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Students of introductory statistics gain some knowledge of a large assortment of statistical concepts and 

tests, yet often fail to comprehend the core ideas that link these concepts and procedures together. In 

order to give students a more coherent view of statistics, and thus a more flexible understanding that can 

be applied appropriately across a number of situations, we set out to teach the introductory course as 

modeling, subjugating all other concepts and skills to the General Linear Model. In this paper we report 

on the initial design of the course and our first experiences implementing these ideas. 

 

INTRODUCTION  

Students graduate from our introductory courses armed with a variety of concepts and procedures, 

but often fail to apply them appropriately to problems that deviate even slightly from those covered in 

class. The problem, in our view, is our failure to produce coherent understanding of core statistical 

concepts. Learning of facts and procedures as isolated bits of knowledge not only makes transfer difficult, 

but also leaves students unprepared for more advanced statistics courses.  

Advanced courses in statistics, generally targeted at graduate students, often take a modeling 

approach, teaching a framework (the General Linear Model) that provides a coherent context for 

understanding virtually any statistical method. The question that motivates our work is this: Is it possible 

to start out, from the beginning, teaching statistics as modeling? And would such an approach lead to a 

more coherent conceptualization of statistics, even for introductory students? 

Many would argue that the concepts and methods of modeling are too difficult for the beginning 

student to understand. As psychologists, our research interest is in how people come to understand 

complex concepts - things that are hard to learn, that develop slowly over weeks, months, and even years. 

Statistics, in our view, is such a domain.  

In our work on statistics, we are seeking to apply current theories of cognitive and developmental 

psychology to the design and implementation of an introductory statistics course that starts with modeling. 

Our goal is to support students’ coherent understanding of statistics, to leave them with knowledge they 

can apply flexibly to novel situations, and to prepare them for more advanced courses in statistics.  

We base our approach on the work of others who have envisioned teaching of statistics as 

modeling, especially Judd, McClelland, and Ryan (2011), Kenny (1987), Rodgers (2010), Wild (2006), 

and the MOSAIC project (http://mosaic-web.org/).  

 

OVERVIEW OF STATISTICS: WHAT WE WANT OUR STUDENTS TO UNDERSTAND 

We frame statistics as the study of variation. If variation didn’t exist, then we wouldn’t need 

statistics. If everyone who took a particular drug got well, and everyone who didn’t died, we wouldn’t 

need statistics. But that’s usually not what happens. Usually some people who take the drug get well, but 

some don’t. Some people who don’t take the drug get well anyway. It’s not that easy to tell whether the 

drug really cures the ailment, or if the cure just happened by chance. Statistics is the body of tools and 

concepts that help us make sense of such situations.  

We divide our course into three parts: exploring variation, modeling variation, and evaluating 

models. These are three main goals statisticians have when analyzing data. Importantly, everything in a 
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traditional introductory statistics course, as well as in more advanced statistics courses, can also be 

understood in this coherent framework. 

 

Exploring Variation 

We start by exploring variation in a bunch of numbers, then discuss where the numbers come from 

(sampling, measurement, and research design). Using statistical tools such as graphs and frequency tables, 

we develop the concept of distribution, a core concept and the primary conceptual lens through which we 

view variation (Wild, 2006). It is a way to see the forest for the trees. 

We can learn a lot by examining distributions of data. But our interest usually goes beyond the 

data, to the Data Generating Process (or DGP). When we examine distributions of data, we do so to help 

us understand distributions of the DGP. These two kinds of distributions (data and the DGP) make up two-

thirds of what we refer to as the Distribution Triad. (Later in the course we will bring in the third kind of 

distribution, distributions of estimates.)  

Because the DGP is unknown and we can’t see it directly, we must model it. In this first section of 

the course we introduce only qualitative models, guessing the shape of the distribution of the DGP, for 

example. Importantly, we don’t introduce concepts such as mean or standard deviation until we formally 

introduce the concept of a statistical model in the second part of the course. 

We do, however, introduce the concept of explaining variation in one variable with another, and 

spend time discussing the sources of variation in an outcome variable. We also introduce the precursors of 

statistical notation by having students learn to write “word equations” (e.g., height = sex + other stuff) to 

represent relationships among variables.  

After considerable time building up an informal and intuitive basis for models, we pose the 

question of how we might quantify models. Quantifying models will help us make predictions and judge 

the accuracy of those predictions. It also will help us to compare alternative models by quantifying the 

amount of “other stuff,” or unexplained variation, left after explaining variation in an outcome variable.  

 

Modeling Variation 

We develop the idea of a statistical model first with a simple model - sometimes called the empty 

model: the mean of a quantitative variable. The mean that we calculate from our data is a statistic. We use 

the statistic to estimate a parameter, the mean of the DGP. Statistics are calculated from data; parameters 

are estimated based on data. Parameters must be estimated because, as we have seen, we have no way to 

directly measure the DGP. 

