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In the setting of design-based research, the second version of an experimental course on data science 
is implemented accompanied by research. The three modules of the course focus on “data and data 
detectives”, “machine learning” and a combination of both in working on a final project. In this 
paper, we will focus on the topic “decision trees” which is part of “machine learning”. The students 
learn approaches of how to build decision trees manually from data using the tree plugin of CODAP. 
Further on, they learn to design and code an algorithm with Python that automatically generates 
trees. Afterwards, the algorithm is applied to real data sets with the support of Jupyter Notebooks. The 
instructional approach provides a deep content knowledge, which also serves as a basis for discussing 
the difference between humans’ and machines’ building decision trees and the societal implications of 
implementing them in practice.  

 
INTRODUCTION 

Mathematics is both part of our world and hidden in it (Heymann, 2003). In today's world, 
such hidden mathematics is constitutive for numerous applications of automated decision-making 
processes. Applications such as suggestions of content or advertisements on online platforms, 
diagnoses in healthcare, evaluation of legal issues (Dressel & Farid, 2018) or even support for election 
campaigns (Issenberg, 2012) are implemented through automatised decision-making systems. The use 
of automated decision-making is accompanied by a social discourse, which is partially characterised 
by euphoric exaggeration of the performance and the value on the one hand and anxious rejection of 
so-called "Frankenstein algorithms" on the other (sueddeutsche.de, 5.9.18). Decision trees represent 
one kind of model in the field of machine learning. With an increasing societal relevance, there is a 
growing demand for data-driven procedures to be taken up in school education (Biehler & Schulte, 
2018; Engel, 2017; Ridgway, 2016). Automated decision models are linked to everyday experiences 
of students (e.g. personalised advertising) and dealing with underlying algorithms and mathematics 
allows for a re-evaluation and well-founded reflection on its opportunities and limitations in different 
contexts. This corresponds to the motif of “world orientation” in general mathematics education 
(Heymann, 2003) and can be helpful for people to understand the digitalised world and for an 
informed participation in a discourse on machine learning. Therefore, we created and implemented a 
teaching module on machine learning for upper secondary level in the setting of design-based 
research. In this paper, we present the part of this machine learning module about the method of 
decision trees. The target is to show our elementarisation of the content and to give insights in the 
practical implementation. An outlook on the accompanying research about potential obstacles to 
understanding is given as well. 

 
PROJEKT DATA SCIENCE UND BIG DATA IN DER SCHULE (PRODABI) 

The teaching module that we present in the following was created in the context of  ProDaBi 
project (www.prodabi.de) which is an interdisciplinary joint project of didactics of mathematics and 
didactics of computer science at the University of Paderborn. The project was initiated by the 
Deutsche Telekom Stiftung and has been funded since 2017. One aim of the project is to develop and 
implement a data science curriculum, initially in the upper secondary level, and then for the lower 
secondary level in the form of a system of stand-alone modules. The project began with hosting an 
international symposium. Based on this symposium, a theoretical foundation for curricular goals and 
contents was developed (Biehler et al., 2018). Practical testing and evaluation takes place in a so-
called project course (non-obligatory course in grade 12), which is organised in cooperation with two 
Paderborn upper secondary schools for the second time in the 2019/20 school year. The first module 
deals with the basics of statistics and data exploration, furthermore basic knowledge of the 
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programming language Python and relevant libraries for data science such as pandas (McKinney, 
2010). The second module deals with machine learning focusing on two methods: decision trees as 
representatives of transparent models and artificial neural networks as representatives of less 
transparent" black box" models. The third module consists of project work in which the students apply 
their previously acquired skills to an authentic question with real data (prediction of free parking 
spaces). In this paper, the focus is on the teaching module about decision trees.  

 
THE MACHINE LEARNING METHOD OF DECISION TREES 

Decision trees are classification models that predict a target variable from other variables (e.g. 
predicting a disease from medical features). The hierarchically organized decision rules of a decision 
tree can be displayed in a directed tree structure. Therefore, the decision making of a tree model is 
highly transparent and understandable. In terms of machine learning, decision trees are generated from 
a (training) data set where the target variable is known as well as a set of predictor variables. Self-
learning algorithms such as ID3 (Quinlan, 1986) use training data to examine and compare different 
predictor variables in order to find the best ones suited to predict the target variable. In a greedy 
manner, the variable with the best rating is placed at the top of the tree and recursively, further 
variables are selected for the next levels of the tree structure until the data set is perfectly classified or 
no variable is left.  

