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ABSTRACT 

 

 What makes for a naturally productive collaborative task?  Some researchers have 

suggested that optimal tasks for productive collaboration are ill-structured and allow for 

exploration and construction of multiple possible solutions (e.g. Cohen, 1994).  Others 

have suggested that tasks should have one solution and be well-defined such that 

everyone can agree on their answers (e.g. Steiner, 1972).  In a search for a way to 

reconcile this dilemma, two dimensions—innovation and efficiency—were examined for 

their effects on collaboration and learning in two experiments with university students.   

Innovation involves the use of prior knowledge to construct solutions to 

unfamiliar problems.  The goal is to prepare students to perceive and appreciate how an 

expert solution works when they receive instruction on it.  Efficiency involves being 

given the canonical solution and then having an opportunity to practice it.  The goal of 

efficiency is to promote speed and accuracy in applying the expert solution. 

These dimensions were recently found to be informative to the field of transfer.  

Transfer is the generalization of learning from one situation to another.  Schwartz, 

Bransford, and Sears (2005) suggested that optimal instruction for promoting transfer 

involves cycles of innovation and efficiency, rather than just one or the other approach.  

Thus, rather than viewing these dimensions as polar opposites, they described them as 

complementary components for promoting thorough understanding.   

For the two experiments reported in this dissertation, it was hypothesized that 

tasks with an innovation component would yield more productive interactions and 

learning than tasks with strictly efficiency components.  The first experiment compared 

dyads working on an Innovation version of a concept-mapping task to dyads working on 

an Efficiency version of that task.  It was an exploratory study designed to be an initial 

test of the Innovation and Efficiency framework.  While it found few significant learning 

differences between conditions, it revealed that the Innovation task promoted more 

knowledge-sharing behaviors than the Efficiency task, as expected.  Through a novel 

method of analysis, moment-to-moment interactions were related to learning outcomes.   

The second experiment built upon the findings of the first.  Individuals and dyads 

were randomly assigned to the Innovation condition or the Efficiency condition.  
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Participants learned about the chi-square formula, and their understanding of it was 

assessed with basic calculation questions, comprehension questions, and difficult transfer 

problems.  As part of the transfer problems, a preparation for future learning (PFL) 

assessment was used to measure participants’ ability to adapt their knowledge of the chi-

square formula (Bransford & Schwartz, 1999).   

PFL assessments include a resource question and a target question.  The resource 

introduces a new type of problem that is related to the initial instruction.  The target 

builds upon the resource.  If instructional conditions vary in their effects on students’ 

abilities to learn from the resource, these difference should appear on the target problem.  

Participants in the Innovation condition scored significantly higher on the transfer 

problems, and Innovation dyads showed the greatest performance on the target PFL 

question.  The strongest indicator that tasks with innovation components might naturally 

support collaborative learning came from the finding that Innovation dyads exceeded 

nominal dyads (dyads modeled on individuals’ scores) on the PFL problem.   
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CHAPTER 1: INTRODUCTION 

 

Collaborative learning has gained prominence as an instructional technique in 

recent years, but we still lack understanding of when and how it naturally contributes to 

learning.  Currently, rather than being able to give students tasks to do in groups with the 

expectation that they will interact well and learn the material, we must use artificial 

scaffolds.  Many teachers report using collaborative activities in their classrooms, yet few 

implement scaffolds found to promote successful learning in groups (Antil, Jenkins, 

Wayne, & Vadasy, 1998).  Some of the reasons teachers give for not using proven 

techniques are that they are difficult or cumbersome to implement, or that they seem 

artificial and might not prepare students for the real world.  Common techniques for 

promoting collaborative learning include roles and scripts, motivational systems, and 

training for group behaviors (e.g. Coleman, 1998; Gillies & Ashman, 1998; Johnson & 

Johnson, 1999; King, 1999; Slavin, 1996).  While these approaches have shown notable 

successes, teachers often prefer using unstructured group-work.  This can be problematic 

because classrooms that did not implement a proven system showed no significant 

learning gains from collaboration (Slavin, 1996).  Rather than trying to structure the 

interactions in collaborative groups through training, rewards and punishments, or formal 

scripts, an alternative approach is to understand what makes a naturally productive 

collaborative learning activity.  This would allow teachers to select appropriate tasks for 

groups without needing to implement extensive scaffolds to ensure learning.  By 

searching for a way to characterize more and less productive tasks for groups, we can 

gain a better sense of what the benefits of collaboration are to learning and when we can 

expect them.  This dissertation describes two experiments that tested a recently developed 

framework from the transfer literature for its ability to characterize productive 

collaborative tasks (Schwartz, Bransford, & Sears, 2005).   

By examining the effects of tasks on collaborative interactions and learning, we 

should be able to identify features of tasks that naturally afford knowledge-sharing, joint-

attention, or other productive interaction patterns.  In the remainder of this dissertation, I 

will review the literature on collaborative learning to further justify why an investigation 

of the effects of different types of tasks on group interaction and individual learning is 
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appropriate at this juncture.  This review will first describe features that categorize the 

literature on collaborative learning and help reveal gaps in our current knowledge.  It will 

then note the progress made in understanding the effects of different scaffolds on 

collaborative interactions and learning.  Next, the relative lack of research on the impact 

of different tasks on outcomes other than group performance will be highlighted.  This 

section will include a detailed review of a few of the limited number of studies that have 

found strong effects of different tasks on group performance in an effort to describe 

common features of such tasks.  Finally, I will describe two dimensions, innovation and 

efficiency, that may provide a useful characterization of tasks that support productive 

collaboration.   

 

Collaborative Learning Literature Review 

 Before reviewing the literature, three features that characterize studies of 

collaboration will be described: outcome measures, social characteristics, and task effects.  

Common outcome measures of collaborative interaction are tests of problem solving and 

learning.  For my purposes here, problem solving refers to the work a group does together.  

Learning is measured by what an individual can do alone after working in a group, and it 

presumably entails transfer of some sort (see Bransford & Schwartz, 1999 for why 

transfer might be re-conceptualized as learning).   

Collaborative learning is often considered successful compared to individual 

learning if the average of the group performance exceeds the average individual 

performance on a posttest.  This could be considered a lower-bound for considering 

group interaction successful because if groups do not exceed the average of individuals, 

then people would gain more by working alone.  More stringent methods exist that 

involve comparing group performance or learning to that of mathematically aggregated 

individuals, known as “nominal groups.”  This approach has been used to see if groups 

perform better than even the best individuals (e.g. Laughlin et al., 2003), or better than 

individuals aggregated under truth-wins assumptions in which perfect knowledge-sharing 

is assumed (e.g. Schwartz, 1995).  Under truth-wins assumptions, if any individual has 

the correct answer, it is assumed they would share it with the “group” and everyone 

would recognize its correctness.  Truth-wins models represent an upper-bound for what 
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groups can do if each individual operated separately and then combined in perfect fashion.  

The only way real groups can surpass nominal groups aggregated under truth-wins 

assumptions is if something in their interaction leads to new knowledge construction, 

such as partners coming to new understanding through discussion that neither could have 

discovered alone (in the allotted time).  Outperforming nominal groups is rare.  Tasks that 

have shown such results may contain key features of productive collaborative tasks, and 

for this reason, the relevant literature will be reviewed in detail in the section on task-

structures and collaborative learning.   

 Social characteristics are also a critical component of studies of collaboration.  If 

we can identify the key behaviors associated with successful group learning, we can 

attempt to find more effective ways of supporting those behaviors.  Studies of social 

interaction include those that examine the types of behaviors associated with productive 

group or individual outcomes (usually studies involving video or discourse analysis).  For 

instance, Webb (1983) found that giving explanations was associated with greater 

learning.  Other studies of social interaction manipulate how individuals interact by using 

social scaffolds, such as roles or prompts, or motivation systems.  One recognized system 

employs interdependence and individual accountability to promote productive 

collaboration.  Interdependence means that the individual’s success depends (in part) on 

the group’s success.  Individual accountability means that the group’s success depends on 

each individual.  As an example, group recognition can be given based on the average 

test score of individuals in a group.  Reviewing 99 studies that compared collaborative 

learning treatments to control conditions in schools ranging from the elementary level to 

the secondary level, Slavin (1996) found that when individual accountability and 

interdependence were both employed, collaborative learning produced an effect size of 

+.32.  Without both scaffolds, collaboration only produced an average effect size of +.07.   

Beyond outcome measures and social characteristics, a third factor receiving 

attention in the literature involves the task around which people collaborate.  Studies of 

task effects include those that explicitly compare the effects of different tasks on 

collaborative outcomes (e.g. Laughlin et al., 2003) and those that test the effects of a 

given task on groups versus individuals (e.g. Laughlin et al., 2003; Schwartz, 1995).  For 

example, Steiner (1972) reviewed many studies of task effects ranging from tug-of-war 
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and brainstorming to syllogisms and Eureka problems.  The former tasks showed 

considerable losses compared to nominal groups whereas the latter often showed group 

performance equal to nominal groups (and better than individuals alone).   

The research on collaborative learning can be broadly divided into studies that 

relate social characteristics to outcome measures and those that relate tasks to outcome 

measures.  The former have tended to show the effects of different social scaffolds on 

learning whereas the latter have tended to show the effects of different types of tasks on 

group problem-solving.  At this point, there is little or no overlap between the two.  

Figure 1 reflects the characterization of the literature provided above and includes studies 

to be reviewed in each area.  What should be noticed in this figure is that relatively few 

studies have examined the effects of different tasks on learning, and none that I am aware 

of have examined the effects that different tasks have on social interaction and thereby 

individual performance and learning.  These factors are not the only way to divide the 

literature but they highlight an area that has been relatively understudied and should offer 

insights into the unique contributions collaboration can make to learning. 

 

 
Figure 1.  A concept map of the collaborative learning literature review.  Social scaffolds have been shown 
to increase collaborative learning; however, teachers do not often implement these scaffolds.  Some tasks 
have been shown to promote greater problem-solving success for groups compared to individuals, but less 
is known about their effects on group interaction patterns, and individual learning and transfer. 
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Studies of Social Interaction and Collaborative Learning 

From the many studies of social interaction and collaborative learning, 

researchers generally agree that under the right scaffolds, such as individual 

accountability and interdependence (Slavin, 1990; Johnson & Johnson, 1999), individuals 

can learn more by working in groups than by working alone.  Questions that remain for 

studies of social interaction include what processes are associated with productive 

learning outcomes (Azmitia, 1996; Slavin, 1996) and what underlies successful group-to-

individual transfer (Olivera & Straus, 2004).  As will be reviewed below, many 

researchers have made significant progress in understanding key mechanisms behind 

productive collaboration.   

Webb (1983) described four studies of collaboration on mathematics units 

conducted with students of various ages from middle-school to upper-high school.  She 

coded student interactions according to whether statements were given or received, 

requested or not, and whether they consisted of explanations, no responses, or “terminal 

responses” (i.e. short, yes/no types of statements).  Giving explanations was correlated 

with students’ subsequent performance, even after partialing-out a measure of their 

ability.  Receiving explanations after requesting them was also positively correlated with 

individuals’ subsequent performance.  “Terminal responses,” such as a simple “Yes/No,” 

and non-responses were associated with worse learning.   

Further evidence for the detrimental effects of terminal responses comes from 

Barron (2003).  She studied sixth graders solving problem-based math scenarios in three-

member groups.  She found that groups that did poorly on the task gave more terminal 

and ignoring responses and did not connect their solution proposals to prior group 

discussion.  Groups that did well on the task showed building dialogue where partners 

proposed correct solutions to the topics their partners’ had just been discussing.  Perhaps 

because of this joint attention and mutuality, these proposals were often accepted or 

discussed rather than being ignored or rejected by the other group members.  Those 

correct proposals that did not build upon the immediately preceding topic of discussion 

were never accepted without further review, and they were often rejected or ignored.   
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Notably, Barron (2003) related these interactional-behaviors to subsequent 

individual recall and transfer.  When individuals solved the same problem alone that they 

previously solved in groups, participants from high-performing groups did better than 

those from low-performing groups.  On the transfer task the results were similar.  

Importantly, on average, participants who were assigned to groups outperformed those 

that were assigned to an individual condition (Barron, 2000).  Those in the low-

performing groups, however, scored lower on the original problem than those who 

worked alone despite scoring similarly on the mastery and transfer tasks.  In other words, 

productive learning outcomes were not guaranteed with collaboration; knowledge-sharing 

and discussion appeared critical to positive outcomes. 

Moving from observational studies to experimental tests, Gillies and Ashman 

(1998) examined the effects of manipulating the amount of certain behaviors they thought 

were crucial to productive collaborative learning.  They trained a random sample of 25 

classes of first and third graders to collaborate well with their partners by providing 

constructive feedback and sharing tasks and resources.  Students in the trained group used 

higher-order cognitive language strategies such as explanations with evidence 

significantly more often than the untrained group.  These findings are noteworthy 

because the trained participants also performed significantly better on a standardized 

word-reading test than the untrained participants.   

