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Statisticians increasingly decry ritualistic categorizations of statistical measures. The interpretation of 
effect sizes is often guided by benchmarks, i.e., Cohen’s d = .2 represents a ‘small’ effect size; .5 
represents a ‘medium’ effect size; and .8 (‘large’) represents a large effect size. We employed a 
cognitive science approach to investigate how researchers systematically categorize values between 
these benchmarks. We find effect size categories are typically separated by fuzzy boundaries, as 
predicted by psychological theories of categorization. Understanding the cognitive processes 
underlying statistical reasoning can help us consider how to move beyond ritualistic interpretation of 
statistical measures.   
 
INTRODUCTION 

In 2019, Wasserstein, Schirm, and Lazar, on behalf of the American Statistical Association, 
called for an end to the era of statistical significance. As many fields have moved to emphasize effect 
sizes (e.g., Cumming, 2014), Wasserstein et al. additionally give a warning for the future: “to preclude 
a reappearance of this problem elsewhere, we must not begin arbitrarily categorizing other statistical 
measures” (Wasserstein et al., 2019, p. 2).  

However, to cognitive scientists, categorization is fundamental to cognition—perception of a 
stimulus and seeing it as something is, at its heart, an act of categorization (Goldstone et al., 2013). 
Categorization naturally emerges whenever we respond differently to objects based on some attribute 
(Harnad, 1987), such as interpreting an effect size from its numerical magnitude.  

In this paper we first consider why individuals might inherently categorize statistical measures. 
We then examine whether the widespread use of benchmarks underlies categorical interpretations of 
effect sizes in a manner antithetical to Wasserstein et al.’s (2019) warning against categorization.  

 
BACKGROUND 

Categorization is ubiquitous to cognition (Harnad, 1987). Thus, how might it present itself 
during acts of statistical thinking? Concepts are mental representations of categories; they denote what 
objects are being represented and how that information can be used to make inferences (Smith, 1989). 
Concepts provide structure to our interactions with the external world. 
• Concepts efficiently encode information, reducing cognitive processing (e.g., Bruner et al., 1956; 

Goldstone et al., 2013). For example, rather than storing complete information about every right 
skew distribution one has encountered, one might only store a single representation of a prototypical 
right skew distribution.  

• Concepts facilitate the generalization of experiences to objects within the same category (e.g., 
Goodman et al., 2008). For example, the concept of multicollinearity provides information 
regarding the interaction between two explanatory variables categorized as multicollinear in a 
statistical model. 

• Individuals who share concepts can succinctly communicate information with one another (e.g., 
Markman & Makin, 1998). For example, describing a variable as a confounder (to someone who 
shares the concept of a confounder) communicates information about its relationship with other 
variables. 

 Cognitive scientists generally accept the ubiquity of concepts and view a wide variety of 
cognitive acts as fundamentally an act of categorization (Murphy, 2002).  
 
Benchmarks and Boundaries 

Benchmarks may serve as a representative ‘ideal’ for a concept. Benchmarks can either be 
explicitly specified (e.g., Cohen’s d = .5 is a ‘medium’ effect size) or formed implicitly, for example, 
as a weighted average of all members of the category (i.e., prototype theory; Rosch, 1975). Individuals 
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use such benchmarks to determine category membership of novel stimuli based on the similarly of 
stimuli to the benchmark (Rosch & Mervis, 1975), often yielding a gradient effect and a ‘fuzzy’ 
boundary for what does or does not belong in the category.  

For example, when determining whether a given empirical distribution is normal, statisticians 
may compare it to the mathematically defined normal distribution, which serves as the benchmark 
normal distribution. If a given distribution is similar enough to this benchmark, we may treat the 
distribution in the same way we would treat the benchmark normal distribution. As distributions start 
to deviate from this prototype (e.g., due to skew, kurtosis, or modality), decisions may become ‘fuzzier.’  