The key task in this approach is to assess how well a predictor variable is suited to predict the 
target variable. We discuss the case of a categorical target variable. To assess a predictor variable, the 
data set is split with respect to the different values of the predictor variable into a complete set of 
subsets. In each subset we find a frequency distribution of the values of the target variable. As 
prediction we choose the value of the highest frequency. The frequency distributions in these subsets 
thus provide information on how many cases are misclassified, i. e. how well the predictor variable is 
suited to predict the target variable. These frequency distributions can be assessed with different 
measures such as the misclassification error or the entropy function from information theory (Topsøe, 
1974). After assessment of all data splits, the split with the highest measure is chosen and the 
procedure is repeated recursively regarding all subsets. A decision tree typically suffers from 
overfitting, which affects performance in predicting new data. Overfitting means that specific 
characteristics of the training data are learned. This is because the subsets become smaller over 
different steps of the creation process so that the resulting frequency distributions become less 
generalisable and more specific to the concrete data set. Therefore, the tree is pruned retrospectively 
with regard to test data so that splits with a negative influence on the performance are taken back. 
Decision trees are well-performing classification models that form the basis for even more 
sophisticated methods as random forests (Hastie et al., 2009). Moreover, decision trees are intuitively 
understandable representations of complex data sets whose decision-making is transparent.  

 
THE DESIGN OF THE DECISION TREE MODULE 

When designing the module, we had to decide, which computational tools to use, which data 
for introducing and applying decision trees to and how to elementarise and organise the stepwise 
learning process towards the automatic decision tree algorithm and its practical use in modelling and 
deployment processes. In the coursework before the topic of decision trees, the students had learned to 
use CODAP for an initial exploring a data set on media use of students (JIM-PB). Then the students 
were introduced to the programming language Python and to its use with Jupyter Notebook. Python 
was than introduced as a tool for data exploration with more comprehensive and flexible features than 
CODAP. In the decision tree module, we can utilise the acquired competences with these tools. The 
suitability of the tools for the topic decision trees is explained and exemplified below. We designed a 
module with a basic part where students derive the systematic approach of a decision tree algorithm 
without programming, an optional advanced part where the students implement parts of the algorithm 
themselves, and an application part where students apply the algorithm to new data. The application 
part is realisable in two different forms, with or without programming.  

 
THE DATA 

In the whole project course, we use different data sets which represent different kinds of data. 
Among some small data examples, we mainly regard three data sets: 
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• Data about parking spaces in Paderborn   (raw data, time-series data) 
• MNIST data set (LeCun & Cortes, 1998)   (tidy data, image data) 
• JIM-PB data on the media use of adolescents  (tidy data, survey data)  
 
All three data sets are used in context of decision trees. The JIM-PB data set is a self-collected data set 
on the media use of young people from different schools in Paderborn (n = 215, 94 variables)  
 

 
Fig. 1: Extract of the JIM-PB data set (didactically reduced form, n = 53, 15 variables)  

 
The questionnaire is based on the JIM study (Behrens & Rathgeb, 2017) and was enriched with 
additional questions. For some variables (e.g. Playing_OnlineGames, Using_Instagram, etc.) the 
frequency of use is asked in a seven-tiered scale (never - daily), other characteristics (e.g. 
Own_Computer) are queried in a binary scale (true, false) and the remaining characteristics (e.g. 
Number_of_Apps) require numerical input. For better usability of tools, we prepared a didactically 
reduced form of the data in which all scales are transferred to binary scales (see Fig. 1). Considering 
non-binary categorical variables in CODAP is possible, but the display of these in the tree tool is not 
easy to understand for beginners because the tree tool creates binary data splits whether the variable is 
binary or not.  