While the training methods of Gillies and Ashman (1998) were fairly broad, 

others have tried more targeted interventions, such as scripts and roles, to promote greater 

collaboration and learning.  For instance, Coleman (1998) tested the effects of 

explanatory prompts on fourth and fifth graders’ academic achievement.  In her 

experiment, students who were average on an “intentional learner” scale were randomly 

assigned to a treatment or control group.  These two groups were compared to each other 

and to a high “intentional learning” group on achievement in a science course on 

photosynthesis.  The treatment group received a sheet of prompts to facilitate evaluation 

of their thinking (a metacognitive skill) and to encourage use of high quality explanations 

when justifying their answers.  For example, one prompt said, “Okay explain why you 

believe that your answer is correct or wrong?” (Coleman, 1998, p. 406).   
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All groups performed nearly equally on a pretest measure of photosynthesis 

knowledge; however, the treatment group performed significantly better than the control 

group at posttest (though they did not differ significantly from the “high intentional 

learning” group).  Not only did the treatment group perform better than the control group 

on the posttest of photosynthesis understanding, they also performed significantly better 

on a conceptual-mapping and a problem-explanation task.  Thus, it appears that the 

prompts facilitated the treatment group’s learning and concept development.   

 Process analyses suggested that the prompts led to further discussion and 

ultimately to a constructed explanation in 80% of the cases where they were used.  In less 

than 10% of cases, no further discussion occurred after the prompt was stated.  Thus, 

Coleman (1998) found experimental support for the observations of Webb (1983) and 

Barron (2003) by showing that prompts for explanations and meta-cognitive awareness 

resulted in elaborated discussion and greater learning.   

Following on Coleman’s line of investigation, King (1999) found evidence for the 

importance of metacognition prompts on scripted collaborative learning.  Specifically, 

her model, “ASK to THINK—TEL [sic] WHY,” has the tutor ask questions and provide 

brief feedback and encouragement (with a primary focus on questioning).  The tutee, on 

the other hand, could only provide explanations.  Thus, in this program, the questioner 

starts with a Review question, to which the explainer gives a response.  Then the 

questioner asks a Thinking question that builds on the explainer’s response.  The 

explainer responds to it and the questioner can then follow-up with a probe or hint if the 

explainer’s answer was not complete.  After the explainer gives a satisfactory answer, the 

questioner asks a metacognitive question, such as “how did you come up with that 

answer?”  Again, the explainer answers, and then the two students can switch roles.   

King noted that this program fosters productive discussions characterized by 

positive interdependence because the explainer must respond to the questioner while the 

questioner must tailor his or her questions to the needs of the explainer.  In comparison 

versions of this program with and without the metacognitive question, students who had 

the metacognitive prompts were better at generating new knowledge and describing their 

thinking processes both at posttest and at a 12 week follow-up—although the statistical 

significance of these findings was not clear.   
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In sum, much of the research on collaborative interaction suggests that productive 

interaction comes from social scaffolds such as scripts and roles, interdependence and 

individual accountability, and modeled or trained behaviors.  The resulting interaction is 

characterized by explanations, building dialogue, and active listening.  Perhaps equally 

important, it is also characterized by few ignoring or rejecting responses.  Finally, some 

models have suggested that educational benefits of collaboration may come from greater 

metacognitive activity, though it is unclear whether that is a behavior facilitated by 

collaboration or by scripts.    

 

Studies of Task Effects and Collaborative Learning 

Social scaffolds provide one way to promote successful collaborative learning.  

Unfortunately, a recent survey indicated that despite 81% of teachers reporting using 

collaborative learning every day in their classrooms, few of them used well-tested 

scaffolds in their group-work activities (Antil, Jenkins, Wayne, & Vadasy, 1998).  As one 

teacher in the study was quoted as saying, “When I was trained [in cooperative learning] 

it sounded so wonderful but so complex the way they laid it out.  Every kid had to have a 

job and they were so prescriptive.  Through my teaching, I have learned that cooperative 

learning, for me, is just to have the kids discuss things with each other and put together a 

product” (p. 431).  Thus, as the push for collaboration in schools increases, more 

demands are placed on teachers to enact appropriate scaffolds to ensure students interact 

productively, but these supports can be difficult to implement successfully.  Without 

these supports, however, collaborative learning has shown little educational benefit 

(Slavin, 1996).  An alternative approach involves finding tasks that naturally pull for 

productive collaboration.  Researchers taking this approach have found some tasks that 

have produced outstanding group problem solving results, but none that I am aware of 

have looked at the effects on interaction patterns and subsequent individual learning.   

Schwartz (1995) compared dyads to individuals on rule induction or abstract 

representation tasks.  In the first of three experiments, Schwartz had high school students 

predict the direction of rotation of the final gear in a sequence of gears.  A much greater 

percentage of dyads discovered a parity rule (e.g. if it is an odd number gear it rotates 

clockwise) for solving the gear problems than individuals (58% vs. 14%).  The dyad 

 8



performance even exceeded what one would predict using a truth-wins model to predict 

the performance of nominal groups.   

 What was it about the task that allowed dyads to perform so much better than 

individuals?  Schwartz’s (1995) observational data indicated that students tended to 

represent the gears with their hands initially to make their predictions.  As the number of 

gears in the problems increased, this strategy would become more time consuming 

because each gear in sequence would have to be modeled until the last gear was reached.  

Apparently this did not bother individuals tremendously because very few switched to a 

parity-rule conception of the problem.  Dyads, however, had to come to consensus about 

their answer, so they had to communicate effectively about their predictions.  Again 

observations indicated that partners discussed which gear in the sequence their partner 

was modeling with their hands, leading to an enumeration strategy.  Schwartz provided 

evidence that this enumeration of the gears was likely the source of the dyads much 

greater induction of a parity rule for solving the gear problems.   

Only in communicating with a partner were the need and the mechanism (i.e. 

enumeration) for finding a parity rule realized at a relatively high rate.  In other words, a 

shift of the conceptualization of the problem from a modeling situation to a rule-based 

situation resulted in group performance that exceeded most-competent-member 

assumptions (and even truth-wins assumptions).  The use of dyads seemed to provide 

sufficient motivation to promote this shift in problem conceptualization from physical 

modeling to enumeration.   

Steiner (1972) divided tasks along a number of dimensions including whether 

they were “divisible” (multi-step) tasks versus “unitary” (single-step) tasks (p. 15).  

Unlike social-interaction researchers who often focus on how participants’ knowledge 

sharing may promote their partner’s development as well as their own, Steiner suggested 

that tasks will best be accomplished by groups when group members recognize who is the 

best individual to solve the problem and follow that person’s lead.  If the task involves 

multiple specializations, then letting the best member in each area solve that sub-problem 

should be optimal.   

According to Steiner, “process loss” occurs when group members interfere with 

each other’s efforts such that the best-member’s correct answer is not followed by the 
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group.  In other words, something in the group interaction, whether acquiescence by a 

correct member, dominance by an incorrect member, social loafing, or some other effect, 

interferes with the group recognizing and producing the correct answer (Chiang & Guo, 

1999).  Steiner (1972) placed less emphasis on “process gain,” the phenomenon where 

groups exceed the performance of nominal groups, and this may be because so few 

examples exist (the study by Schwartz above is a notable exception).  Thus, a goal for 

Steiner was to characterize tasks that showed little process loss, and he suggested that 

problems for which the correct answer could be clearly demonstrated, such as insight or 

“Eureka” problems, were less likely to show process loss than tasks where the correct 

answer was less visible, and thus more susceptible to social rejection.  

Some evidence supporting the potential importance of demonstrability comes 

from contemporaries of Steiner.  Lamm and Trommsdorf (1973) reviewed studies of 

brainstorming, a task that is notable for its lack of demonstrability due to its emphasis on 

generation without critique, and found that groups typically produced fewer ideas than 

individuals who brainstormed alone and then combined their answers.  These 

disappointing results are likely due to process loss variables such as production blocking 

in which one member must hold on to her idea and forestall further production while 

others report their ideas to the group (Dennis & Valacich, 1993).   

In an impressive reversal of such results, Dennis and Valacich (1993) used 

technology to produce beneficial results for real groups compared to nominal groups on a 

brainstorming task.  For their experiment, half of the participants worked alone on two 

15-min. brainstorms using paper and pencil to record their ideas.  The other half used a 

computer program designed specifically to enhance group benefits and decrease potential 

pitfalls.   

According to Dennis and Valacich (1993), the software limited production 

blocking by making all communication electronic, simultaneous, and visible/review-able, 

so that each individual could participate as they generated new ideas rather than having to 

wait for their partners.  Evaluation apprehension is a second pitfall that occurs when 

someone feels too shy to participate because their ideas may be criticized.  The software 

made all communication anonymous to reduce evaluation apprehension.  Free riding or 

social loafing is another common pitfall that can occur when people feel that their 
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contributions are not needed or wanted.  The software did not address this component.  

To enhance potential benefits of collaboration, the software made partners’ contributions 

visible (though anonymous).  This feature meant that participants could more easily avoid 

redundancy, and they could read what their partners said to get new insights if they 

started to run out of ideas.   

Dennis and Valacich (1993) found that large collaborative groups (12 members as 

opposed to six members) showed significantly more unique ideas per group and per 

individual than 12-member nominal groups.  Informal observations suggested that those 

in the software condition took advantage of being able to check their partner’s ideas when 

running out of their own (e.g. some laughed while reading, suggesting an unexpected 

idea).  In addition, the 12-member electronic groups showed significantly less 

redundancy than the 12-member nominal groups (13 vs. 48 redundancies on average).  

Thus, by structuring the activity to block process loss and enhance process gain 

(especially by introducing more potential unique ideas by increasing group size), they 

found a way to turn brainstorming into a productive collaborative activity.  Dennis and 

Valacich’s study is particularly impressive because they were able to promote process 

gain on a task that typically incurs a net process loss, and they did it by systematically 

attempting to block sources of loss while enhancing sources of gain in participants’ 

interactions.  This provides an exemplary model of when and how scaffolds can be used 

to transform an otherwise individualistic task into a productive group task.  The features 

of this experiment that seem particularly relevant here are that the task was productive for 

groups possibly because: 1) sharing multiple perspectives, 2) making partners’ ideas 

accessible when individuals got stuck, and 3) partners working from their prior 

knowledge and attempting to build from their peers’ ideas.   

Providing evidence for process gain in a problem-solving domain, Laughlin et al. 

(2003) had university students solve letters-to-numbers math problems in three-person 

groups or alone.  This letters-to-numbers task involved the letters A through J being 

mapped to a number 0 through 9.  Participants proposed an equation, such as E + H, and 

the experimenter responded with what it equaled, say JB.  If E and H were 4 and 8 

respectively, then JB would be 12, where J = 1 and B = 2.  After proposing an equation, 

the participants then made a guess as to the value of one of the 10 letters, and the 
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experimenter responded True or False, marking the end of a trial.  The goal for the 

participants was to decode all 10 letters within a minimum of trials. 

 Laughlin et al. (2003) described an optimal strategy to solving these puzzles.  If 

you know that J = 1, then J + JJ + JJJ = 123 = the letters given by the experimenter.  By 

extension, if you add J + JJ + … + JJJJJJJJJ = 123456789, you can solve the puzzle 

within one trial.  In general, equations with more letters would allow participants to solve 

the problem more quickly than those with fewer letters.  For example, 

A+B+C+D+E+F+G+H+I+J = 45 (because 0 through 9 sums to 45), so a second effective 

solution strategy would be to ask the experimenter what letters A through J sum to 

because you would learn two letters on the trial rather than just one.  The point of 

describing these strategies is that the task involved multiple correct solution paths with 

some demonstrably better than others.  In addition, the problem was complex enough that 

participants could gain insights into better strategies by seeing the contributions of their 

partners.   

As they predicted, Laughlin et al. (2003) found that groups performed 

significantly better than even the best individuals on the letters-to-numbers task.  

(Participants, whether in groups or alone, did not typically perform optimally.  No 

condition averaged better than 5-trials to solution on average.  Over 35% of the lowest 

performing individuals did not solve the puzzle within the maximum of 10 trials versus 

0% of groups).  When greater parameters were included in the problem-instructions, such 

as to include at least four letters per equation, participants often performed better (though 

not always).  Thus, Laughlin et al. found a task that afforded process gain even without 

elaborate social-structures.  This task had multiple solution paths of measurably different 

quality, built upon participants’ prior knowledge (of algebra and logic), and required 

innovation of equations for solving the problem within the parameters of mathematical 

possibility and group consensus.    

In an attempt to characterize tasks that should promote benefits to groups over 

individuals, Laughlin et al. (2003) followed Steiner’s (1972) suggestion and posited that 

tasks exist along a continuum of demonstrability ranging from “intellective” tasks that are 

highly demonstrable to “judgmental” tasks that are primarily based on preferences or 

attitudes.  They suggested that the letters-to-numbers task promoted process gain because 
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it was an “intellective task,” or one that involved their four conditions of 

demonstrability—agreed upon conceptualization, sufficient information, and participants 

who will recognize correct solutions and/or explain them to a partner.  They hypothesized 

that greater demonstrability promoted greater process gain.  

In a two-year longitudinal study, Phelps and Damon (1989) hypothesized that 

rote-learning math tasks and spatial tasks involving copying would show no benefit of 

collaborative learning whereas math and spatial tasks requiring greater reasoning (about 

proportions and about views from different perspectives) would show benefits from 

collaboration.  Using these rote-learning and reasoning tasks as posttest measures, they 

compared the performance of four groups of fourth graders.  One group collaborated on 

practice math problems.  A second collaborated on spatial problems.  The others were a 

trained control group and a no-treatment control group.   

As predicted, the rote-learning measures showed no differences between 

conditions.  On the reasoning measures, the group that collaborated on practice math 

problems did best on the math questions.  Likewise, the group that collaborated on the 

spatial problems did best on the spatial questions.   