Even in the absence of pre-specified benchmarks, individuals implicitly build a notion of 
category typicality (represented by benchmarks) through repeated exposure to stimuli and the act of 
choosing how to respond to the stimuli (Posner & Keele, 1968). For example, when examining the 
normality of residuals from a simple linear regression model, a statistician decides whether the 
distribution is ‘acceptable’ or some remedial action must be taken. This helps them to form a cohesive 
concept of normal with which to categorize residual plots. Through such repeated exposure to stimuli 
and their associated responses, individuals become able to efficiently delineate distinct categories of 
stimuli by reference to benchmarks. Categorization researchers measure the degree to which a new 
stimulus is similar to a benchmark based on the extent to which the behavioral responses are similar 
(Palmeri, 1997). 

In contrast to the fuzzy boundaries for concepts based on benchmarks, some concepts may be 
defined by the boundary around the category (Ashby, 1992). In these cases, the act of specifying a 
boundary leads to the formation of a concept. For example, ‘p < .05’ is a common boundary delineating 
‘statistical significance,’ and according to the strict logic of null hypothesis significance testing, p = 
.051 is not meaningfully different from p = .273. When stimuli near a categorical boundary are treated 
similarly to those farther away, we may say the concept has a ‘hard’ boundary. In some cases, concepts 
defined by benchmarks can also result in a hard boundary (e.g., Davis & Love, 2010). 

 
A New Statistics with Old Problems? 

Much like the p-value controversy where ‘statistical significance’ created a publication bias 
against studies with large p-values, there is already evidence of a burgeoning effect size controversy 
replete with its own publication bias. For example, Schäfer and Schwarz (2019) found a problematic 
difference in the distribution of effect sizes between publications with pre-registration and those 
without. Is this because individuals are already categorizing effect sizes like they categorized p-values? 
Consistent with this possibility, Collins and Watt (2021) found that the overwhelming majority of 
psychology researchers they surveyed consider the values provided by Cohen (1988) as best 
exemplifying ‘small,’ ‘medium,’ and ‘large’ effect sizes, despite Cohen’s warning that these values 
were arbitrarily chosen. 

The reification of categories and concepts in the interpretation of statistical measures can alter 
the manner in which individuals perceive the measures. This can sometimes lead to a categorical 
perception effect, where perceived differences across categories are exaggerated and perceived 
differences within a category are diminished. These effects have been documented in the initial 
processing of p-values (Rao et al., 2022). Cohen’s d effect sizes are typically defined by benchmarks: 
d = .2 (‘small’), d = .5 (‘medium’), and d = .8 (‘large’). It is possible that through repeated instruction 
and practice, the widespread familiarity with Cohen’s d benchmarks (Collins & Watt, 2021) may 
reinforce the cognitive concept of ‘small,’ ‘medium,’ and ‘large’ effect sizes, and this may in turn 
induce fuzzy or hard boundaries between effect size categories.  

It is currently unknown how researchers systematically categorize Cohen’s d values falling 
between these effect size benchmarks. Therefore, the purpose of this study is to examine, through 
implicit and explicit measures, where and how researchers draw boundaries between effect size 
categories: at what magnitude does an effect size ‘change’ from being categorized as ‘small’ to 
‘medium’ and from ‘medium’ to ‘large,’ and is this change gradual (as with a fuzzy boundary) or 
immediate (as with a hard boundary)?  

 
METHODS 

To identify the location of boundaries between effect size categories, we employed a cognitive 
science approach. Boundary identification tasks are commonly used as a first step in evaluating the 
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cognitive effects of categories and concepts on individuals’ interactions with stimuli, especially the 
implicit boundaries between categories (e.g., at which hue(s) do individuals switch from labeling hues 
as ‘blue’ to labeling them as ‘green’?).  

Graduate students in the psychological sciences at a research university in the Midwestern 
United States were recruited for this study (n = 39). All participants had completed at least one year of 
instruction and training in statistical methods at the doctoral level. They completed the boundary 
identification task as the second of three tasks. The full study took approximately 40 minutes on average 
to complete in full, and participants were compensated with a $25 electronic gift card.  