 
DIGITAL TOOLS 

In the decision tree module of the project course we mainly use two different digital tools: the 
web-based data analysis tool CODAP (Finzer, 2017) and Jupyter Notebook (Toomey, 2017). CODAP 
includes an interactive decision tree plug-in (Engel et al., 2018) which is shown in figure 2. With this 
tool, it is possible to manually create a decision tree for a data set and to dynamically show statistical 
measures like the misclassification error. The illustration in figure 2 is based on the reduced JIM-PB 
data set from figure 1. The 15 variables are shown at the bottom. The target variable is 
"Playing_OnlineGames" with the values "frequently" or "rarely". The user can select the listed 
predictor variables from the bottom section by drag and drop. The tool automatically splits the data set 
with respect to the predictor variable and evaluates the resulting subsets. 

  
Fig. 2: CODAP Decision Tree Plug-In 

 
In figure 2 (left), the predictor variable "gender" is selected. The illustration shows that out of 

28 male persons, 24 frequently play online games. Out of 25 female persons, only eight play 
frequently. The resulting decision tree classifies according to the majority principle and predicts that 
male persons play online games frequently and female persons play rarely. To improve the tree, the 
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user can add additional features at the end of the branches (see figure 1, right). That way, a decision 
tree grows step by step. The user can evaluate the quality of the tree with regard to the data set by the 
displayed numbers of True Positives (TP), True Negatives (TN), False Positives (FP) and False 
Negatives (FN). From these values, the misclassification error and other statistical quality criteria, 
such as sensitivity or specificity can be calculated. The CODAP decision tree tool has different limits. 
Only binary splits are possible, and it is not possible to automatically generate optimal trees. However, 
these limits are not negative as a starter. The handling of the tool is intuitive and after getting used to 
it, it is suitable to explore different ways of generating decision trees. Students can test predictor 
variables that they intuitively judge as relevant or that they found as relevant in their previous 
exploration of the data set. For further exploration, we recommend the reader to visit 
(https://codap.concord.org/releases/latest/static/dg/en/cert/index.html#shared=117414). 

The tool Jupyter Notebook (www.jupyter.org) is an interactive cell-based programming 
environment, which we use with the programming language Python with its powerful libraries such as 
pandas. However, Juypter Notebook is not only a programming environment, but more like a teaching 
tool with cells for code and cells for explanatory texts and pictures. The tool is perfectly suitable for 
interactive tutorials where outputs can be displayed directly under a code cell. That way, code can 
easily be edited and repeatedly rerun in an interplay with regarding explanatory elements of the 
notebook. Additionally, it is possible to hide code and create interactive widgets in which a user can 
vary parameters and run implemented algorithms without explicitly using Python code. That way, 
Jupyter Notebook can be used as teaching tool also for students with no coding competence. For 
example, we developed a small decision tree library for teaching purpose, which is integrated in a 
Jupyter Notebook through a graphical user interface.  
 
ELEMENTARISATION OF THE TEACHING MODULE 

Within the ProDaBi project, we have developed a teaching module on machine learning with 
decision trees, which was implemented in the recent project course. The elementarisation of the 
content is based on Fleischer (2019). The resulting module consists of 12 lessons, and the content 
structure is as follows: 
1. Introduction to the concept of data split (1 lesson) 
2. Development of an algorithmic approach by manual creation of decision trees with CODAP (3 

lessons) 
• Key Task: Comparison of different data splits based on misclassification error to assess 

which predictor variable is most suitable 
• Formulation of an algorithm for systematically creating an optimal (good) decision tree on 

training data (expressed as pseudocode) 
3. Introduction of the entropy measure in comparison to the misclassification error as a quality 

measure (2 lessons) 
4. Implementation of an algorithm with Python based on the developed pseudo code (3 lesson) 
5. Applying the decision tree algorithm to data (3 lessons) 

• Expansion of the algorithm through post-pruning with test data to reduce overfitting 
• Creation, analysis and evaluation of resulting decision trees 