On a transfer measure involving a math-related balance beam task, the math 

group did best.  The spatial group was next highest.  The trained control group was third, 

and the no treatment control did worst.  That the mean of the spatial group was second 

highest (though not significantly higher than the trained control group) is an indicator that 

working collaboratively on an un-related task might have general educational benefits.   

While this result provides interesting insight into potential long-term benefits of 

collaboration, the critical results for my purposes are that rote-learning and copying tasks 

did not yield productive collaborative interactions for learning and that more complex 

reasoning tasks may have benefited from collaboration.  It is difficult to ascribe the latter 

results to collaboration because the only significant advantages observed were for groups 

that collaborated on the subject-matter tested.  In other words, it may have been the extra 

training on the test-relevant materials that produced the advantage rather than 

collaboration per se.   
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Theoretical Framework 

How might we characterize tasks that promote productive collaborative learning?  

Some researchers have suggested that more demonstrable tasks are best for successful 

collaboration (e.g. Laughlin et al. 2003; Steiner, 1972), while others have suggested that 

ill-structured tasks are best (e.g. Cohen, 1994; Hertz-Lazarowitz, 1989).  In searching for 

a resolution to this paradox, a framework that was informative to a similar paradox in the 

field of transfer seemed relevant.  Transfer involves the application of prior knowledge to 

a novel problem, and it is considered a measure of thorough understanding (Novick, 

1988).  Schwartz, Bransford, and Sears (2005) recently proposed two dimensions, 

innovation and efficiency, as a framework for reconciling contrasting findings in the field 

of transfer.  While some researchers were suggesting that transfer was best promoted 

through learning activities with direct instruction, practice, and immediate feedback, 

others were suggesting that discovery learning, project-based activities, and other tasks 

allowing greater exploration were best (e.g. Anderson, Corbett, & Conrad, 1989; 

Tennyson, Park, & Christensen, 1985 versus Vollmeyer, Burns, & Holyoak, 1996).  This 

contrast should sound familiar (i.e. demonstrability versus ill-structured). 

The innovation and efficiency framework attempts to reconcile these contrasting 

views by suggesting that a trajectory toward deep understanding involves activities with 

both innovation and efficiency components.  In other words, rather than seeing these as 

opposite poles on a single dimension, such that one must be antagonistic to learning 

while the other must be beneficial, they are posited as complementary, such that each 

type of activity contributes to an important aspect of understanding.  For example, jazz 

pianists must have efficient mastery of scales and chords while also having creative ways 

of stringing them together to be successful. 

While the key features of the innovation and efficiency dimensions still require 

empirical testing, a basic characterization is possible.  Innovation tasks involve the use of 

prior knowledge to develop approximate solutions to novel problems whereas efficiency 

tasks involve receiving the expert solution to a novel problem and repeatedly applying it.  

For example, the Apollo 13 rescue mission presented an innovation task because familiar 

tools had to be configured in new ways to solve the square-peg and round-hole problem.  

By contrast, doing 50 addition problems related to borrowing after being shown an 
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example is an efficiency task because it is aimed at developing speed and accuracy on 

one specific procedure.   

Instructionally, efficiency tasks involve lectures followed by drill-and-practice 

routines to help students become fluent in applying their knowledge.  Innovation tasks, 

by contrast, involve phases of insight, solution attempts, and revision.  As an example of 

how these dimensions can be combined, and the educational benefits possible from such 

a synthesis, Schwartz and Martin (2004) found that ninth graders who had an innovation 

experience and then efficient instruction were more prepared to solve a difficult transfer 

problem than students who experienced drill-and-practice on the same learning material.  

Specifically, Innovation students attempted to invent a standardized score while 

Efficiency students practiced calculating z-scores.  Half of each group also later saw a 

worked example of a z-score calculation (an efficiency task).  Thus, there were four 

conditions.  On a posttest measure requiring a novel application of standardized scores to 

solve a difficult transfer problem, the Innovation students who received the worked 

example performed twice as well as all the other groups.  In other words, the innovation 

experience made them more prepared to learn from an efficient example and adapt it to a 

difficult transfer problem.   

Before examining why the innovation and efficiency dimensions might be 

relevant to collaborative learning, I will describe a novel feature of the last study that is 

relevant to the second experiment in this dissertation.  Schwartz and Martin (2004) used a 

unique outcome measure to reveal otherwise hidden benefits of innovation instruction.  

The approach they used is known as a form of preparation for future learning (PFL) 

assessment because within the posttest they embedded a resource problem that, if 

students were prepared to learn from it, could inform their solutions to a subsequent 

target transfer problem (Bransford & Schwartz, 1999).  The greater performance on the 

target transfer problem by students in the Innovation condition who received the resource 

problem could be attributed to their being more prepared to learn and transfer from that 

embedded resource.  They could ensure it was due to learning from the resource problem 

because the half of the Innovation condition that did not receive the resource performed 

at the level of the other conditions.  A simpler version of a PFL problem involves 

providing participants in all conditions the resource and seeing which students are able to 
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solve the target.  The key feature of this approach to assessment is that it can reveal how 

well different instructional approaches prepare students for future learning.   

Why might the innovation and efficiency dimensions be relevant to collaborative 

learning?  First, informal observations of the study by Schwartz and Martin (2004) 

indicated that the students discussed and collaborated around the innovative activity quite 

productively.  Second, the tasks in many of the studies described above that showed 

group performance benefits had many features in common with innovative tasks.  In each 

case, prior knowledge could be built upon to progress toward new conceptualizations of 

the problem.  For example, the letters-to-numbers task (Laughlin et al., 2003) allowed 

students to edit each other’s math strategies until they found an acceptable approach, such 

as using formulas with more letters in it.  The gears task (Schwartz, 1995), through 

students’ dialogue, encouraged a switch in strategies from physical modeling to 

enumeration.   

By contrast, efficiency tasks seem likely to yield little benefit from collaboration 

because such tasks call for less knowledge sharing, given that the solution is available 

from the start.  For instance, if one already has the answers and merely needs to 

memorize them, why or how would one debate them with a partner?  For this reason, I 

would not expect efficiency tasks to promote as much discussion or perspective sharing 

as innovation tasks.  In addition, efficiency-oriented tasks, such as list-learning (e.g. 

Andersson & Rönnberg, 1995), have shown negative effects of collaboration.    

 

Comparing the Innovation and Efficiency framework to other collaborative frameworks 

In characterizing productive collaborative tasks, one might hypothesize 

demonstrability as the key feature.  Steiner (1972) and Laughlin et al. (2003) both 

suggested that greater demonstrability should yield greater group productivity.  While I 

agree that demonstrability is important for allowing a debate about different strategies, 

greater demonstrability may not be as important as the right amount of demonstrability.  

For example, if everyone within a group agrees on how to conceptualize a problem (one 

of the four conditions of demonstrability), then what is left to debate or learn?  Complete 

demonstrability cannot yield process gain because it renders the group interaction 

meaningless by having an agreed upon conceptualization and members who are willing to 
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accept or imitate it upon seeing that it works.  There is no push for conceptual growth, yet 

this push seems to be a key feature of productive collaborative tasks and well-designed 

innovation activities in general. 

For example, from the demonstrability hypothesis, one would expect that on the 

letters-to-numbers task, being given the letter for 9 would help about as much as the letter 

for 1.  Instead, 9 helped significantly more (Laughlin et al., 2003).  So how do we explain 

this—is 9 somehow more demonstrable than 1?  No.  Instead, from the innovation-

efficiency perspective, which suggests that good innovation tasks are those that help 

students connect prior knowledge to more expert concepts, this finding makes sense.  

Knowing A = 1 suggests a simple incremental strategy where a student can decode one 

new letter each turn (e.g. A+A = D = 2; A+D = G = 3; etc.).  Knowing A = 9, on the other 

hand, is helpful in prompting a shift toward a more expert strategy because adding A 

yields two new letters each turn or even more (e.g. A+A = 18 = HJ; A+A+A = 27 = DB; 

AA+A = 108; etc.).1  Thus, while the starting prior knowledge of adding known digits 

was the same, the resulting strategies and solution success could be quite different.   

The innovation and efficiency dimensions have some similarity with the claims of 

Cohen (1994), who suggested that ill-structured tasks were best for collaborative learning.  

While ill-structured tasks are similar to innovation tasks in their requirement for 

invention, they do not suggest a need for efficient instruction, such as a subsequent 

lecture.  Without such parameters, there may be some danger of groups spinning off a 

productive track.  Periodic efficient instruction might help groups avoid generating errors 

in understanding or having vocal but wrong students dominate a discussion. 

The hypotheses here are that tasks with an innovation component should present 

groups with greater chances to share insights and co-construct their prior knowledge into 

more-expert conceptualizations of a problem.  These interactions should lead to a benefit 

from collaboration on measures of learning and transfer.  Tasks that emphasize efficiency 

to the exclusion of innovation, by contrast, seem more likely to hinder groups because 

they are more like list-learning.  Tasks, like list-learning, that do not push for progressive 
                                                 
1 Only if I realized that A = 1 allows me to solve the problem in one trial (via A + AA + … + 
AAAAAAAAA = 123456789), would A = 1 promote my solution strategy as much or more than A = 9, but 
this insight seems well beyond what most people would spontaneously notice, even in collaboration with 
others (apparently). 
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re-conceptualization have shown poor results associated with collaboration.  For these 

reasons, I expect people engaged in innovation tasks to show more discussion and greater 

knowledge sharing during the task than those engaged in efficiency tasks.  Following 

expert feedback, I expect those doing the innovation version of a task to show greater 

recall and transfer of learning from the task.  Below I describe two experiments to test 

these hypotheses.  The first was an initial attempt to contrast innovation and efficiency 

tasks and examine their effects on learning and interaction in groups.  It was an 

exploratory study and its primary contribution was to describe ways in which innovation 

versus efficiency activity affect interaction.  The second experiment was more rigorous.  

It built upon the knowledge gained from the first study of what features are important for 

innovation and efficiency tasks, and it used a PFL assessment.   
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CHAPTER 2: THE CONCEPT-MAPPING STUDY 

 

A first study for this dissertation examined the hypothesis that an innovation task 

would cause more productive collaborative interactions and better learning than an 

efficiency task.  For this study, dyads read a one-page passage about cholesterol.  They 

also worked with “Betty’s Brain,” a computer program known as a teachable agent 

because students teach an agent and learn in the process (Biswas, Schwartz, Bransford, & 

TAGV, 2001).  Betty’s Brain allows users to make a concept map where concepts are 

connected together by causal links.  Students can then ask Betty questions about what she 

was taught, and this can help them reflect on Betty’s knowledge (and their own).  In the 

study, participants taught Betty based on the cholesterol passage (e.g., “Exercise 

decreases LDL”).   

When creating their concept maps, dyads in the innovation condition had to figure 

out all the links between concepts from the passage.  Dyads in the efficiency condition 

received a list of all 23 pair-wise links.  They had to use these links to make a completely 

connected map.  Figure 2 shows an expert version of the map.   

 

 
Figure 2.  Expert Betty Map with 16 nodes (provided) and 23 correct links.  
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Methods 

Participants—Thirty-eight participants, mostly undergraduates, were randomly 

paired and assigned to one of two conditions.  Twenty-six women and 12 men 

participated.  Ten dyads were assigned to the Innovation condition and nine to the 

Efficiency condition.  Ten dyads were mixed gender, six in Innovation and four in 

Efficiency. 

Materials and Measures—Test-1 and Test-2 assessed participants’ knowledge of 

the cholesterol passage and the related concept map.  These tests consisted of re-drawing 

the map from memory and answering 12 multiple-choice questions (e.g., “How does an 

increase in HDL affect Arterial Plaque?”). 

Procedure and Design— Table 1 summarizes the study design.  The unusual 

component of this design is that students took two tests: one immediately after creating 

their initial map, and one after they had a chance to learn a second time by reviewing an 

expert map and the passage.  This second test permitted an estimate of how well students 

were prepared to learn.  During the test phases, all resources were removed and 

participants worked alone.  The map-making phase was 20 minutes for both conditions, 

and the map-revision time depended on how long it took for participants to revise their 

Betty map until it matched the provided expert map (usually two to five minutes).  Dyads 

were videotaped while collaborating. 

 

Table 1 
Design of Study 1 
Step Context Innovation Efficiency 
1 Alone Read Passage on Cholesterol 
2 Together Generate Map Links Make Map from List of Links 
3 Together Get corrective feedback on 3 possible links.  Have Betty trace through map and 

study it if time. 

4 Alone Test-1: Redraw the Map and Answer 12 Multiple-choice Questions 
5 Together See an Expert Map and Revise Until Match 
6 Alone Re-read Cholesterol Passage 
7 Alone Test-2: Redraw the Map and Answer 12 new Multiple-choice Q’s 
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Results 

Analyses of the learning outcome measures will be described first, followed by 

process measures obtained through transcript and video analysis, and finishing with the 

relationship between process and outcome measures.  Although few significant learning 

differences were found, significant differences in process were observed.  While some of 

the processes showed no relationship to learning, such as amount of turn-taking, others 

did.  Explanations were important for Efficiency dyads, and degree of shared-knowledge 

was predictive of learning gains for both conditions, especially Innovation. 

The outcome measures were participants’ quiz scores and their map re-drawing 

scores.  These measures were taken after initial creation of their Betty maps (Test-1) and 

after revision and re-reading (Test-2).  Each of the 12 items on the quizzes, were scored 

as correct (1) or wrong (0).  For the map re-drawings, Betty’s Brain has a procedure that 

scores maps by comparing the answers obtained by tracing through a given map to the 

answer obtained from the expert map when comparing the effect of one concept on 

another.  The advantage of this approach is that it weighs more central concepts, like 

HDL, more heavily than less central ones because they are connected to more nodes and 

are thus involved in more questions.  A disadvantage of this approach is that it only 

attends to final answers, so participants could get the right answer for the wrong reason.   