We explore properties of the mean as a model rather than as a measure of central tendency. 

Likewise, we approach measures of spread as tools for quantifying error from a statistical model. We can 

estimate how far off the mean is by calculating the deviation of each data point from the mean, then 

aggregating these deviations to indicate error from the model (e.g., sum of the absolute deviations, sum of 

the squared deviations, variance).  

In the context of this simple model, we begin to develop in very concrete terms the basic idea 

behind statistical modeling: DATA = MODEL + ERROR. In the distribution (of data), each score can be 

expressed as the mean (as a model) and a deviation from the mean (error). We can represent this idea 

using simple mathematical notation, the notation of the General Linear Model. 

The sum of squares as a measure of error is related to the larger goal of statistics: explaining 

variation in some outcome variable, or, in a complementary fashion, reducing error variation. The mean 

gives us a place to start because the error has already been reduced as much as possible. Adding more 

explanatory variables into the model can further reduce this error. The empty model then becomes a point 

of comparison for evaluating more complex models.  

We start by adding a simple grouping variable. Using the notation of the General Linear Model, 

we can represent this new model either as two group means, or as a grand mean plus the deviation of each 

group (above or below) the grand mean. The error term is now the sum of squared deviations of scores 
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from their own group mean. More complex models reduce the error relative to simpler models, something 

we can quantify as Proportional Reduction in Error (PRE). 

Although we can reduce error further by making more and more complex models, we also 

sacrifice degrees of freedom. Degrees of freedom is, in a sense, the currency of statistical power. We 

“earn” more degrees of freedom by having a larger sample but “spend” degrees of freedom every time 

parameters are added to a model. The F ratio corrects for this by quantifying error per degree of freedom.  

Once we have developed a model with a grouping variable as the explanatory variable, we follow 

the same approach to building models that have a quantitative (as opposed to categorical) explanatory 

variable. We can also begin to imagine building more complex models (e.g., multiple regression) in the 

same way. 

 

Evaluating Models 

From estimating the parameters in our models, we then ask how accurate are our parameter 

estimates? Clearly, if we had studied a different sample we would have come up with slightly different 

parameter estimates. Our measures of fit, such as PRE or F, would also be different if we had a different 

sample. The variation in an estimate is called sampling variation.  

Just as interpreting a single score requires us to know about the distribution from which it came, 

interpreting a statistic (such as a parameter estimate) requires us to know something about the distribution 

from which it comes. This distribution, which only exists in our imagination, is called a sampling 

distribution, or the distribution of an estimate.  

We can learn something about the variability in samples by simulating sampling distributions 

given some known DGP. There are predictable patterns that emerge (formalized in the Central Limit 

Theorem). We also introduce creating sampling distributions through bootstrapping and idealizing them 

with mathematical models.  

A sampling distribution, and more specifically the standard deviation of a sampling distribution 

(or Standard Error) allows us to reason about our parameter estimates using logic like this: If the DGP has 

the mean, variance, and shape we assumed in our simulation, then we can calculate the likelihood of 

getting a random sample with a mean more extreme than a given value. Using similar logic, and working 

backwards, we can think about possible DGPs that gave rise to a particular sample.  

Finally, we apply these concepts to the task of comparing models, ruling out more complex 

models in favor of simpler ones based on data. We compare models with categorical predictors, 

quantitative predictors, and also mixed models with a variable of each type. 

 

CONCLUSION 

Early implementations of this course at Cal State LA and UCLA suggest that the real benefit of 

using modeling to teach the coherence of statistics is that it helps students transfer what they have learned 

to new situations, and extend the models covered in class to more complex situations. For example, an 

earlier implementation of this course did not teach students how to evaluate the regression model against 

the empty model, yet students were able to invent ways to do so by the end of the course.  

Our experiences convince us that practicing the connections of a small set of core concepts to a 

variety of situations throughout the course is more successful than the traditional course in which many 

concepts are introduced, but used less extensively. Further evidence for this view will be presented at the 

conference. 

We are still grappling with a variety of questions as we move forward in developing this course 

and pedagogy. Is this a complete story for novices? How do we do research and gather evidence on what 

approaches work better? How do we handle variation in mathematical preparation?  

Our current attempts to develop materials have led us to develop learning outcomes that are 

always nested in a broader goal and to rely on pedagogical materials invented by other statistics educators 

who emphasize modeling (e.g., Pruim, Kaplan, & Horton, 2017; simulations by Rossman and Chance). 
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We are also incorporating routines that have been studied by cognitive scientists (e.g., inventing based on 

contrasting cases, Schwartz et al., 2011). 
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