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Fast and frugal trees have been proposed as efficient heuristics for decision under risk. We 
describe the construction of fast and frugal trees and compare their robustness for prediction 
under risk with that of Bayesian networks. In particular we analyze situations of risky decisions in 
the medical domain. We show that the performance of fast and frugal trees does not fall too far 
behind that of the more complex Bayesian networks. 
 
INTRODUCTION 

Our quality of life as individuals and the functioning of our society depend on our ability to 
understand risks and act appropriately in response. Recognizing this need, the education 
community has placed increasing emphasis on education for risk literacy.  Effective education for 
risk literacy draws on the theory of rational choice under uncertainty, behavioral research on how 
people perceive and respond to risks, and educational research on how children learn about risk.  
The aim is to develop pedagogical approaches to guide the development of risk literacy and 
inculcate effective strategies for coping with risk. 

Probability and decision theory emerged during the Enlightenment as a model of rational 
belief and decision-making in the presence of risk (Daston, 1995). According to Laplace, “the 
theory of probabilities is nothing but common sense reduced to calculus; it enables us to appreciate 
with exactness that which accurate minds feel with a sort of instinct for which ofttimes they are 
unable to account,” (Laplace, 1812). That is, probability formalizes the intuitions of the enlightened 
man.  In the nineteenth century, with the rise of positivism and the quest for objectivity in science, 
probability fell out of favor as a model of rational thought.  The mid-twentieth century brought a 
resurgence, with the introduction of personal probability (Savage, 1954; de Finetti, 1934). The 
personalist theory explicitly allows rational individuals to disagree on the probability of an event. 
Its inherent subjectivity brought skepticism and even hostility from adherents of an objective view 
of science.  Another line of attack against probability came from the cognitive and behavioral 
sciences, with a flurry of research demonstrating systematic ways in which human reasoning fails 
to conform to the probability calculus (Kahneman, Slovic, and Tversky, 1982).   

Some researchers (Gigerenzer, Todd, and the ABC Group, 1999) argued that systematic 
deviations of human reasoning from probability are rational in an ecological sense. That is, humans 
have evolved a toolbox of “fast and frugal” strategies to draw inferences and make decisions in an 
environment of bounded cognitive resources and limited time.  These ecologically rational 
strategies give results that are nearly as good as optimal yet infeasible probabilistic methods. 
Arguments for ecological rationality are supported by comparing the output of computer models 
inspired by human reasoning with that of explicitly probabilistic computer models. For many 
problems we face in everyday life, cognitively inspired “fast and frugal” strategies perform nearly 
as well as much more computationally intensive probabilistic approaches. 

Taking a somewhat different approach, the field of decision analysis has focused on 
developing “cognitive tools” (von Winterfeldt and Edwards, 1986) to help people come closer to 
the decision theoretic norm.  Decision support tools informed by cognitive research help people to 
construct and reason with models that explore the logical consequences of their intuitive 
judgments, using the computer to perform probability calculations that exceed their intuitive 
capacity. 

In our view, these streams of research are complementary, and together suggest promising 
directions for education in risk literacy. Acknowledging the systematic deviations of human 
thinking from the probability calculus, we seek to exploit naturalistic human reasoning and 
cognitive development to develop pedagogical strategies that capitalize on human strengths while 
overcoming the weaknesses of unaided reasoning.   In this paper, we focus on a simple but 
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commonly occurring class of problems – using evidential cues to classify a situation into one of 
two categories.   We examine “fast and frugal” heuristics proposed in the literature and show that 
their performance compares favorably to more computationally intensive methods from statistics 
and machine learning.   We discuss the role of normative theory in justifying the performance of 
the simpler models, and the educational value of instilling a deep understanding of both the 
normative approaches and the simpler heuristics. We conclude with remarks on implications for 
mathematics curriculum. 

 
CLASSIFICATION METHODS 

Classification problems pervade everyday life.  As an exemplar, we consider a doctor 
examining a patient. The doctor is presented with a set of cues: symptoms reported by the patient; 
background information such as age, weight and gender; test results; physician observations.  The 
task faced by the physician is to arrive at a diagnosis. 

For illustrative purposes, we simplify the problem as follows. First, we suppose the doctor 
is answering a simple yes/no question: does the patient have a specific condition under 
consideration?  Second, we assume that the input is a set of binary cues, e.g., a symptom is or is not 
present; a test reading is high or low. Finally, we assume that the physician reports a single answer: 
yes (condition present) or no (condition absent), with no opportunity to hedge the result.  We are 
interested in whether the answer given by the physician is correct or incorrect. For this simplified 
set of problems, we examine the performance of two different “fast and frugal” classification tree 
methods and compare them with several methods drawn from the statistics and machine learning 
literature. 