A total of 48 questions about connected concepts were assessed by the Betty 

program for the cholesterol map used in this study (48 is the total number possible, it is 

not arbitrary).  If a participant’s map gave the same answer as the expert map on 47 out 

of 48 of the tested relationships, then, they would score 98%.  This scoring procedure was 

used on dyads’ initial Betty Maps as well as each participants Test-1 map re-drawings 

(henceforth, Map1) and re-drawings at Test-2 (henceforth, Map2).  Participants drew 

Map1 and Map2 on paper, so the experimenter traced them into Betty’s Brain so the 

program could score them. 

While neither condition significantly outperformed the other on either of these 

measures at Test-1 or Test-2, all t(36)’s < 1.5, p >0.15 (two-tailed), the Innovation 

condition tended to improve more over time than Efficiency.  A repeated-measures 

multivariate analysis of variance (MANOVA) indicated a marginally significant time-by-
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condition interaction (Wilks’ Lambda = .90, F(1, 32) = 3.4, p < .10).  These results can be 

seen in Figure 3 separated by measure, time, and condition.2
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Figure 3.  Individual (n = 36) performance on learning outcome measures by condition. 
 

 Quiz scores and map re-drawing scores were further analyzed for their reliability 

to check if they provided suitable measures.  The quizzes did not show adequate 

reliability (alphas = 0.42 and 0.37 for Quiz1 and Quiz2, respectively).  For the re-drawing 

scores, the current version of Betty does not provide the results for each of the 48 

possible connections it assesses.  Without these data, calculating their reliability is 

impossible.  As a proxy, performance on each of the 23 correct links was recorded 

(analogous to a 23-item quiz) with participants receiving 1 point for each correct link in 

their map.  Using this metric, the map re-drawings showed high reliability (alphas = 0.90 

for both Map1 and Map2, and all alphas were at or above 0.84 when further separated by 

condition).  I suspect the contrasting reliability results for the quizzes versus the maps 

were due to the limited domain knowledge that could be assessed via the 12-item quizzes 

versus the 23-item maps.  For this reason, the quiz measure will not be described further, 

                                                 
2 All indicators of variance around the mean in the figures and text are standard errors. 
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whereas the map measure will be analyzed in greater detail to determine where 

Innovation improved and how.    

Given the high reliability of the maps, it may be little surprise that performance 

on each map predicted performance on the subsequent map task, suggesting that it was 

important for groups to start well.  For Innovation dyads, the Betty Map score correlated 

moderately highly with their Map1 score (r = 0.69).  (To obtain a Map1 score for each 

dyad, the Map1 score of each member of the dyad was averaged with their partner’s 

score.)  Similar results were obtained for the correlation between their Map1 and Map2 

scores (r = 0.65).  Separate from the total map score, I wondered whether the number of 

errors (i.e. wrong and missing links) in dyads’ maps would be correlated over time, 

especially given that Innovation dyads did not receive corrective feedback until after 

Map1.  As mentioned above, participants could receive credit from Betty on their map 

despite having an incorrect path in their diagram; therefore, analyzing errors separately 

from the total map score could provide different results.  Correlations between number of 

errors in their maps were high (r’s = 0.77 for Betty Map and Map1 and 0.69 for Map1 

and Map2).  Efficiency dyads’ correlations between Map1 and Map2 were also high (r’s 

= 0.92 and 0.91 for map scores and errors, respectively).  Because only one group in the 

Efficiency condition created a Betty Map with errors, correlations between Betty Map 

and Map1 are not reported for Efficiency.  Despite the high correlations between 

Innovation dyads’ Betty Map scores and Map1 scores, there was only a modest 

correlation between their Betty Map scores and Map2 scores (r = 0.26), suggesting that 

errors on Betty were not helpful but did not mean imminent failure either.   

Chi-square analyses indicated that the Innovation condition improved more than 

the Efficiency condition on map-links that both partners initially missed in Map1 (χ(1) = 

8.3, p = .004).3  There was no significant difference between conditions on links where 

one partner was correct initially on a link (χ(1) = 0.47, ns).  On links where both partners 

got the link correct on Map1, Innovation showed marginally less forgetting (χ(1) = 2.7, p 

= .099).  These results are shown in Figure X. 

                                                 
3 The linear-by-linear association chi-square procedure is reported here and on subsequent chi-squares 
using a two-tailed significance level.  
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Figure 4. Map2 performance given Map1 performance.  Oval lines show dyad performance on Map1.   
 

To be sure these findings are not misinterpreted, I do not take them to mean that 

Innovation learned more than Efficiency (clearly their Map2 score was not significantly 

greater), however, they did improve more over time.  This improvement appears to be 

due largely to their addition of items originally missing from their maps.  Of the 80 links 

neither partner included on Map1, 41 of them were not in their original Betty Map.  Only 

5 of these 41 remained missing from both partners’ maps on Map2.   

A more detailed analysis of errors and error-correction on Map1 follows to 

provide further insight into how Innovation and Efficiency might differ.  Individuals in 

the Innovation condition made more errors, but not significantly more than those in the 

Efficiency condition (t(36) = 0.8, ns).  This pattern held true for errors of omission and 

commission.   

Interestingly, the Innovation participants corrected a marginally higher percentage 

of their errors than the Efficiency participants (t(36) = 1.5, p = .07 (one-tailed)).  These 

results are displayed by error type in Figure 5.  They further support the findings of the 

Chi-square tests above by showing similar results when wrong links were included in the 

analyses with missing links.  
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Figure 5.  Percent of errors individuals corrected on Map2 by error-type and condition. 
 

 Less forgetting is another way in which Innovation could improve over time 

compared to Efficiency.  Specifically, a link was counted as forgotten if it was correctly 

re-drawn in Map1 but not in Map2.  Independent t-tests indicated that the Innovation 

participants forgot marginally fewer correct links (t(36) = 1.3, p = .09 (one-tailed)), as 

shown in Figure 6.  This result was not due to Innovation participants re-drawing fewer 

correct links on Map1 and thus having fewer to forget on Map2 (t(36) = 0.8, ns, M’s = 

11.2 versus 12.8 for Innovation and Efficiency, respectively).   

 

0

0.5

1

1.5

2

2.5

C
ou

nt

Innovation Efficiency
 

Figure 6.  Innovation participants forgot fewer correct links from Map1 to Map2. 
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 Thus, on learning outcome measures, Innovation and Efficiency did not differ 

tremendously except that Innovation improved more over time, primarily because it 

performed somewhat lower initially.  The improvement was due primarily to greater error 

correction and, to a lesser degree, to less forgetting.  What follows is an analysis of 

process measures to see how the conditions affected dyadic interaction and how these 

interaction patterns were associated with learning. 

 

Process Measures Analysis

Informal observation and video analysis suggested that the conditions produced 

different overall interaction patterns characterized by divide and conquer strategies for 

Efficiency and active co-construction for Innovation, especially during the map-making 

phase as opposed to the Betty-checking and revision phases.  Seven of the nine efficiency 

dyads partitioned the map-making task such that one student became the list-reader and 

the other became the link-maker.  They also typically finished making the map in about 

10 minutes and then studied or asked questions of Betty.  Seven of the ten innovation 

dyads also tended to have a reader and a scribe; however, both participants typically 

searched through the text for answers.  A cursory coding of text-reading behavior 

indicated that every participant in the Innovation condition checked the text at least three 

times regardless of whether they were the reader or scribe.  They also remained highly 

engaged during the full 20-minute mapping phase, searching for links, double-checking 

each other, and periodically discussing what links could legitimately be inferred from the 

passage.  Thus, as a general characterization, the innovation versus efficiency versions of 

the task produced distinct interaction patterns, though perhaps not distinct enough to 

produce robust learning differences. 

Despite greater engagement, potential problems in the interaction of the 

Innovation dyads also existed.  With no scripting of their process, these dyads had to 

determine their own path through the task.  For one dyad, this meant starting from 

memory.  This led to many errors and disagreements and ultimately the partners realized 

they needed to use the text.  For others, it meant relatively independent searching through 

the text and announcing their findings or simply entering them into the map.  Most 

groups were not so extreme, they typically used the map to help guide their search of the 
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text for links they thought might be needed (e.g. “Oh, we don’t have anything connected 

to oxidation yet; let’s find oxidation”).  However, the relatively extreme cases indicate 

the danger on this innovative task of spinning off a productive track.  Surprisingly, only 

one Innovation dyad proceeded systematically through the text from the start to the end to 

make their map.  This group looked considerably like an Efficiency group in their map-

making process and were the only Innovation dyad to construct a perfect Betty Map.  

They also were highly successful on average, but that was because their map-maker did 

exceptionally well on Map1 and Map2 while the reader performed near the average level.   

The finding that the map-maker did well in the group mentioned above was not 

uncommon for the Innovation dyads.  Of the seven Innovation dyads with a consistent 

map-maker, six of them showed greater performance by the map-maker on Map2 (across 

all seven dyads the average difference, in favor of the map-maker, was 28.0 ±15.3 

percentage points).  This was not the case for the seven Efficiency dyads with a 

consistent map-maker (-11.1 ±8.3 percentage points).  One observation that might shed 

light on this finding was that the map-maker in Innovation dyads had time to study the 

map and see what links might be missing and which ones made sense.  The reader in 

these groups may have been more concerned with finding and reporting the next link in 

the text, rather than considering how they fit into the larger structure of the whole map.  

In Efficiency, the map-maker was typically very busy making the next link their partner 

read from the list.   

The following sections describe results of video and transcript analyses that fall 

into two general categories: resource use and knowledge-sharing.  The resource use 

section includes analyses of dyads’ use of the Betty-Expert and their use of the Betty 

tracing feature.  The Betty Expert gave corrective feedback on three paths in dyads’ Betty 

maps.  The Betty tracing features allowed participants to ask Betty questions about how 

two nodes were associated in their map, to which Betty would respond by tracing through 

the path(s) between the nodes. 

The second category of analysis, knowledge-sharing, describes three process 

measures: 1) the number of turns dyads took per link they produced while making their 

Betty maps together, 2) the number of explanations they gave during mapping, and 3) the 

degree to which they showed similar recall of their Betty map (as measured by similarity 
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of their Map1 drawings).  The turns-per-link analyses indicated that Innovation dyads 

interacted more while making their maps.  Analyses of explanations revealed that neither 

group explained more in general, but Innovation explained much more than Efficiency 

during the map-making phase and less during the Betty-Check phase.  Included in this 

analysis is the difficulty of the links that both groups explained, which, contrary to what 

we might expect, were essentially the same.  Finally, the degree of Map1 similarity 

concludes the section and suggests that Innovation dyads shared knowledge better.   

 

Resource Use

The Betty’s Brain Expert gave dyads feedback on three potential paths in their 

map.  One path was a single link, the second involved multiple-links, and the third was 

feedback that no path existed between two disconnected nodes.  This feedback was 

relevant to the Innovation condition because they could use it after the map-making phase 

to spot and potentially correct mistakes before submitting the Betty map for evaluation.  

Surprisingly, this feature may have done more harm than good.  Four of the five groups 

that received feedback that they had a wrong answer created a wrong link in an attempt to 

correct their error.  All four groups were missing one or more links from a multi-link path 

between two nodes.  Rather than considering a multi-link solution, they created a direct 

path to solve the problem in the most immediate, but wrong, fashion.   

This is not to say that the Betty Expert feedback was entirely harmful.  One group 

that received error feedback did figure out the multi-path solution.  One of the 

participants in this dyad was particularly vigilant about checking the text and insisting the 

other member also justify links via the text.  In addition, one of the four groups, while 

making an incorrect direct link immediately after checking the Expert, also went to the 

text and found three correct links they had not put in their maps up to that point.  While 

they did not realize that their direct link was wrong, the Expert seemed to prompt them to 

double-check the text for other errors they might have made.  After making the new links, 

they checked the Expert again and found that everything was correct.4   

                                                 
4 The Expert did not evaluate how they got their answer, just whether it was correct.  Though participants 
were warned of this, they may not have fully understood what it meant. 
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 After checking with the Betty Expert, the dyads also studied their map by using a 

second feature of Betty.  They asked Betty questions about how two nodes in the map 

were related.  For example, “If HDL increases, what happens to Arterial Plaque?”  

Efficiency dyads asked Betty many more questions than the Innovation dyads (8.3 (±1.0) 

versus 2.7 (±0.7), respectively).  This resulted in Betty tracing through significantly more 

correct links in the Efficiency dyads’ maps than in the Innovation dyads’ maps, as shown 

in Figure 7. 
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 Figure 7.  Number of correct links dyads asked Betty to trace through per condition. 
 