6. Critical reflection upon the deployment of decision tree models in different scenarios (1 lesson) 
 The module includes a basic part without programming (1. and 2.), an advanced part that 

requires knowledge in the programming language Python (3. and 4.), and a final application part (5. 
and 6.) which can be implemented with or without programming. In the basic part, the students 
explore the process of creating a decision tree with the CODAP decision tree tool. An application 
context of such a tree is the personalised advertising in online platforms because such platforms own 
similar personal data and advertise for different products like online games. With specific tasks, the 
students work on different aspects of how to choose the next predictor variable and of evaluating a 
decision tree with statistical criteria. For example, the students formulate rules for the decision-making 
in the leaves based on the conditional frequency distributions and rules for the comparison of two 
different splits. This provides the basis for systematically creating a decision tree. As a next step, the 
students formulate - in group work - an algorithm in pseudo code language based on their actions 
when constructing a tree. In the advanced part of the module, students implement parts of such an 
algorithm that automatically creates decision trees from data sets for a given target variable. For this 
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purpose, we use Python in Jupyter Notebooks. Leading to a performant algorithm, the entropy 
function is introduced for measuring the quality of a split. Different advantages of the entropy are 
exemplified with the given data. The students implement the algorithm in division of labor, so that 
different groups each implement one of three functions: first defining all possible splits, second 
identifying the best split according to the entropy measure, and third dividing a data set for a given 
split. Finally, the three functions are merged in a recursive decision tree algorithm. 
In the application part of the module, the students work with our decision tree library, which uses parts 
of their own coding. We integrated that into a special Jupyter Notebook with a graphical user interface 
so that no coding is needed. The resulting Jupyter Notebook is used like a tool to automatically create 
trees and evaluate the resulting models with test data. That leads to the necessity of pruning. 
Therefore, the students first manually prune single nodes and after understanding the algorithmic 
approach of post-pruning, it is also automated. The resulting pruned decision trees usually perform 
well on training data and also on test data. As next step, different models are interpreted and critically 
reflected. In class, for example, the algorithm provided the decision tree model shown in figure 3 for 
predicting gender based on a data set that contains data about 200 persons and 94 characteristics of 
their media behavior. In that case numeric scales were used, where 1 means "never" and 7 means 
"daily". The white nodes of the tree contain split criteria and the yellow nodes contain the 
classification value at the end of each branch. In every node of the decision tree the (conditional) 
frequency distribution of the target variable is displayed, in which the left value represents the number 
of females and the right value represents the number of males. 

 

 
Fig. 3: Decision tree resulting from JIM-PB data that predicts the gender from media use 

 
For example, the tree classifies people as male if they frequently play online games and watch sports 
videos and as female if they rarely play online games and frequently watch fashion videos. Test data is 
classified correctly to 85 percent with this decision tree model. Such an example allows for a 
reflection on automated decision making with regards to different aspects. On the one hand, the rules 
of decision-making are questioned content-wise. On the other hand, the accuracy of such automated 
decision models are examined by way of different statistical measures. Furthermore, the recent 
research of fairness in machine learning is adopted which uses statistical measures to evaluate how fair 
a decision model is in terms of sensitive attributes.  In total, the students get qualified to evaluate a 
decision tree model statistically and to reflect about social implications of possible applications. The 
module is designed to use the basic part and the application part which treat the systematic approach 
and the statistical evaluation for contexts without programming.  
 
OUTLOOK 

In our accompanying research, we analyse students’ work and assess students’ understanding 
by a comprehension test. In the comprehension test the students understanding of six different aspects 
was assessed: understanding of general application scenarios, of the concept of data split, of the 
comparison between different data splits by misclassification error, of the systematic algorithmic 
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approach of creating a tree, of an interpretation of the entropy function and of the advantages of 
entropy towards misclassification error. We evaluated comprehension test of nine students: the 
understanding of aspects of the basic part of the module was good for almost all students. That means, 
the tasks of general application scenarios, concept data split, comparison of splits and the algorithmic 
approach were solved well or very well with only few exceptions. The tasks dealing with entropy were 
solved worse (well or very well only two out of nine students). This is not a surprise because the 
entropy is the most complicated part of the module. Moreover, in the next implementation we will 
shift the focus towards the statistical analysis and evaluation of existing decision models and the 
modeling process itself instead of the growing process. Students will document their analysis and 
evaluation results in form of interactive computational essays that will show achievements and 
shortcomings of students understanding. As these data are not yet available at the time of writing, we 
focused on the description of the course and its theoretical background. 
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