Participants were first reminded that Cohen’s d is “a statistic indicating the size of an effect in 
standard deviation units.” They were then told that they would be shown various values of Cohen’s d 
and for each value, they would judge whether it indicated ‘no effect,’ a ‘small effect,’ a ‘medium effect,’ 
or a ‘large effect,’ by selecting one of four keys on a keyboard. Crucially, participants were not told 
how to make this judgment, and at no point in the study were the standard benchmarks (i.e., .2, .5, and 
.8) mentioned to participants.  

Participants completed 180 trials in four blocks of 45 stimuli each, preceded by eight practice 
trials. There were 90 unique stimuli of the form “d = .XX” with values ranging from .01 to .90. 
Participants categorized each value twice: once in the first two blocks and again in the last two. Within 
each set of two blocks, the stimuli order was randomly shuffled. Stimuli were presented one-at-a-time 
and remained on screen until participants made their selection. Participants were encouraged to make 
their initial selection as quickly as possible. 

After completing the full study, participants also completed a short survey collecting basic 
demographic information and probing for possible demand characteristics for the study. As part of this 
survey, participants were asked to explicitly specify the upper and lower bounds of what they would 
consider a ‘small,’ ‘medium,’ and ‘large’ Cohen’s d effect size.  

 
RESULTS 

To identify the point at which participants’ effect size categories ‘changed’ from being 
categorized as ‘small’ to ‘medium’ and from ‘medium’ to ‘large,’ we first analyzed their survey 
responses. Of the 39 participants, 34 explicitly self-reported that they referred to the values of .2, .5, 
and .8 as benchmarks for categorizing effect sizes. The remaining five participants referred to the values 
.1, .3, and .5—common benchmarks in the interpretation of correlation coefficients (i.e., r). Data from 
these five participants were analyzed separately.  

 Participants varied in their explicit boundaries between the categories, with the median 
boundary delineating ‘small’ and ‘medium’ effect sizes at .39, and the median boundary delineating 
‘medium’ and ‘large’ effect sizes at .70. Surprisingly, very few participants specified categorical 
boundaries at the arithmetic midpoint (i.e., mean) between common benchmark values (i.e., .35 and 
.65; see the left panel of Figure 1). This may reflect that they had a variety of interpretations of the 
benchmark values of .2, .5, and .8. Participants drawing a boundary between ‘small’ and ‘medium’ 
effect sizes near .5 might have interpreted .5 as a boundary rather than a benchmark, as is typical of 
other statistical measures such as p-values (where .05 serves as a categorical boundary). Those drawing 
the same boundary near .3 might be influenced by the desirability of finding a ‘medium’ effect rather 
than a ‘small’ one. Those drawing the boundary near .4 might adhere to a conservative approach based 
on an aversion to taking the risk of over-interpreting statistical results and possibly committing a 
questionable research practice.  

At the aggregate level, the implicit boundaries from participants’ responses on the boundary 
identification task matched their explicit boundaries from the survey. As seen in the right panel of 
Figure 1, participants’ responses showed average implicit categorical boundaries at .38 (delineating 
‘small’ and ‘medium’ effect sizes) and .69 (delineating ‘medium’ and ‘large’ effect sizes), consistent 
with the median explicit values. Interestingly, there is quite a bit of overlap in the assigned labels for a 
given effect size. This may be due to the psychological boundary between effect size categories indeed 
being fuzzy, or due to variability in the location of hard boundaries amongst participants, as observed 
in the explicit boundary values.   
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Figure 1. Aggregate response patterns: explicit boundary location survey responses with reference 
lines at aggregate boundaries (left) and boundary identification task responses with reference lines at 

aggregate implicit boundaries (right) 
 

Participants categorized each effect size between .01 and .90 twice, but their two responses 
were not always in agreement (see the left panel of Figure 2). The average agreement rate across all 
participants and effect size values was approximately 88%. The agreement rate was lower (as low as 
60%) near implicit boundaries (i.e., values of .11, .38, and .69, as identified in the aggregate response 
selections), and higher near benchmarks (i.e., values of .2, .5, and .8). Interestingly, the locations of the 
most consistently categorized effect sizes were not the benchmark values themselves, but rather at 
slightly higher values.  