 

Knowledge-Sharing

One of the critical differences between conditions was in the number of turns they 

took between each link they made in their Betty maps.  This difference was critical 

because it is at the heart of the difference between what an efficiency activity versus an 

innovative activity should look like—the former should involve little discussion and 

considerable partitioning and practice; the latter should involve rich discussion, mutual 

responsiveness, and revision of ideas.  If both conditions spent a minimum of turns 

between links, the experimental manipulation would have failed.  As shown in Figure 8, 

this was not the case.  As expected, Innovation dyads took significantly more turns per 

link they created in their Betty maps than Efficiency dyads (t(16) = 2.9, p = .01).  
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Efficiency dyads averaged less than three turns per link (2.9 ±0.2), indicating that a 

typical interaction during map-construction involved the list-reader stating the link and 

their partner entering it on the computer.  Innovation dyads averaged over four turns per 

link (4.5 ±0.5).  Table 2 shows sample turns from dyads in each condition to give a sense 

of the partitioning observed in the Efficiency dyads and the elaborated discussions 

(though not always correct!) in the Innovation dyads during map-making. 
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Figure 8.  Turns taken per link made in Betty maps per condition. 
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Table 2 
Sample Dialogue from Each Condition During Map-Making 

 
Note. From these interactions, we can see the handing off of answers characteristic of Efficiency dyads’ 
map-making interactions.  We also see an extended exchange in one Innovation dyad, with both 
participants using the map and text to guide their interpretation of what links to add or not add.  In this case, 
their hypotheses about the map being symmetrical led them to a wrong conclusion, but they also reasoned 
correctly about HDL and LDL.   

Innovation 
A:  Also, Smoking, so it can increase the 

likelihood of plaque build up.  
B: So that would go to Arterial Plaque. And that 

would be an increase in Arterial Plaque, 
right?  

A:  Yeah. Or, is it causal, I don't know. It says it 
increases the likelihood. Do you think we 
should put that in? 

B: Hmm, possibly. Do you think it is organized 
(like this, somewhat symmetrically—looking at 
the map) for any particular reason (laughs) 
(the participant seems to suggest maybe the 
link should not be added b/c it reduces 
symmetry). 

A: Yeah, I think maybe we shouldn't then (both 
laugh) (they seem to be trying to take cues 
from map to help organize interpretation of 
the reading). 

B: Okay, never mind (that link, Sm + AP). 
A: So maybe we put HDL (to AP) though and 

LDL (to AP), right? B/c LDL begins plaque 
formation, and HDL removes it. 

Efficiency 
A:   And Statins decrease LDL. 
B:   What are Statins? 
A:   Yeah, I don’t know what Statins are. 
B:   Is that everything on the list? 
A:  I think so, yeah. 
 
C:  Next, increase in Oxidation 

decreases HDL. So increase, 
decrease. 

D: (makes link). 
C: Okay, next. Increase in Niacin 

increases HDL. So increase, 
increase. 

D: (makes link). 
 
E: Oat Bran and LDL.  Decreases. 
F:  (makes link). 
E:  Olive Oil and LDL.  Decreases. 
F:  (makes link). 

 

 

 As shown in Table 3, both conditions took more turns during the Betty-check 

phase of the mapping process.  Innovation averaged 5.5 turns per question they asked 

Betty while Efficiency averaged 6.3 turns.  It appears that the teachable agent may have 

prompted greater discussion during this phase, especially for Efficiency dyads. 

 

Table 3 
Turns per Betty Question Contrasted with Turns per Link During Map-Making 
 Turns Per Betty Question Turns Per Link  
Innovation 5.5 (±1.0) 4.5 (±0.5) 
Efficiency 6.3 (±1.0) 2.9 (±0.2) 
 

 Turns-per-link is a relatively coarse code for quantifying discussion quality.  

Explanations provide a better measure of quality of discussion.  In addition, previous 

research has found them to be associated with learning (e.g. Webb and colleagues).  

Explanations were coded in dyads’ transcripts in terms of which turns included 

 31



explanations and also which links received an explanation at some point in the text even 

if that point came after the link was made (such as during the Betty-trace phase).5   

 The following analyses describe when explanations were given and the difficulty 

of the links explained.  The number of explanations given by dyads in each condition did 

not differ significantly (t(17) = 1.3, ns).  However, the timing of the explanations differed 

dramatically by condition.  As shown in Figure 9, Innovation dyads did most of their 

explaining during the map-making phase where they were attempting to determine which 

nodes should be connected.  Efficiency dyads did most of their explaining during the 

Betty-check phase.  The number of explanations by phase differed significantly by 

condition (t(16)6 = 4.1, p < .001, t(17) = -2.8, p < .05.) except in the revision phase (t(17) 

= -0.7, ns).   
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Figure 9.  Where dyads’ explaining occurred during the course of the experiment. 
 

 Given that both conditions produced a similar number of explanations, were those 

explanations about the same types of links?  Specifically, were harder links explained 

more than easier links by one or both conditions?  To answer this question, links were 
                                                 
5 Because this work was primarily exploratory, a second rater was not recruited for inter-rater reliability 
purposes.  However, many of the explanations were easy to code based on the use of the terms “because,” 
“so,” and “by.”  Other statements coded as explanations were: 1) those that questioned a partner’s 
suggestion and offered evidence for why it was questioned, and 2) statements that provided text-referenced 
answers to a question posed by oneself or one’s partner regarding a link or concept in the map.   
6 Video-taping of one Efficiency dyad was delayed until the end of map-making, though observationally, 
their process seemed similar to the others in that condition.
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divided into three categories: easy, medium, and hard.  These categories were defined by 

the average scores of Efficiency participants’ performance on Map1.  Using Efficiency to 

define the categories seemed more sensible than using or including Innovation because 

the Efficiency dyads worked with correct answers from the start and typically only read 

through the passage once.  Using the Map1 link scores was appropriate because Map2 

recall could be affected by the mistakes made on Map1.  In any case, the hope was that 

any difference in recall between links for Efficiency dyads on Map1 would be due to 

their relative simplicity/complexity rather than extra processing or discussion.  Easy links 

(5 of the 23 links) were those with average-scores greater than or equal to 75% recall.  

Hard links (9 links) were those with average-scores of less than 50% recall, and Medium 

links (9 links) were those that were left.  As shown in Figure 10, neither condition 

differed on which links they explained, generally explaining about one-fourth of links in 

each category.  
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Figure 10.  Percent of easy, medium, and hard links explained by condition. 
 

The number of turns taken for explained links versus unexplained links is a 

relevant analysis for two reasons: 1) it provides a way of testing whether explanations 

implied greater dialogue, as we would expect; and 2) it suggests a possible mechanism 

whereby increased dialogue could have educational benefits (i.e. when said dialogue 

involves explanations).  To conduct this analysis, the number of turns taken during the 
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construction of each link was counted (as in previous analyses).  These counts were then 

separated for links that were explained versus unexplained and averaged across dyads in 

each condition.  A repeated-measures MANOVA of turns taken per links-type indicated 

that, as one would expect, explained links received more discussion than unexplained 

links (M’s = 5.0 ±0.8 and 3.5 ±0.3 for explained and unexplained, respectively; Wilks’ 

Lamda = 0.8, F(1,15) = 4.7, p < .05).  This result was driven primarily by the Innovation 

condition as indicated by a marginally significant link-type by condition interaction 

(Wilks’ Lamda = 0.8, F(1,15) = 3.7, p = .07).  Given that Efficiency dyads did most of 

their explaining during the Betty-check phase (and not during the map-making phase), 

the extra turns taken during the explanation would not be counted in this analysis.  For 

this reason, the interaction reported here should not be a surprise nor should it be 

interpreted to mean that Efficiency dyads’ explanations were not as elaborate as 

Innovation dyads’ explanations.   

 As a metric of knowledge-sharing, the interactions that dyads produce together 

can be informative.  What they take away from the group interaction and apply on their 

own can also be valuable.  One such measure from this study comes from the degree of 

similarity between partners’ maps on the first map-redrawing test done alone (Map1).  

The total number of correct links, wrong links, and missing links in both partners’ maps 

provided the score (TotalShared).  As shown in Figure 11, Innovation dyads shared 

marginally more map elements than Efficiency dyads (t(17) = 1.3, p < .10 (one-tailed)).  

One potential consequence of dyads’ explanations of the links they constructed was that 

it may have contributed to partners having more shared knowledge.  Specifically, 58% of 

un-explained links were re-drawn correctly by both partners on Map1 whereas 69% of 

explained links were re-drawn correctly.   
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Figure 11.  Map1 similarity (the number of shared links per dyad on Map1). 
 

Relationship between Process and Outcome Measures 

Following the report on process outcomes, this section describes the relationship 

between dyad processes and their learning.  First, the relationship between learning and 

link-tracing with Betty will be examined.  Second, turn-taking and learning will be 

analyzed.  Third, potential effects of explaining on recall will be reported.  Finally, the 

association of degree of shared-knowledge with future learning will be presented. 

Efficiency dyads traced significantly more correct links with Betty than 

Innovation dyads.  Was there a consequence to learning for this?  A repeated-measures 

MANOVA indicated that correct links that were traced with Betty were recalled 

significantly more than links that were not traced, regardless of group (Wilks’ Lambda 

= .62, F(1, 16) = 9.9, p = .006).7  This effect was due primarily to benefits of Betty-

tracing for Map1 scores (Wilks’ Lambda = .72, F(1, 16) = 6.2, p = .024).  As shown in 

Figure 12, results did not differ significantly by condition (MANOVA between subjects 

comparison: F(1,16) = 0.9, MS = 0.11, ns) nor were there any significant interactions 

between condition and time or Betty-trace (all Wilks’ Lambdas > .89, F(1, 16)’s < 2.0, 

ns). 

 
                                                 
7 One Innovation dyad was removed from the analysis because their question of Betty was about 
disconnected nodes.  MANOVA results were nearly identical when including this dyad and substituting the 
Innovation mean Trace scores for their two missing scores. 
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Figure 12.  Dyad performance on correct links traced or not traced by 
Betty per condition. 

 

While creating their maps, Innovation took significantly more turns discussing 

which links to include and why than Efficiency (4.5 versus 2.9).  Did more turns per link 

imply greater recall of that link?  Not exactly.  Before examining these results in greater 

detail, a description of the transcript is appropriate.  The transcript included turn-by-turn 

conversation.  It also included which link was created on which turn.  Because the map 

re-drawing assessment involved the same links that participants created in their maps, it 

was possible to connect turn-by-turn conversation around a link to learning and memory 

of that link.  To my knowledge, this is the only study to use such a fine-grained coupling 

of interaction-process and learning-outcome in its analyses.   

To answer the question above, the number of turns dyads took for each link they 

made in their Betty maps before revision (N = 360 links8) was correlated with their score 

on each link.  Scores could range from 0 to 2 depending on if neither member of the dyad 

correctly re-drew the link, just one member, or both members.  This procedure yielded no 

significant correlations (r = -0.01 and r = 0.02 on Map1 and Map2, respectively).  In 

other words, it was not the quantity of discussion around a link that determined dyads’ 

recall of it, and this was true regardless of condition (r’s between ±0.06).   

                                                 
8 360 links is short of the total number of links ultimately created after the revision phase by all dyads (19 
dyads * 23 links per dyad = 437 links).  It is the number of correct links that were created before the 
revision phase. 
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 While more turns per link during the map-making phase did not relate to learning, 

discussion during the Betty-trace phase did.  Recall from Table 3 that both conditions 

took multiple turns per question they asked of Betty (between five and six turns).  The 

more turns Efficiency dyads took during this phase, the more they were likely to improve 

their map re-drawing scores from Map1 to Map2 (r = 0.70, p < .05).  This finding did not 

hold for the Innovation group (r = -0.12, p = .73).   

 Explaining had important implications for learning, at least for Efficiency dyads.  

A repeated-measures MANOVA indicated that explained links were recalled more than 

unexplained links (Wilks’ Lamda = 0.6, F(1,15) = 8.7, p = .01).  While recall of both 

types of links improved over time (Wilks’ Lamda = 0.5, F(1,15) = 17.6, p = .001), 

unexplained links gained more (Wilks’ Lamda = 0.6, F(1,15) = 8.8, p = .009).  Finally, a 

significant condition by link-type interaction indicated that Efficiency dyads performed 

better on explained links than Innovation dyads compared to their performance on 

unexplained links (Wilks’ Lamda = 0.6, F(1,15) = 11.1, p = .005).  As shown in Figure 13, 

the benefit of explaining is driven largely by Efficiency.   
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Figure 13.  Dyad performance on explained and unexplained links by condition. 
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 Recall that Innovation partners’ maps were marginally more similar than 

Efficiency partners’ maps on the Map1 re-drawing assessment.  Across conditions, partial 

correlations controlling the association of Map1 score to Map2 score suggested that 

dyads that shared more knowledge gained more from Map1 to Map2 (r’s = .80 and .72 

and p’s < .05 for Innovation and Efficiency, respectively).  In other words, the more 

similar partners’ maps were on the initial map re-drawing test, the more they were likely 

to improve after a re-learning opportunity.  Interestingly, in a stepwise regression that 

compared the predictive value of Map1 score and number of shared correct and wrong 

links (Shared_RW), Map1 score best predicted Map2 score for Efficiency (R^2 = 0.85) 

while Shared_RW best predicted Map2 score for Innovation (R^2 = 0.74), and neither 

second predictor added significantly to the original model for either condition.9   

Another way to examine potential benefits of shared-knowledge in a dyad is to 

measure performance on links that both partners missed on Map1.  We can do this by 

seeing if their improvement on these links in Map2 is greater than expected.  How much 

would we expect partners to increase on these missing links?  On links where one partner 

missed it on Map1 while the other re-drew it correctly, participants went from an average 

score of 50% (by definition) to about 65%.  In other words, they increased 15% on links 

that one partner missed initially.  In order to show a 15% improvement, either both 

participants need to average 15% improvement or one partner needs to average 30% 

improvement while the other shows no forgetting.  If the partners show 10% forgetting, 

as they did on links that both re-drew correctly on Map1, then a participant might need to 

average 40% improvement on these links to result in a 15% average improvement on 

Map1 links that one member missed initially.  Figure 14 shows the minimum and 

maximum levels of improvement we would expect to see in situations where there was 

initial disagreement.  The actual level of improvement where both partners were initially 

wrong exceeded these expected levels, and this was particularly true for Innovation dyads.   