 
The Normative Approach 

The normative approach to this problem is known as Bayesian inference, also called 
inverse probability.  The physician starts with a prior probability P(D) that a disease D is present. 
The physician observes evidence E in the form of a set of symptoms, background information, 
tests, and other observations. The physician assesses the probability  that the evidence 
would occur if the disease is present and the probability  that the evidence would occur if 
the disease is not present.  The physician then uses Bayes theorem to find the probability   
that the disease is present given the observed evidence, also called the posterior probability of the 
disease given the evidence: 

 

  (1) 

 
For a single symptom, this is a straightforward computation that can easily be performed 

with pencil and paper or a calculator.  For a large number of symptoms, the general case is quite 
challenging. If there are n evidence items, one must consider the probability of all 2n possible 
combinations given both presence and absence of the disease, for a total of 2n+1 probabilities.  For 
10 symptoms, one must consider 211 = 2048 probabilities, a daunting challenge. 

 
Naïve Bayes 

A commonly applied simplification to the fully general problem is to assume that the 
evidence items are independent conditional on presence or absence of the disease.  In this case, for 
symptom Ek, we need to assess only two probabilities: and and , the 
probability that the evidence is in its “high” state given that the disease is present or absent. By the 
laws of probability, the evidence is in its “low” state with probability =  if 
the disease is present and =1-  if the disease is absent.  Substituting into (1), 
we obtain the equation: 

 

 , (2) 
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where jk denotes either the “high” or “low” state of Ek, and  denotes the opposite state. The 
required probabilities may be assessed intuitively by an expert or estimated from data. 

The naïve Bayes model has drastically reduced the number of probability assessments from 
2n+1 to 2n+1, a reduction from 2048 to 11 in the case of ten symptoms. Still, the calculation (2) is 
beyond the reach of intuitive judgment and is very cumbersome with pencil and paper; a computer 
is all but required. This simplification is valid under the assumption that evidence items are 
conditionally independent given presence or absence of the disease. When this assumption is not 
met, naïve Bayes can give misleading results. Experience has shown that as long as dependencies 
among evidence items are not too great, naïve Bayes tends to perform very well. Although the 
model is beyond the reach of unaided human judgment, it is among the simplest of Bayesian 
models and is relatively robust to minor violations of the independence assumptions.  

 
Logistic Regression 

Logistic regression dispenses with the attempt to perform Bayesian reasoning from prior to 
posterior probability in favor of modeling the posterior probability P(D|E) directly.  Again, a fully 
general model of P(D|E) is infeasible for all but the smallest problems – one would need a 
probability for each of the 2n possible evidence combinations. Instead, a simplified model is 
assumed. We assign a value of 0 to the “low” state of Ek and a value of 1 to the “high” state of Ek. 
The logistic regression equation is: 

 

 , (3) 

 
where the parameters βi are typically estimated from data. 
 
Classification Trees 

Trees are one of the earliest approaches to classification.  At the root of the tree, one asks a 
question, e.g., “Is evidence Ek in its high or its low state?”  One proceeds along one branch if the 
answer is “high” and the other if the answer is “low.”  One continues in this way, branching at each 
node of the tree, until arriving at a leaf node. Each leaf of the tree gives a diagnosis. 

 

 
 

Figure 1: Green and Mehr's fast and frugal tree for heart disease risk assessment 
 
Figure 1 shows an example of a classification tree, taken from (Green & Mehr, 1997), for 

classifying patients as high or low risk for heart disease.  This tree is “fast and frugal” by the 
definition given in (Martignon, Katsikopoulos, and Woike, 2012) – at each node of the tree, the 
choice is either to stop with a diagnosis or to continue to the next level. A fast and frugal 
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classification tree provides a very simple procedure for performing the classification task. Green 
and Mehr found that diagnosis according to this fast and frugal tree was more accurate than both 
the physicians’ clinical judgment and logistic regression.  
 
COMPARISON OF METHODS 

We compared the performance of five classification methods on eleven data sets taken 
from the medical and veterinary domains. Most of the data sets were taken from the UC Irvine 
Machine Learning Repository (Bache and Lichman, 2013). Each data set consisted of a class 
variable and between five and 22 evidence variables.  The number of observations ranged from a 
minimum of 62 to a maximum of 768.  Many of the evidence variables were two-valued; others 
were numerical. The numerical variables were dichotomized by assigning values larger than the 
median to the “high” category and values less than or equal to the median to the “low” category.  A 
classifier was estimated for each method on each data set by selecting a random subset of the data 
as a training sample, dichotomizing continuous variables (if any), applying the classifier fitting 
method to the training sample, and then classifying each element of the remaining test sample.  
This process was repeated 1000 times for each classifier.  This whole process was carried out for 
training samples of 15%, 50% and 90% of the data set.  Thus, training samples ranged from a 
minimum of 9 observations to a maximum of 691 observations. Classifying a different set of 
observations from the ones used to train the classifiers is standard practice in classification research 
to test the ability of the method to generalize to new data. The five classification methods are: 

