thinking of the TAs in the survey.  

Despite the obvious limitations of the study, this research does provide a first 
glimpse into how TAs reason in empirical sampling situations. The conceptual framework 
provides information on TAs’ cognitive development in the context of sampling and has 
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potential implications for graduate education in statistics. The author’s conceptual 
framework serves as a useful tool for thinking about TAs’ reasoning in a sampling context 
and continued work in this area may bring about further refinements to the framework.  

The fact that many of these TAs experienced difficulty accessing and applying their 
knowledge of distributions in an empirical context suggests that TAs may be limited in 
their ability to teach their students how to connect core statistical concepts to empirical 
contexts. Graduate statistics courses, focused on theory, are not designed to provide 
graduate students with the needed experiences in working with empirical data sets to 
prepare them adequately for teaching sampling concepts. Large-scale empirical studies 
are needed in order to further understand and model TAs’ statistical reasoning about 
sampling and sampling distributions. Based on the results of this study, I recommend 
research that investigates the impact of a mentoring program on TAs’ statistical content 
knowledge. In particular, a mentoring program designed to provide TAs with experience 
(1) working with empirical data sets, (2) solving novel statistical tasks, (3) responding to 
hypothetical student solution strategies, and (4) thinking about reform statistics curricula 
may prove useful in allowing TAs to rethink and refine their understanding of 
introductory statistics material. There are several universities that have such mentoring 
programs in place (see for example, Froelich et al., 2005; Gelman, 2005; Harkness & 
Rosenberger, 2005), but empirical research needs to assess the impact of mentoring and 
training programs. In addition, the statistics education research community may want to 
consider design research similar to the work of Ball and her colleagues (2008) in order to 
tease apart common and specialized forms of statistical content knowledge. That is, if we 
want to better understand what types of statistical knowledge components are unique for 
teaching introductory statistics courses, so that we can design research-based professional 
development and mentoring programs, we need to conduct research that would allow us 
to identify particular statistical knowledge needed for teaching introductory statistics. The 
directions for future research highlighted here will likely become important 
considerations as institutions of higher education become more accountable for improving 
student learning.  
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