 

 

                                                 
9 Map1 score and the total number of shared correct, wrong, and missing links (TotalShared) added 
significantly to each other for both conditions when predicting Map2 score.  This was the best model 
obtained for predicting Map2 score (R^2 = 0.79 and 0.93 for Innovation and Efficiency, respectively). 
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Figure 14. Dyad performance on Map2 on links that both missed on Map1.  This is a measure of the 
benefits of agreement in a dyad.  The blue bars represent the lower and upper-bound of how much we 
might expect individuals to improve.   
 

Discussion 

This first study revealed few learning differences between conditions.  Neither 

Innovation dyads nor Efficiency dyads outperformed each other at either test phase.  

Despite this lack of learning differences some robust differences in patterns of 

interactions were found, many of which were in line with hypotheses.  First, Innovation 

dyads showed more turn taking during the map-making process than Efficiency dyads.  

While Innovation dyads tended to discuss each link, Efficiency dyads showed greater 

partitioning with one student reading the answers and the other entering the information.   

During the map-making phase, Innovation dyads showed much more explaining.  

When the map-checking phase was included, however, the Efficiency dyads caught up.  

Given that the Efficiency dyads did most of their explaining and turn-taking during this 

time it appears that Betty’s Brain may have prompted them to do so via its map tracing 

feature.  Interestingly, that map tracing feature also appears to have benefited learning 

because links that were traced were recalled significantly more than links that were not.  

While these findings might be exciting for researchers that study teachable agents, they 

may have undermined the treatment validity in this study.   
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A third variable was examined as a proxy for degree of agreement between 

partners, or degree of knowledge sharing.  By counting the number of correct, wrong, and 

missing links that partners had in common on their initially redrawn maps (done alone on 

Test-1), we learned that Innovation dyads agreed marginally more than Efficiency dyads.  

In addition, we saw that explained links were more likely to be shared than unexplained 

links.  Thus, on process measures the Innovation activity appeared to have many of the 

expected effects, prompting greater discussion, explaining, and knowledge sharing. 

Why did these behaviors not result in greater learning for the Innovation dyads?  

One possibility is that they generated too many errors because the task did not provide 

enough feedback to keep them from spinning off.  The more errors dyads made on their 

Betty maps, the more they made on Map1 and Map2.   

Fortunately, a different method for relating process and learning outcomes was 

possible.  This study introduced a novel method of relating turn-by-turn interaction to 

learning.  Because the task and the assessment involved drawing the same concept map, it 

was possible to relate the interactions around each link as it was constructed to 

participants’ later recall of that link.  This method could provide the type of fine-grained 

analytic tool that could help the field achieve one of its widely accepted goals: 

understanding how specific interactions relate to specific learning.  This tool could be 

even more informative if we could find a way to relate moment-to-moment interaction to 

subsequent performance on novel tasks.   

The results of comparing moment-to-moment interactions around a link to 

learning of that link revealed interesting results.  First, the number of turns taken per link 

had no relationship to recall of that link, regardless of condition.  In other words, 

successful learning does not seem to involve simply more talk; more talk of a specific 

kind seems to be required.  Specifically, more talk during the Betty-checking phase was 

associated with greater subsequent learning for Efficiency dyads.  This was one of two 

measures that showed a relationship between process measures and recall after a second 

learning opportunity.     

Interestingly, explaining had a positive benefit on recall of links on Map1, 

especially for Efficiency dyads.  Links that were explained were more likely to be 
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recalled than links that were not.  This benefit had decreased by Map2 and was not 

apparent for Innovation dyads on either map redrawing test.   

One potential benefit of explaining that did carry over to performance on Map2 

was its association with shared knowledge.  Explained links were more likely to be 

recalled by both members of a dyad than unexplained links.  The more partners agreed on 

the links in their initial re-drawn map, the more they gained on the second map test.  

Given that this was the only other process measure that showed an association to recall 

after feedback and a re-learning opportunity, it suggests that agreement within groups 

might be an important variable or proxy for other learning processes.  

Elaborating on previous work, these results raise the possibility that it is not 

explaining per se that leads to robust understanding.  Allowing for a large degree of 

speculation, perhaps it is the effort to explain something that leads one to construct a 

schema or framework for new information.  The more explaining one tries to do, the 

more one’s schema should be elaborated and refined.  Given accurate information, 

schemas should improve with more explaining.  If this was the case, then individual links 

might show some benefit from explanation.  The largest benefit of explaining, however, 

would be seen for participants who spent considerable time developing a schema that 

coherently linked the various concepts together.  These participants might include: 1) the 

map-makers in Innovation who had time to reflect on the map and try to determine what 

links were missing, 2) Innovation participants in general who generated few enough 

errors as to have developed a productive schema, not just one that would have to be 

abandoned upon corrective feedback, and 3) the Efficiency participants who spent most 

time discussing the interconnections in their map during the Betty-trace phase.   

If this hypothesis was accurate, it might help us understand why Innovation dyads 

showed minimal or no benefit from explaining (correct links).  The suggestion is that 

they were already attempting to explain (silently to themselves) which concepts to 

include and how they fit together, so those links they explained aloud might not provide a 

good indicator of the state of their internal schema.  Again, this is very tentative 

speculation, but it might be an interesting hypothesis to pursue given the focus that 

explaining has received as an activity that supports productive collaborative learning. 
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CHAPTER 3: THE CHI-SQUARE STUDY 

 

For the second study in this dissertation, a number of changes were made based 

on the results of the first study.  In particular, the task was quite different.  I will describe 

it in some detail to ground the discussion of the rationale for these changes that follows.  

In this second study, college-age participants learned about the chi-square formula, 

shown below. 

 

χ2 = Σ (E – O)2/E 
In this formula, E stands for “expected value,” or the value one would expect based on 

chance (or based on prior knowledge).  This value can be calculated in two ways.  First, if 

you know the outcomes are equiprobable, such that all categories in a distribution should 

have the same number of occurrences, then E is the total number of observations divided 

by the number of categories.  For instance, we expect a six-sided die that is fair to have 

each side appear equally often on average.  Second, if we do not have a prior belief about 

the outcome probabilities, we can estimate E by multiplying row and column totals and 

dividing by the total number of observations (i.e. the grand total).10  For instance, if we 

are interested in children’s versus adults’ preferences for different kinds of food, we have 

no prior reason to expect them to have equal preference for all categories of foods.  Some 

foods are probably preferred over others (such as ice cream over tomato juice).  In this 

kind of situation, we should estimate E with the second formula. 

Returning to the chi-square formula, O stands for observed occurrences.  For 

example, if someone threw a six-sided die 60 times, we would expect, on average, that 

each number on the die would appear 10 times.  If we observed that “2” appeared 55 

                                                 
10 Mathematically, this estimated E works by asking what is the probability of an occurrence in a particular 
cell or category (i.e. the row total divided by the grand total is the probability of being in a given row.  The 
column total divided by the grand total is the probability of being in a given column.  Thus, the probability 
of an occurrence in any given cell is the multiple of those two probabilities.  The expected value then 
multiplies by the grand total to convert from a probability to a number of expected occurrences. 
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times and the other sides only appeared once each, we would strongly suspect the die was 

weighted or unfair.   

The chi-square formula can be used to give a number to indicate how unfair this 

die was.  The more the number of observed occurrences differs from the expected the 

more a distribution differs from chance.  Distributions that differ more from chance (or 

expectation) have a larger chi-square value.  It is important to divide by E in this formula 

because otherwise having a difference of five occurrences between E and O would give 

the same chi-square value regardless of if there were ten observations or ten thousand. 

This is the kind of information that participants in the second study attempted to 

learn.  The key difference between the Innovation treatment and the Efficiency treatment 

was that Innovation participants had to try to invent a formula for distinguishing 

contrasting data sets (such as those for fair versus unfair dice).  Then they would receive 

a lesson on the chi-square formula with a worked example and a subsequent practice 

problem.  The Efficiency participants received the lesson first.  Then they did the practice 

problems.  All participants received a nine-page learning packet with three lessons on the 

chi-square formula.  The first page seen by Innovation participants asked them to rank the 

fairness of three dice, one which was clearly unfair, and two which were fair but had 

different numbers of tosses.  The second page was the chi-square formula and lesson.  

The third page was the subsequent practice problem.  For Efficiency participants, the 

lesson came first, then the contrasting-cases practice problems, and then the final practice 

problem.  This sequence was repeated three times for different lessons about the chi-

square formula. 

Some participants studied the learning packet with a partner while others worked 

alone.  After finishing the learning packet, all participants took a posttest individually 

with three types of questions: 1) chi-square calculation questions, 2) comprehension 

questions about what they read or inferred about the chi-square (such as why do you 

divide by E), and 3) far transfer questions with a preparation for future learning (PFL) 

component that required participants to adapt their knowledge of the chi-square to invent 

a formula for inter-rater reliability.   

It was hypothesized that all conditions would do well on the calculation questions.  

Comprehension questions were expected to show some advantage for the Innovation 
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conditions, and the far transfer questions were expected to show the greatest benefits of 

Innovation, especially for dyads.  In other words, as the questions moved from 

calculations to greater conceptual transfer, it was expected that the benefits of Innovation 

would become more apparent, especially for dyads.   

These hypotheses were based on previous findings that students doing innovative 

activity tended to share information well and engaged in the task very actively.  The 

benefits of this engagement and knowledge sharing would not likely show up on the most 

basic material because students in all conditions should do well on these questions.  

However, differences should be apparent on more advanced questions that require 

understanding the material from multiple perspectives and in explicit fashion.  Having the 

opportunity to reconcile different interpretations, share insights, and make their thinking 

explicit through explaining to a partner should help Innovation participants, and 

especially dyads, understand the material deeply.  According to this reasoning, dyads in 

the Innovation treatment should do best on the most conceptually difficult measures 

because they should not only gain useful insights from the material, they should also 

learn from their partner’s insights and from having an opportunity to explain their 

perspective.   

Efficiency participants would have the correct formula to work with from the start, 

so they would have fewer (if any) different approaches to the problems to reconcile.  

Efficiency dyads were expected to partition the material, each partner doing a subset of 

the practice problems in order to complete them quickly.  On chi-square calculation 

problems, these groups were expected to do well because they would just be repeating 

what they had learned and practiced.  However, on problems requiring greater 

understanding of how the chi-square formula works, they were expected to do worse, 

perhaps especially badly if they had worked in a dyad that focused strictly on partitioning 

the problems for speed.   

 

Rationale for the design of Study 2

Observations from the first study about the assessment, the materials, and the 

design informed three major revisions for the second study that will be detailed below.  

First, minimal learning differences between conditions were found in the first study using 

 44



a recall measure.  Related studies suggested that assessments of deeper understanding 

might be more sensitive to learning differences between conditions, so measures of 

transfer and deep understanding were added to the second study.  Second, the learning 

task and materials in the first study may not have been optimal in terms of construct and 

ecological validity.  Significant changes included the use of contrasting cases in a domain 

encountered by most high-school or college students, statistics.  Third, the design was 

expanded to include individuals and dyads such that the unique contributions of 

collaboration could be measured. 

Regarding the assessment component, the first study focused on recall measures.  

Recall may not target the differences in understanding that result from Innovation versus 

Efficiency kinds of instruction.  Instead, it may be in more advanced cognitive processes, 

such as transfer and adaptability, where differences due to the treatments will be observed.  

Reflecting on related work, such measures were important to finding differences 

(Schwartz & Martin, 2004; Sears, in press).  For example, using a PFL measure, 

Schwartz and Martin (2004) were able to distinguish between students who received a 

lecture and opportunity to practice from those who had an opportunity to invent.  Half of 

each group received a resource question, a worked example with a practice problem, 

which all students could answer.  Later, a target transfer question required students to 

adapt that prior example to solve a related and more difficult problem.  Participants in the 

innovation condition succeeded at this task twice as frequently as those in the efficiency 

condition.  Those participants in both conditions who did not receive the resource 

performed poorly on the task.  Thus, the Innovation treatment made participants more 

prepared to learn (from the resource) than the Efficiency treatment. 

Regarding the materials, results of the first study suggested that the Innovation 

and Efficiency tasks needed greater construct and ecological validity.  A key goal of 

innovation is to help students generate insights into the key features of a domain that 

generalize to other situations.  Generating copious errors is not part of this goal, so the 

second study implemented cycles of innovation and efficiency to keep participants in the 

Innovation condition from spinning off.  In particular, rather than having participants do 

all the inventing first and then receive feedback in the form of lessons and worked 

examples, the material was divided into three sub-units.  Each sub-unit or lesson involved 
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starting with contrasting case examples and attempting to distinguish the cases, often by 

perception first and then by inventing a formula.  This invention phase was followed by a 

lesson on the canonical solution to such problems.  A lesson ended with a final practice 

example where the canonical approach was to be applied (and the solution was provided 

for reference).  The Efficiency materials were similar.  They contained the three lessons 

on the chi-square formula, but they avoided the innovation component by always putting 

the contrasting cases and final practice problem after the lesson that showed how to solve 

such problems.   

