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Checking the model assumptions is an important part of a regression analysis. However, 

other than knowing that model violations are bad and how to detect them, students often 

learn little about the degree to which the regression results are affected. This may leave 

the incorrect impression that even modest violations will ruin a regression. What negative 

effects should we expect if these assumptions are violated, and how are these negative 

effects modified by sample size and the strength of the regression association? Through the 

use of Shiny apps, students can see for themselves the effects of different levels of non-

normality and unequal variance on the widths of confidence intervals and Type I and Type 

II error rates in regression. 
 

INTRODUCTION 

Hypothesis tests and confidence intervals associated with many statistical models have 

accompanying assumptions about the model that must be met in order for the analysis to perform 

optimally. Instructors teach these assumptions alongside the analyses, and students often learn how 

to verify whether the assumptions are appropriate for the data. However, in many classes the 

instruction stops there, and students are left with the misleading impression that the analysis is 

ruined if any of the model assumptions are even slightly violated. Instead, we can use simulation to 

demonstrate that modest violations of model assumptions may lead to only small effects on the 

analysis results. 

We have developed two apps using the Shiny package in R to demonstrate how simple 

linear regression results are affected by non-normality and unequal variance of the model errors. 

These apps allow students to change the error distribution, error variance, and sample size for the 

regression model to see the impact of these model violations on simulated Type I and Type II error 

probabilities. These apps can be used as part of in-class demonstrations, lab activities, and 

homework assignments to give students a better understanding of how both mild and severe 

assumption violations can affect regression results. 

 

THE SIMPLE LINEAR REGRESSION MODEL 

The simple linear regression model was chosen to demonstrate the effect of assumption 

violations because it has several different model assumptions and is commonly taught in 

introductory and intermediate statistics classes. The model equation is 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖  

where 𝑦𝑖 and 𝑥𝑖 are the observed data, 𝛽0 and 𝛽1 are the true intercept and true slope parameters, 

and 𝜀𝑖 are the model errors. The model assumptions are that: 

• 𝐸(𝑦𝑖) =  𝛽0 + 𝛽1𝑥𝑖 (linearity of the model); 

• the model errors (𝜀𝑖) are independent; 

• the model errors (𝜀𝑖) have equal variance; 

• the model errors (𝜀𝑖) are normally distributed. 

For ease of simulation, we chose the integers 1 through 10 for the explanatory variable, 𝑥𝑖. 

The number of replicates, which we call n, is an input of the simulation. This means that the total 

sample size, N = 10n. The model parameters, 𝛽0 and 𝛽1, are also inputs of the simulation, as are the 

distribution and standard deviation, 𝜎, of the model errors. For unequal variance, the model error 

variance can be set as a function of x. 

The simulations track the Type I and Type II error rates for testing the null hypothesis of 

𝐻0:  𝛽1 = 0 versus the alternative hypothesis of 𝐻𝐴:  𝛽1 ≠ 0 at significance level α. 
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THE NON-NORMALITY APP 

The Non-Normality Shiny App allows students to experiment with different error 

distributions and see their effects on the regression results. The R server code for this app was 

based on earlier work by Hongyan Wang (2008). Through the app interface, the user can set the 

error distribution, sample size, model parameters (𝛽0, 𝛽1, 𝜎), and the number of iterations. The 

error distribution is modeled using the Tukey-Lambda distribution. Ali and Sharma (1996) define a 

simplified, two parameter version of the Tukey-Lambda distribution as 

𝑝𝑎 − (1 − 𝑝)𝑏 

where p is a uniform(0,1) random variable. By varying the values of a and b different shapes of 

error distribution can be produced. For example, a = b = 0.135 gives an error distribution that is 

approximately normal, while values of a = 6 and b = 0 give an error distribution that is extremely 

right skewed. To satisfy the requirement of the regression model that 𝐸(𝜀𝑖) = 0, the regression 

errors are transformed to have mean 0 and standard deviation 𝜎. Figure 1 shows a screenshot of the 

user interface for the Non-Normality App. 

 

 
Figure 1: The User Interface of the Non-Normality App 

 

As outputs, the Non-Normality App provides the simulated Type I or Type II error rate, the 

expected error rate under the normality assumption, and the p-value of a hypothesis test to detect 

whether the true Type I or Type II error rate differs from the expected error rate. Figure 2 shows 

the output from the Non-Normality App using the inputs shown in Figure 1. The sample sizes in 

the output refer to the total sample size, N, rather than the number of replicates, n, at each x value. 

 

 
Figure 2:  Output of the Non-Normality App Using the Inputs from Figure 1  
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The output in Figure 2 shows that for the smallest sample size of N = 10, the Type I and 

Type II error rates are significantly smaller than expected with p-values of 0.01 or less. As the 

sample size increases, both the Type I and Type II error rates move closer to their expected values. 

At a total sample size of N = 50, the simulated Type II error rate of 0.17 is slightly higher than its 

expected rate of 0.15 (p-value = 0.07), but the difference is not statistically significant. 

