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In empirical educational research, it is of great interest to predict student performance. In contrast to 
other disciplines, however, machine learning methods for identifying promising predictors are not yet 
widely used. We will use a machine learning approach to study the effect of learning strategies and 
cooperative behaviors of German mathematics students with respect to exam grades. A small outlook 
will be given on how machine learning methods can be integrated into the education of young 
researchers in empirical educational research. 

 
INTRODUCTION 

In general, educational research is particularly engaged in identifying and evaluating important 
predictors of student achievement. Because the success of educational systems is of utmost relevance 
for societies (e.g., Hanushek & Woessmann, 2012), a flurry of empirical research consequently 
investigates achievement measures such as mathematical, scientific, or reading competencies as 
dependent variables (Hilbert et al., 2021). 

In order to empirically identify important predictors for student learning gains, in principle, 
several experimental designs can be implemented. One option, for instance, is to systematically 
manipulate specific independent variables (IV) (e.g., teaching methods or learning strategies), such as 
in a pre-post design, and to subsequently establish the differential effects of this variation on student 
performance measures. Yet, following such designs, only a limited number of possible factors can be 
implemented and analyzed. (A famous meta-analysis regarding the results of such controlled 
experiments with respect to explaining achievement gains is Hattie & Yates, 2013.) 

Another possibility to detect predictors of students’ learning success is to provide data of so-
called large-scale assessments, for example the Programme for International Student Assessment 
(PISA; https://www.oecd.org/pisa/) or the Trends in International Mathematics and Science Study 
(TIMSS; https://nces.ed.gov/timss/). These studies often implement a considerable quantity of scales 
and items, for instance on teacher competencies, instructional quality, and student learning gains, and 
thus allow for various correlational analyses (e.g., the COACTIV study; Kunter et al., 2013). 

Note that after data collection in both designs mentioned so far (i.e., experimental pre-post 
designs versus correlational large-scale designs), data typically are analyzed by means of (linear) 
regression methods, which can establish the relationship between possible predictors and achievement 
measures in terms of regression coefficients. The main difference between the two approaches is that 
analyses after experimental designs often rely on a univariate model equation (typically a regression or 
ANOVA model) where IVs and some covariates are modelled as predictors and student achievement 
as dependent variable (DV). In contrast, data of large-scale studies are oftentimes analyzed via path or 
structural equation models (SEM), which can include a larger number of (latent) constructs. For 
instance, in path models and SEMs, mutual dependencies between IVs and DVs (exogenous and 
endogenous variables) are modeled by implementing several regression models simultaneously. 

However, even in these more sophisticated approaches, the number of variables that can be 
analyzed simultaneously is limited. For instance, higher-dimensional SEM often run into convergence 
problems due to multi-collinearity (see, Kline, 2016). Therefore, even after applying experimental or 
correlational designs with “only” 30 variables (or scales, respectively, which is still far away from 
“large scale” data), it is almost impossible to implement all of the data in one common model. 
Therefore, in empirical educational research, usually a subset of the measured variables is selected for 
statistical analysis, whereas other variables do not find their way into the models. Although this variable 
selection is mostly justified in some theoretical way, it remains arbitrarily and untransparent, at least to 
a certain degree—especially if the non-included variables seem to be equally promising on a theoretical 
level. (It is hardly ever mentioned how many and which SEMs or regression models failed before the 
published one was “detected.”) 

In the present paper, we propose machine learning (ML) as a data-driven alternative for 
predicting student learning gains. ML provides a powerful, novel framework that can overcome many 
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shortcomings of classical methods of statistical inference, especially regarding restrictions with respect 
to the number of variables that can be included. Since ML is not yet widely implemented in university 
studies of young scientists in the educational sciences, in the final part we additionally recommend 
implementing such methods into the training of doctoral students, especially in pedagogy and the 
education of school disciplines. 

In order to illustrate both the power and flexibility of ML approaches, we will demonstrate all 
of the following deliberations and analyses using an exemplary data set. A sample of N = 90 students 
of mathematics in a German university (University of Regensburg) was examined with respect to 
altogether n = 154 learning strategies and cooperative behaviors with fellow students (each 
implemented as single item measures, e.g., Table 2) to predict their final grade in the closing 
examination (see Table 1 for an overview of the design). 

In the next section, however, we first give a short overview of ML, including its philosophy 
and its advantages, but also some typical critiques. 
 
MACHINE LEARNING  

In parallel with the growing computational power in the last decade, ML has turned into a 
strong competitor for inferential statistics when it comes to predicting dependent variables. In some 
fields (e.g., information and health sciences, cf. Hilbert et al., 2021), application of ML already 
constitutes the standard, whereas in educational sciences, there has not yet been such a coming shift in 
analytical paradigms. Although classical statistical regression methods, as mentioned, can only 
represent (generalized) linear relationships between a restricted number of variables, ML methods 
typically include more high-dimensional relationships without limiting the number of variables. A 
disadvantage of high-dimensional, non-linear models, which has evoked criticism regarding their 
usefulness, is the lack of parameters that allow for straightforward interpretation of the effect of 
individual features (the ML term for covariates) of the model. Yet, lately, the field of interpretable ML 
(iML, see, Molnar, 2020) has been flourishing and an approach has been derived to quantify the 
influence of individual model components even in complex, high-dimensional, non-linear situations. 

Further advantages of ML are the easy detection and representation of non-linear relationships 
(such as depicted in Figure 2). In addition, the incorporation of elaborate (nested) resampling techniques 
in combination with prediction-centered model evaluation, predestines ML approaches for the 
development of thoroughly validated models that are replicable with novel data (Hilbert et al., 2021). 