Previous studies showing success with innovation activities used contrasting cases 

(e.g. Schwartz & Bransford, 1998; Schwartz & Martin 2004).  While contrasting cases 

may not be necessary for successful innovation activities, recent theorizing suggests they 

can promote a process that may be central to productive innovation—working to 

reconcile incommensurables (Schwartz, Sears, & Chang, in press).  Incommensurables 

occur when two or more items are defined by different units (or systems) that cannot be 

directly compared.  In order to compare them, one must reconcile the incommensurable 

by putting the items in terms of a new unit (or system) that relates the other two.  For 

example, 3/4 cannot be compared directly to 5/6 because they are in different units 

(fourths and sixths).  Only by finding a common multiple (12) can we put the units on the 

same dimension and make them comparable: 3/4 = 9/12 < 10/12 = 5/6.   

A second example involves a balance scale.  In order for balance to be achieved, 

two dimensions, weight and distance, must be compared.  These dimensions are in 

different units (kilograms versus meters, for example).  It is only by multiplying the 

weight and distance (from the fulcrum), that we obtain a new unit related to torque, that 

puts these previously incomparable dimensions together on a single scale.  A less 

mathematical example also is possible.  Students learning to read often face the 

incommensurable of translating groups of letters to words.  They are learning to put two 

previously familiar systems (the alphabet, and the spoken language) into a common 

system, text.  Translating that text to meaningful phrases and transforming those to a new 

form, such as a concept map (e.g. Sears, in press), would represent other 

incommensurables and their reconciliation.  
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Working to reconcile incommensurables in math and perhaps in general is 

thought to help students notice the key features of a problem and thus appreciate how the 

canonical solution relates those features on a single dimension.  In a balance beam study, 

Schwartz, Martin, and Pfaffman (2005) found that if students were encouraged to use 

math, they were more likely to invent the weight times distance relationship.  This 

allowed them to relate the two dimensions on one scale (i.e. reconcile the 

incommensurable) and predict balance beam outcomes as well or better than adults.   

For the second study in this dissertation, participants were given the support of 

contrasting cases to help them notice and attempt to reconcile different dimensions or 

features of the chi-square formula.  For instance, having to distinguish two distributions 

of numbers that both have the same difference from the expected value but a different 

number of observations should encourage students relate (E – O) to E and better prepare 

them to understand the importance of dividing by E in the chi-square formula.  

Participants in both conditions received the contrasting cases.  Unlike Innovation 

participants, Efficiency participants were not expected to appreciate the contrasts because 

they would already have a formula to apply.  They would lack key incommensurables to 

resolve because they already had a solution.   

While attempting to reconcile incommensurables may be critical to a successful 

innovation task, it probably also requires that the resolution to the incommensurable be 

generalizable to future situations.  Betty’s Brain may be an ideal tool for helping young 

students learn about causal reasoning, but it may not be ideal for promoting older 

students’ learning of concepts that can be applied to many different problems of a given 

form.  For this reason, the second study abandoned the teachable agent component and 

turned to a domain that would permit the development of more generalizable knowledge. 

Specifically, while the first study taught college students about cholesterol and 

heart disease (not a typical topic for most 18 to 22 year olds), the second taught a 

statistics procedure that is introduced in most if not all introductory statistics courses.  In 

addition, rather than giving the Efficiency participants answers to copy into a concept 

map, this time they had the more typical activity of receiving a math lesson and then 

practicing what was taught.  Thus, the second study aimed at having more clearly 
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distinguished innovation and efficiency treatments while also pushing for greater 

ecological validity. 

Regarding the design, the first study only included dyads because it was primarily 

interested in the types of interactions that might underlie learning benefits of innovation 

versus efficiency.  It was also an attempt to learn more about what features support 

productive innovation.  For those purposes, focusing on dyads was fine.  However, for 

the hypotheses about learning benefits of innovation that were at the heart of this 

dissertation, it was essential to include individuals and dyads in the second study.  

Without the 2x2 design with individuals and dyads receiving the Innovation and 

Efficiency treatments, we would not be able to conclude whether learning benefits were 

due to Innovation being a better educational approach in general, or whether it provided 

particular benefits for dyads, as was originally hypothesized.  In other words, by 

including individuals, it would be possible to measure the relative benefit of being in a 

group for both treatments. 

 

Methods 

Participants—University students, mostly undergraduates, were recruited from a 

paid-subjects email-list and flyers around campus.  The recruitment information 

requested students with a limited background in statistics.  This meant that participants 

had either taken no statistics courses or an introductory level course, such as AP statistics 

in high school.  A total of 76 students participated.  Participants worked alone (40 total) 

or with a partner of the same gender (36 total) during the experiment.  Participants were 

assigned to dyads based on who signed up for each time slot.  In one dyad, the partners 

were friends, and in another they knew each other socially.  These dyads were assigned to 

opposite treatments.  Twenty-four women worked alone, 24 worked in pairs.  For men, 

16 worked alone and 12 worked in pairs.  Individuals and dyads were randomly assigned 

to one of two conditions: an Innovation condition, or an Efficiency condition.   

Materials—The study materials included a learning packet on the chi-square 

formula (See Appendix A) and a posttest (See Appendix B).  The learning packet 

consisted of three units about different aspects of the chi-square formula.  Each unit 

contained three pages: a Lesson page, a Problems page, and a Final Practice Example 
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page with answers provided at the bottom of the page.  For Innovation, the sequence of 

pages for each unit was: 1) Problems, 2) Lesson, and 3) Final Practice Example.  For 

Efficiency, the sequence was: 1) Lesson, 2) Problems, and 3) Final Practice Example.  In 

other words, Innovation had to try to figure out a formula before getting the canonical 

solution, while Efficiency received the formula and had a chance to apply it.  Table 4 

shows the topic of each lesson in the packet.  A key feature of these materials was how 

the Problems pages had contrasting cases designed to highlight key features of the 

formula(s).   

 

Table 4 
Learning Packet Summary (three pages per Lesson) 
Lesson Topic Formula(s) Key Points or Contrasts 
1 The Chi-Square 

Formula 
χ2 = Σ (E – O)2/E 
 
E = Total Observations
             # of Cells 

1) Used to compare a frequency 
distribution to chance.   
2) Why dividing by E is 
necessary. 

2 Chi-Square when E 
must be estimated 

E = Row Total*Column Total              
                  Grand Total 
 
 

1) The expected value (E) 
should be estimated when it is 
unknown. 
2) When it is given (by fair dice 
or other situations assumed to 
have equal probabilities), the 
previous formula is appropriate. 

3 Chi-Square when 
Sample-size 
changes 

χ2 = Σ (E – O)2/E 
 
 
χ2 = Σ E[1 – (O/E)]2

1) When (e-o) is constant, chi-
sq. decreases with increasing 
sample size. 
2) When (o/e) is constant, chi-
sq. increases with increasing 
sample size. 

 

A digital video camera and tapes recorded partners’ interactions.  The amount of 

time participants spent on each page of the nine page learning packet was also recorded 

during the learning phase.  The outcome measures of interest consisted of three types of 

items on a seven-problem posttest.  Two problems required calculations of the chi-square 

formula, three involved comprehension questions about where and how the formula 

works, and two involved a difficult transfer to the related statistics topic of inter-rater 

reliability.  An important feature of these far transfer measures was that they were 

designed in PFL fashion (Bransford & Schwartz, 1999; Schwartz & Bransford, 1998; 

Schwartz & Martin, 2004).  The first problem introduced the new type of problem, while 

the second provided a more difficult case in which those same principles applied.  The 
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PFL idea is that only participants who were prepared to learn from the first problem 

would be able to answer the second one correctly.  This approach allows one to estimate 

what kinds of instruction are better at preparing students for future learning. 

 Procedures—Participants worked in a small room with a couch and shared desk.  

Some individuals worked at a desk outside of the small room if the room was already 

filled.  The experimenter (the author) sat in close proximity to the participants to answer 

their questions and make sure they progressed through the materials without looking 

ahead.  All participants completed the learning packet.  They were encouraged to 

understand what was on each page and to aim for about five minutes per page in order to 

complete the activities within the allotted 90 minutes.  Dyads were instructed to work 

together to understand the material in the packet they had to share.  The key difference 

between conditions was that participants in the Innovation conditions attempted to invent 

solutions to the Problems before receiving the Lesson for each of the three units in the 

learning packet.  Participants in the Efficiency conditions read the Lesson before doing 

the Problems.  For each unit, all participants did the Final Example problem after 

completing the lesson and practice pages.  To keep participants from blurring the 

distinction between conditions, they were told to complete each page in the packet before 

going to the next page and to look back only if necessary (such as to recall the formula).   

 By attempting to construct solutions to the Problems before learning the canonical 

solution, the Innovation participants were meant to bump up against the challenges in 

each problem and the contrasts in the examples.  By working to resolve these 

incommensurables, it was hypothesized that they would be more prepared to notice and 

understand how the canonical solution worked (Schwartz, Sears, & Chang, in press).  For 

example, if participants used the previously taught version of the expected value 

calculation on the Problems in the second unit, they would obtain the same chi-square 

value for both distributions.  This would push them to consider a different approach to the 

problem to distinguish the cases.  Perhaps more importantly, it should help them realize 

the limits of the original formulation.  Upon seeing the lesson for that unit, these 

participants should be more prepared to understand why that new way of calculating the 

expected value was important and when it was applicable.   
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 For Efficiency participants, reading the Lesson and then doing the Problems 

would give them an opportunity to practice what they learned.  Because they would have 

the canonical solution given to them, they were not expected to bump up against the 

incommensurables presented by the contrasting cases.  For this reason, they were not 

expected to develop a deep appreciation for how each formula worked.  Instead, by 

having an opportunity to practice the canonical solution, they were expected to develop 

fluency with its application.   

To facilitate computational fluency for Efficiency and the noticing and attempting 

to reconcile incommensurables for Innovation, participants were asked to calculate a 

numerical answer for each problem using their formula.  In some cases, Innovation 

participants struggled to do this, so text explanations were acceptable.  Participants were 

allowed to use a calculator to assist them in their calculations.    

After completing the learning packet, participants took a short break (about five 

minutes) before taking the posttest.  The experimenter instructed them to spend 25 

minutes on the posttest, that is was difficult, to try their best, and to work alone.  

Participants had access to a calculator but were told it was sufficient to set up the solution 

to the problem with all the numbers in it such that the experimenter could take the final 

step of calculating the answer.  Some participants finished early, and none took longer 

than 30 minutes.  The experimenter periodically notified participants of how much time 

remained for them to complete the test.  Table 5 summarizes the phases of the study. 

 

Table 5 
Design of Study 2 
Step Context Innovation Efficiency Time 

9-page Learning Packet on the Chi-Square Formula 1 Alone / 
Dyads 1) Problems (invent) 

2) Lesson (instruction) 
3) Final Example (reinforce) 

1) Lesson (instruction) 
2) Problems (apply) 
3) Final Example (reinforce) 

35 to 65 
min. 

  Short Break ~5 min. 
2 Alone Posttest  

(7 problems: 2 calculations, 3 comprehension, 2 far transfer) 
25 min. 
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Results 

 Before turning to the outcome measures, a brief characterization of participants’ 

activities during the learning phase is appropriate.  Dyads receiving the Innovation 

treatment discussed the material and shared their perspectives frequently, as expected.  

Discussion was often interspersed with periods of silent activity as partners tried to gain 

insight into the material.  Some participants were able to develop formulas similar to the 

chi-square formula; however, most struggled.  A somewhat surprising finding was that 

the Efficiency dyads also showed elaborate discussions on occasion.  My impression was 

that they showed less time silently working to figure out how to approach a problem and 

more time checking each other’s calculations, explaining them, or trying to understand 

what their partner was doing (sometimes while their partner sped along through the 

problems, seemingly quite comfortable with the formulas they were applying).  Future 

video and transcript analyses should add rigor to these observations.  

 

Time

 A multivariate analysis of variance (MANOVA) revealed no significant 

differences in the amount of time taken for the learning packet or the posttest, though the 

means were slightly lower for Innovation as shown in Figure 15.   
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Figure 15.  Mean time spent learning and completing the posttest.  (Error bars represent standard error of 
the mean).11

 

Coding scheme 

 Table 6 shows the features of each problem on the posttest that were coded and 

how many points they could receive (or if they were just noted).  As an example, on the 

first problem, participants were to calculate the chi-square statistic for a given data table 

showing the accuracy of two tests at predicting who had a disease.  Because we do not 

have an a priori reason to expect these two tests to be equally accurate, we should not 

assume that all the cells in the data table would have the same expected value.  It is more 

appropriate to calculate the expected value for each cell using the (row x column) / grand 

total approach described above.   

 

                                                 
11 All subsequent error bars represent standard error of the mean unless otherwise noted. 
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Question 1: Drug test effectiveness. 
Test A and Test B differ substantially in how expensive they are, so doctors wanted to find out whether 
they differed in how accurately they diagnosed patients with a particular disease.  Do Test A and Test B 
differ significantly in their ability to predict who has the disease?   
 
 Yes No 
Test A 10 10 
Test B 6 14 

 
Sample Solution 1: Using the less-appropriate expected value formula 
E = (10 + 10 + 6 + 14)/4 = 10 
 
Chi-square = 0/10 + 0/10 + (6-10)2/10 + (14-10)2/10 = 3.2 
 
Scoring:  
1 point out of 2 for Expected Value component b/c it was a correct approach but not optimal (50%). 
1 point out of 1 for the Chi-square component (100%). 
Score on Question 1 is the average percent correct of the two components = (50% + 100%)/2 = 75%. 
 