 

 
 

Figure 2. Response patterns: consistency in response selections (left) and average response time 
(right) by effect size value with reference lines at aggregate boundaries 

 
A complementary pattern is also seen in participants’ response times (see the right panel of 

Figure 2). Participants’ response times in selecting a category label were approximately 12% slower 
when categorizing values near implicit boundaries relative to benchmark values. Participants were 
fastest in making their selection at values slightly higher than the benchmark values. These response 
patterns exhibit typicality effects consistent with a ‘fuzzy’ boundary (Rosch & Mervis, 1975).  

An examination of individual participants’ response profiles revealed that most participants’ 
(23 of 39) response patterns clearly reflected a fuzzy boundary between categories, as exemplified by 
the response profile of GID22 (see Figure 3, bottom right). These profiles exhibit overlap between 
categories as well as increased response times and decreased consistency near category boundaries. 

Some participants demonstrated hard boundaries, especially the 11 participants who interpreted 
common benchmark values as boundaries, rather than drawing boundaries between benchmark values. 
For example, the response profile of participant GID1 (Figure 3, top left) indicates a hard boundary 
between ‘medium’ and ‘large’ Cohen’s d effect sizes at .5. Similarly, .5 serves as a hard boundary 
between ‘small’ and ‘medium’ Cohen’s d effect sizes for participant GID38 (Figure 3, top right).  
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Figure 3. Selected participant response patterns: participants’ responses and response time (RT) with 
reference lines at common benchmark values as provided by Cohen (1988) 

 
However, not all categorical boundaries were hard boundaries for these participants. The 

boundary between ‘small’ and ‘medium’ effect sizes appears to be a fuzzy boundary for GID1, 
evidenced by the overlap in the category labels assigned to each effect size. Similarly, the boundary 
between ‘medium’ and ‘large’ effect sizes is a fuzzy boundary for GID38. 

Some participants who interpreted the values of .2, .5, and .8 as benchmarks still drew hard 
boundaries between categories. For example, participant GID26’s response profile (Figure 3, bottom 
left) shows the benchmarks relatively centered within each category, and hard boundaries between 
categories at .11, .40, and .68 respectively. However, GID26’s response times were generally longer 
for effect size values near their category boundaries than for values near category benchmarks, 
consistent with a ‘fuzzier’ boundary.  
 
DISCUSSION 

In this study we investigated how researchers categorize effect sizes into the commonly utilized 
‘small,’ ‘medium,’ and ‘large’ categories using both implicit and explicit measures. We found that 
effect size categories were typically (but not always) separated by ‘fuzzy’ boundaries, as predicted by 
psychological theories of categorization. 

Surprisingly, participants’ implicit and explicit response patterns indicate they do not draw 
boundaries exactly at the arithmetic midpoints between common benchmark values, nor are they fastest 
and most consistent at exactly the common benchmark values. This may be due to the way in which we 
perceive symbolic (and non-symbolic) numbers. The standard model of numerical cognition suggests 
we possess a logarithmically compressed mental number line with psychological boundaries based on 
our place value system (Moyer & Landauer, 1967; Nuerk et al., 2011; Varma & Karl, 2013). Therefore, 
participants’ boundaries may reflect psychological midpoints based on their mental number line.  

This study is the first to empirically explore how researchers categorize a wide range of effect 
sizes, specifically in how they draw boundaries between effect size categories. Using labels such as 
those commonly utilized for Cohen’s d effect sizes affects not only students’ benchmarks but also the 
boundaries between them, sometimes in unpredicted ways. Understanding the cognitive processes 
underlying statistical reasoning can inform what we should practice and what we should teach if we are 
to move beyond the ritualistic categorical interpretation of statistical measures.   
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