Therefore, more than just providing new analytical techniques, ML can help educational 
researchers change the modelling culture towards a stronger focus on robust models with reliable 
predictions instead of (over-)fitting complex but inflexible models to the dataset at hand (Yarkoni & 
Westfall, 2017).  

 
DESIGN 

In the lecture, “Linear Algebra II,” at the faculty of mathematics at the University of 
Regensburg (Bavaria), a pre-post design including three measurement points was implemented 
(Table 1). However, this was not an experimental design (because no IV was systematically varied) but 
rather a correlational study aiming to investigate the effects of possible factors that could be relevant 
for final success on the exam. These factors were identified beforehand via both a literature review 
(e.g., Liebendörfer et al., 2021) and an informal Delphi-Study within the faculty, in which members 
could propose specific factors that in their opinion are crucial for learning success regarding 
mathematics. See Table 2 for five example items out of the 154 strategies and behaviors for which data 
were collected. 
 

Table 1. Overview on the design of the study 
 

Measurement Points 
1 

(2nd week of semester) 
2 

(10th week of semester) 
3 

(15th week of semester) 
Pre-test: Linear algebra Learning strategies and 

cooperative behavior 
during the semester 

Learning strategies and cooperative 
behavior specific for exam preparation 
Post-test: Linear algebra (final grade) 
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Table 2. Sample items: Learning strategies and cooperation with fellow students (self-reports) 
 

Items (5 out of 154) [scale: 1 = disagree; 2 = somewhat disagree; 3 = somewhat agree; 4 = agree]  
s21d2_lserkla I usually can explain the content of definitions and theorems in my own words. 
s21d3_awbewei For the exam preparation I have memorized the following: Proofs. 
s21d2_lsauswd I usually learn definitions by heart. 
s21d2_lsaubsp I usually check statements with examples. 
s21d3_stunden How many hours in total (do you estimate) did you study for the exam? 
 
RESULTS 

Implementing classical regression models would require the selection of a limited number of 
variables (and therefore a specific variable set) as predictors in the model. Note that based on 154 
strategies and behaviors (all assessed as single item measures), almost more than half a million different 
single regression models would be possible if one would (arbitrarily) fix the number of implemented 
items to, say, four (with one of them being the pre-tests). In contrast, ML methods allow for 
implementing all strategies simultaneously. As a first step, a feature importance plot can display the 
variables ordered according to their impact on the final grade (Figure 1). 
 

 
 

Figure 1. A feature importance plot with the items ordered according to their impact on the final 
grade. The 17 most impactful and 4 least impactful items are presented. The Mean Squared Error 

(MSE) is used as loss function. 
 

In a next step, for instance, the items might be separated into context factors (that cannot be 
influenced by the students and/or teachers) and de facto learning strategies and cooperative behaviors 
(that students could judge from 1 = disagree until 4 = agree). The reason is that only results on the latter 
ones (the self-reported strategies and behaviors) allow for specific didactical hints that can be given to 
students and/or teachers. The most predictive items of the latter category then can be displayed as 
scatterplots with a local regression spline (see Figure 2), for which, however, ML is not yet necessarily 
required. 
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(a)  
 

(b)  
 

Figure 2. Two scatterplots, each with a local regression spline plot concerning the two most 
predictively valid learning strategies 

 
First, the non-linearity of the relationship in the Figure 2(b) plot is intuitively understandable 

and very informative. This alone provides a more sophisticated insight into the relationship of variables 
(as compared to classical linear regression). 

Second, based on the data collected so far, the (self-reported) ‘ability to explain the content of 
definitions and theorems of the lecture in own words’ (Figure 2(a)) was the best predictor of the final 
grade, when simultaneously all other strategies entered in the model. Interestingly, if a student said that 
he or she memorized the proofs of theorems by heart (Figure 2(b)), this had a negative effect on the 
final grade (especially when the outlier at category 4 would be neglected).  

In addition, it easily becomes clear that a larger sample would be needed (in the preprocessing 
phase the sample had to be reduced to N = 39), because in category 4 only two students are depicted. 
Here, just 2–3 more students could make a great difference with respect to the shape of the curve (in 
summer 2022 the sample is extended by a replication study).  
 
CONCLUSION 

The ML algorithm could readily detect items that had a large impact on the total score of the 
final grade. It was very easy in the follow-up to look more closely at the most promising strategies and 
behaviors. In addition, not only could ML methods be used to easily identify non-linear relationships 
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but also to represent such relations in a very intuitive way. Both achievements would have not been 
possible in a similar intuitive and transparent manner based on classical linear statistical models.  

Teaching ML to doctoral students next to the classical education in inference statistics would 
not only provide PhD students with the tools to model complex, non-linear relationships, but also would 
sensitize them to the importance of out-of-sample testing and cross-validation. Understanding the 
philosophical difference between these two modeling cultures (see Breiman, 2001) is of great value to 
any empirical researcher and can be taught with a minimum of mathematical formalities. 

A good starting point to teach ML is the R script provided in Hilbert et al. (2021). Many 
important steps of ML, such as data preprocessing, modeling, and evaluation, are performed step-by-
step using a data set, making them easy to follow. This way ML can be explored in self-study by playing 
around with the different steps in the R script using the provided or other dataset, or a course can be 
built on this guide, especially when methods of iML that allow an easy access to ML, as chosen in this 
paper, are implemented. 
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