 
• Naïve Bayes: The prior probability P(D) and the evidence distributions  and 

 were estimated using the Beta-Binomial conjugate prior method. This method 
estimates the probability of an event as (r+1)/(m+2), where r is the number of previous trials on 
which the event occurred out of m total trials.  This is a simple Bayesian estimation method. It 
has the advantage that it avoids estimating a probability as zero when there the event does not 
occur in the sample or 100% when the event occurs for every case in the sample.  Each case 
was classified as “yes” if the posterior probability P(D|E) was greater than 0.5 and “no” 
otherwise. 

• Logistic regression: We used a standard logistic regression method to estimate the regression 
coefficients from (2). Each case was classified as “yes” if the posterior probability P(D|E) was 
greater than 0.5 and “no” otherwise.  

• CART: CART (Breiman, 1984) is a method for building trees for classifying categorical 
variables or predicting numerical variables. It uses a collection of rules designed to maximize 
information gain from each split of the tree, with splits terminating at a leaf node when an 
additional split would yield no further information gain.  CART trees are not necessarily fast 
and frugal. 

• Fast and frugal trees with Zig-Zag rule:  This method constructs the tree by using positive and 
negative cue validities. Positive validity is the proportion of cases with a positive outcome 
among all cases with a positive cue value. Negative validity is the proportion of cases with a 
negative outcome among all cases with a negative cue value. The Zig-Zag method alternates 
between “yes” and “no” exits at each level, choosing according to the cue with the greatest 
positive (for “yes”) or negative (for “no”) validity among the cues not already chosen.  

• Fast and frugal trees with MaxVal rule:  This method also uses positive and negative cue 
validities. It begins by ranking the cues according to the higher of each cue’s positive or 
negative validity. It then proceeds according to this ranking, applying the cues in order and 
exiting in the positive (negative) direction if the positive (negative) validity of the cue is 
higher. Ties in this process are broken randomly. 

 
Our results for logistic regression and the three classification tree methods are taken from 

(Martignon et al., 2012); the naïve Bayes results are new for this paper. Unsurprisingly, accuracy of 
all methods increases as the training sample becomes larger. Performance of the five methods is 
remarkably similar. Naïve Bayes has the best performance across the board, living up to its 
reputation as a simple and robust benchmark. In fact, we tried other more complex Bayesian 
methods, but none performed better than naïve Bayes, most likely due to the relatively small (by 
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machine learning standards) data sets.  However, naïve Bayes performed only slightly better than 
the other methods.  The fast and frugal trees are only slightly less accurate than the computationally 
more expensive naïve Bayes. 

 
Figure 2: Average Performance of Different Classifiers on Eleven Medical Data Sets 
 

CONCLUSION 
Our results have important implications for risk education, especially for the debate over 

how best to respond to the well-established literature demonstrating that people’s intuitive 
judgments do not live up to the Bayesian ideal. Fast and frugal trees are extremely simple 
computationally. Cue validities can be estimated using only counting and ratios. Once cue 
validities have been estimated, tree construction involves only a few simple rules.  After the tree 
has been constructed, its use for classification involves only traversing the tree and answering one 
simple question at each node.  This simple process yields a classifier almost as accurate as the 
Bayesian benchmark.   

The most advanced operation required for constructing fast and frugal trees is estimating 
cue validities. It has been demonstrated that children as young as fourth grade can understand the 
concept of cue validity through enactive education approaches, manipulating towers of colored 
tinker cubes to represent the relationship between cues and outcomes (Martignon and Monti, 2010) 
and can answer questions on the validity of cues.  Thus, even at a young age, children can acquire 
basic reasoning strategies for coping with risks, strategies that will serve them well as they reach 
adulthood. 

Building on this foundation, students in secondary school can comprehend the concept of 
conditional independence, and are prepared to understand the naïve Bayes model as well as more 
complex Bayesian network models (Krauss, Bruckmaier, and Martignon, 2010).  At this stage, 
students can be evaluate trade-offs between computational cost and accuracy, and to choose an 
approach that balances these objectives appropriately for the situation. Students at the secondary 
level could perform studies of the kind described in this paper, comparing computation and 
accuracy of naïve Bayes with fast and frugal strategies. Thus, they would be able to conclude for 
themselves that fast and frugal approaches yield nearly the same accuracy as the Bayesian 
benchmark, while requiring far less computation. 
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