 

THE UNEQUAL VARIANCE APP 

The Unequal Variance Shiny App simulates regressions with different degrees of unequal 

error variance. The user can set the number of replicates (n, where the total sample size N = 10n), 

the model parameters (𝛽0, 𝛽1, 𝜎), and the number of iterations. The sample size may be distributed 

evenly or unevenly among the values x = 1 through x = 10 by changing a simulation parameter 

called n.state. The amount of unequal variance in the model is controlled by a simulation parameter 

called sigma.state. By altering the values of n.state and sigma.state many different forms of 

unequal variance can be modeled. Figure 3 shows the user interface of the Unequal Variance App. 

 

 
Figure 3:  The User Interface of the Unequal Variance App 

 

Balanced vs. Unbalanced Data 

As described earlier, the explanatory variable data, 𝑥𝑖, is a list of integers from 1 to 10 that 

is replicated n times. This leads to a balanced data set with n replicates at each value of x. To make 

an unbalanced data set, the app takes a vector v = [-2, -2, -1, -1, 0, 0, 1, 1, 2, 2] and adjusts the 

number of replicates at each x value by n.state×v. Values of n.state > 0 will make the number of 

replicates increase as x increase. Values of n.state < 0 will make the number of replicates decrease 

as x increases. For example for a base value of n = 5 replicates at each value of x: 

• if n.state = 1, the sample sizes for x = 1, …, 10 will be [3, 3, 4, 4, 5, 5, 6, 6, 7, 7]; 

• if n.state = -2, the samples sizes for x = 1, …, 10 will be [9, 9, 7, 7, 5, 5, 3, 3, 1, 1]; 

• if n.state = 0, the data is balanced with 5 replicates at each x value. 

 

Changing the Pattern of Unequal Variance 

The parameter sigma.state controls the pattern of unequal variance in the simulation. The 

sigma.state is a non-negative value that serves as an exponent for the standard deviation of the 

model errors. This standard deviation is computed using the formula 

( ) .sigma state

i ix  =  
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where   is the model standard deviation under homoscedasticity, ix  are the integers from 1 to 10, 

and sigma.state is the exponent of ix . When sigma.state is zero, the model errors have equal 

variance, 2 . As sigma.state increases, the heteroscedasticity of the model errors increases. For 

example for   = 10: 

• if sigma.state = 0.25, ( )i   = [10, 11.89, 13.16, 14.14, 14.95, 15.65, 16.27, 16.82, 17.32, 

17.78] at x = 1 to 10; 

• if sigma.state = 1, ( )i   = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] at x = 1 to 10. 

• if sigma.state = 0, ( )i   = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10] at x = 1 to 10. 

 

Output 

As output, the Unequal Variance App provides the simulated Type I or Type II error rate, 

the expected Type I or Type II error rate under equal variance, a 1 −  confidence interval for the 

true error rate, and a 1 − confidence interval for the difference between the true and expected 

error rates. The confidence intervals are computed using the exact binomial test procedure 

(binom.test) in the R package stats. Figure 4 shows the output of the Unequal Variance App using 

the inputs shown in Figure 3. 

 

 

 
Figure 4:  Output of the Unequal Variance App Using the Inputs from Figure 3 

 

The output in Figure 4 indicates that the simulated power is 0.16, and the expected power 

under equal variance is 0.19. The 95% confidence interval of the difference between the simulated 

and expected power goes from -0.03 to -0.02 indicating that for these parameter inputs, the actual 

power of the test is lower than expected. While it is statistically significant, a 2 to 3 percentage 

point difference may not be of practical significance. The output also displays the replicate and 

unequal variance patterns that result from the input values of n.state and sigma.state. 

 

CONCLUSION 

The purpose of these apps is to give students in regression classes easy tools to investigate 

the effects of non-normality and unequal variance on the results of regression inference. Instructors 

can develop assignments that ask students to explore how the effects of these model departures 

change based on sample size, data balance, and the degree of non-normality or heteroscedasticity. 

For example, through simulation students could discover that the effects of unequal error variance 

are less noticeable if the data are balanced, but grow more severe for unbalanced data. 

The original versions of these apps were developed as a student senior project (Wu, 2017). 

Future improvements are planned to the user interface, graphical output, and batch processing. The 

apps are available at the Cal Poly Shiny website (https://statistics.calpoly.edu/shiny). 

 

REFERENCES 

Ali, M. M. and Sharma, S. C. (1996). Robustness to Non-Normality of Regression F tests. Journal 

of Econometrics, 71, 175-205. 

Wang, Hongyan (2008). Robustness to Non-Normality of the Regression t-Test. (Unpublished 

senior project). California Polytechnic State University, San Luis Obispo. 

Wu, Harry (2017). Non-Normality and Heteroscedasticity in Regression and ANOVA. (Senior 

Project, California Polytechnic State University San Luis Obispo). Retrieved from 

http://digitalcommons.calpoly.edu/statsp/59. 

ICOTS10 (2018) Invited Paper Walker, Wu

- 4 -