Sample Solution 2: Using the correct expected value formula 
Expected Value using Row*Column/Grand: 
 Yes No 
Test A (20*16)/40 = 8 (20*24)/40 = 12 
Test B (20*16)/40 = 8 (20*24)/40 = 12 

 
Chi-square = (8-10)2/8 + (12-10)2/12 + (8-6)2/8 + (12-14)2/12 = 4/8 + 4/12 + 4/8 + 4/12 = 1.667 
 
Scoring:  
2 points out of 2 for Expected Value component b/c it was the optimal approach (100%). 
1 point out of 1 for the Chi-square component (100%). 
Score on Question 1 is the average percent correct of the two components = (100% + 100%)/2 = 100%.

Figure 16. Example scoring of Question 1.  

 

Figure 16 shows how two solutions for Question 1 would be scored.  If 

participants calculated the expected value by simply dividing the total number of 

observations by four (the number of cells), then they would get one point.  If they 

calculated the expected value by estimating what it should be for each cell based on row 

and column totals, they would earn two points.  This was not an arbitrary system.  

Because Question 1 involved a situation where a priori expectations about test accuracy 

were not available, it was appropriate to use the expected value calculation that estimated 

a value of E for each cell using row and column totals.  The other approach (shown in 

Sample Solution 1) to calculating E is appropriate for situations in which a known 

percentage of observations are expected to fall into each category (e.g. each side on a fair 

die should appear equally often, on average).  Question 5 (the other calculation problem) 
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rewarded this version of the expected value calculation with two points and the other with 

only one, providing a counterbalance to the scoring of Question 1.  Thus, students who 

simply applied one version of the expected value formula to the calculation problems, 

regardless of which version, would get one problem right and the other wrong. 

Each question was divided into components or “Coded Features” that were 

weighted equally in that question’s score.  For instance, in the calculation questions, the 

expected value comprised half of the score and the chi-square calculation comprised the 

other half.  To make these halves equally weighted, each component was transformed 

into a percent; then these percents were averaged to find the question score (e.g. 50% and 

100% average to 75%).  This approach was necessary because otherwise the expected 

value component, which was on a 0 to 2 scale, would be weighted more heavily in the 

Question 1 score than the chi-square component, which was on a 0 to 1 scale.   

Because the Efficiency instructional method aims for increasing speed and 

accuracy, if a calculation error was made on a component, half a point was subtracted 

from the score for that component.  If participants set up the equation correctly with all 

the numbers and then made an error in computing that value, that computational error 

was ignored.  However, if participants entered a miscalculated number into their formula, 

such as the wrong grand total in the expected value formula or a miscounted number of 

agreements in the chi-square formula, they were penalized with a half-point deduction on 

that component.  The idea behind this scoring was that statistical software programs can 

compute the chi-square statistic, but one still needs to enter the values correctly.  Any 

calculations that were described with text only were given no credit except on the far 

transfer questions where a canonical solution had not been taught.12  

                                                 
12 Two participants in the Innovation condition answered the PFL target problem using text.  The first 
received no credit for her answer except for being penalized for suggesting an approach that involved 
negative transfer.  The second received credit for the calculation of the expected value she described (and 
had computed successfully in the resource problem, Question 4).  Despite successfully adapting the chi-
square formula on the resource problem and suggesting a comparison between expected and observed 
agreements on the target problem, her description of that comparison was too general to receive any credit 
on that component. 
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Table 6 

Coding Scheme for Posttest 
Question 
# Type 

 
Question 

 
Coded Feature / Answer 

 
Points 

 
Deductions 

E = Total/#cells  =  
(negative transfer) 
E = R*C/Total 

1 
noted 
2 

-.5 (calc. error) 1 
 

Calculation Do these two tests for 
disease differ in their 
accuracy? 

Chi-sq = (E – O)^2/E 1 -.5 (calc. error) 
E = Total/#cells 
E = R*C/Total =  
(negative transfer) 

2 
1 
noted 

-.5 (calc. error) 5 
 

Calculation Are these fair dice 
magnetized? 

Chi-sq = (E – O)^2/E 1 -.5 (calc. error) 
2 Compre-

hension 
Why divide by E in 
the Chi-square 
formula? 

To account for sample size 
(i.e. make cells comparable) 

1  

If (E – O) is constant, Chi-sq. 
decreases with increasing 
sample size. 

1 -.5 if too specific 
[e.g. if (E – O) 
stays close to 0]. 

3 Compre-
hension 

How does sample 
size affect the chi-
square value? 

If O/E is constant, Chi-sq. 
increases with increasing 
sample size. 

1 -.5 if too specific 
[e.g. if (E/O) stays 
close to 1]. 

7 Compre-
hension 

When should 
someone use the chi-
square formula? 

To compare results to chance. 
Test for independence of 
variables. 

 
1 

 

E = Total/#cells 
E = R*C/Total 

1 
2 

-.5 (calc. error) 

Subtract? 
(Obs.– Exp.) Agrmnts. 

1  

Normalize? 1  
Subtract Well? 1  
Normalize Well? 1  

4 Far Transfer 
Resource 
Problem 

How much beyond 
chance do two 
mechanics agree on 
their diagnoses of 50 
cars (as shown in this 
reliability matrix)? 

Apply chi-sq. without regard 
to agreement or disagreement 
cells (negative transfer) 

 
 
noted 

 

Total number of Agreements 
(or disagreements) 

1 -.5 (calc. error) 

E = Total/#cells 
E = R*C/Total 

1 
2 

-.5 (calc. error) 

Subtract?: 
(Obs. Agrmnts – Exp. 
Agrmnts) 

1  

Normalize?: 1  
Subtract Well? 1  
Normalize Well? 1  

6 Far Transfer 
Target 
Problem 

How much beyond 
chance do these 
chemists agree on the 
color that each 
element released 
when burned? 

Apply chi-sq. without regard 
to agreement or disagreement 
cells (negative transfer) 

 
 
noted 

 

 

Reliability and validity of the coding-scheme and the test 

A random sample of 20 posttests, with three to four per condition, was selected 

for comparison for inter-rater reliability calculations.  Across all 21 features, percent 
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agreement was 93%.  On the Calculation questions, percent agreement was 90% (average 

Kappa = .828; minimum agreement of 85% on any given feature).  On Comprehension 

questions, percent agreement was 93% (average Kappa = .819; minimum agreement of 

80%).  On Far Transfer questions, percent agreement was 95% (average Kappa = .826; 

minimum agreement of 85%).  Thus, the coding scheme was reliable across raters. 

The 19 scored features yielded a reliable overall assessment of students’ 

understanding of the chi-square formula (alpha = .81; each item weighted equally).  For 

the analyses that follow, the subset of the 19 features that composed a given question on 

the test was aggregated in equal-weighted fashion.  For instance, the expected value 

component and the chi-square component were each weighted as 50% of the score for 

question one, as described previously.  A similar procedure was used to aggregate scores 

by question-type (i.e. Calculation, Comprehension, Far Transfer).  For example, question 

one and question five each composed 50% of the score on the Calculation question-type.  

The scores on each question-type could range from 0% correct to 100% correct.  To 

support the validity of this grouping, correlations between the types of questions were 

analyzed.  Only the calculation and comprehension question-types were correlated; r 

= .316, p = .005.   

 

Overview of analyses and results 

 Recall that it was hypothesized that all conditions would do well on the 

calculation problems.  As the problems moved away from the taught calculations and 

toward deeper conceptual understanding, it was expected that the Innovation conditions 

would show greater performance.  By this logic, comprehension problems would show 

some advantage for Innovation and the far transfer problems would show the greatest 

advantage.  In addition, it was expected that Innovation dyads would show the greatest 

advantages on the far transfer problems and outperform their peers who worked alone.  

Many of these hypotheses were supported. 

 To test the hypotheses, a repeated-measures multivariate analysis of variance 

(MANOVA) will serve as an umbrella test by which to compare individuals and dyads in 

Innovation versus Efficiency treatments on the three question-types (calculation, 

comprehension, and far transfer).  Differences found with the MANOVA will be 
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examined further with independent t-tests.  Next, special attention will be given to the far 

transfer questions and other measures of deep understanding because these were expected 

to reveal the greatest differences between conditions.  Specifically, rates of negative 

transfer will be analyzed with chi-square tests while PFL measures from the far transfer 

questions will be examined with a repeated-measures MANOVA.  Included in this 

portion of the analysis will be a comparison between the performance of real dyads and 

nominal dyads.   

For the analyses that follow, each participant that studied in a dyad will be treated 

as a separate unit (i.e. independent) because despite studying together, they took the tests 

alone.  This approach has precedent in previous well-known studies of collaborative 

learning (e.g. Barron, 2003; Phelps & Damon, 1989).  In addition, practical reasons 

support this approach.  First, counting the dyads as a single unit by averaging partner 

scores would decrease the sample by half.  This conservative estimate may be 

unwarranted given that the average difference between partners’ scores on each of the 

three question types was .33, .28, and .26 while the average difference between 

individuals under every possible dyad combination was .30, .34, and .24 for calculation, 

comprehension, and far transfer questions, respectively.  In other words, the difference 

between real partners’ scores was about the same as randomly paired individuals.  A 

more appropriate approach would involve using a multivariate hierarchical linear model 

(MHLM); however, no statistical packages that I am aware of can do a three-level 

MHLM (Dr. A. Bryk, personal communication, May 30, 2006).  Instead, I will note that 

univariate HLM tests produced similar outcomes as the repeated-measures MANOVA.   

  

MANOVA Results 

 Figure 17 shows the performance of the Innovation versus Efficiency conditions 

on the different posttest question types.  Figure 18 shows those results further subdivided 

by Individuals versus Dyads.   
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Figure 17.  Performance under Innovation versus 
Efficiency learning conditions on learning and 
transfer measures.  

Figure 18.  Individuals’ versus dyads’ performance 
on posttest measures by condition. 

 

 A repeated-measures MANOVA revealed no significant differences or 

interactions between conditions on the multivariate measures.  However, taking 

advantage of a priori hypotheses, the results of planned within-subjects simple contrasts 

were examined.  These contrasts compared performance on the Far Transfer measure to 

performance on the Comprehension measure and performance on the Calculation 

measure, and they revealed interesting differences between conditions.  First, a 

marginally significant difference was found on patterns of performance on the Far 

Transfer versus Calculation measures for the Innovation versus Efficiency conditions; 

F(1, 72) = 3.04, MS = 0.35, p = .086.  This result was due to Innovation significantly 

outperforming Efficiency on the Far Transfer measure; t(74) = 1.75, p = .043 (one-tailed), 

while scoring non-significantly lower on the Calculation measure; t(74) = -.60, p = .274 

(one-tailed).  13    

Second, a marginally significant difference was found on patterns of performance 

on the Far Transfer versus Comprehension measures for Individuals versus Dyads; F(1, 

72) = 3.96, MS = 0.52, p = .050.  This result was due to Dyads scoring significantly 

lower on the comprehension measures than Individuals; t(74) = 2.33, p = .023, while 

                                                 
13 All t-tests reported here use two-tailed criterion for significance unless stated otherwise.  In this case, a 
one-tailed test was appropriate because this was a hypothesized result. 
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scoring non-significantly higher on the Far Transfer measures; t(74) = -.22, p = .830.  

This result was unexpected. 

 

Measuring “Deep Understanding” with Negative Transfer and PFL Measures 

 For my purposes here, deep understanding will be defined as knowing what 

something is and what it is not.  In cognitive terms, negative transfer indicates a failure to 

recognize what something is not.  It is the application of prior knowledge to a problem 

that requires a different approach.  We know from previous work that experts show less 

negative transfer than novices (Novick, 1988).  In this experiment, negative transfer 

could occur on any of the questions that involved computation (Questions 1, 4, 5, and 6).   

Students could show negative transfer on the calculation problems (Questions 1 

and 5) by using the wrong version of the Expected Value calculation.  Because these 

questions required different versions of the calculation, students who used one method 

consistently would show negative transfer on one (and only one) of these measures.  The 

modal outcome across conditions was one negative transfer on these calculation problems.   

On the far transfer questions (Questions 4 and 6), negative transfer involved 

applying the chi-square formula to the data without regard to agreements or 

disagreements.  A better approach would involve applying the chi-square formula only to 

the agreement cells of a reliability matrix (or just to the disagreement cells).  This 

approach would distinguish the source of any differences from chance as being due to 

more agreements (or more disagreements) than expected.  The modal outcome across 

conditions was zero negative transfers on these far transfer questions. 

Summing the negative transfer results from the questions described above, 

amount of negative transfer could range from zero to four.  The distribution of responses 

was not normal, as shown in Figure 19.  To characterize the distribution, scores were 

grouped into two categories: 1) those who showed “Zero to One” negative transfers, and 

2) those who showed “Two to Four.”  As mentioned above, most students showed one 

negative transfer on the calculation problems, and most showed none on the Far-transfer 

questions, so dividing participants into those showing one or fewer negative transfers 

versus two or more seemed reasonable.  (Similar results as those presented below were 

obtained when using three categories of “zero, one, and two or more”). 
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Figure 19. Number of negative transfers on the four questions that required mathematical 

computations.  More negative transfer suggests less understanding of when a given formula 

does not apply. 

 

Table 7 shows how each condition performed on the negative transfer measure.  

Chi-square analyses indicated that Innovation participants showed significantly less 

negative transfer than Efficiency participants; χ(1) = 5.40, p = .020.  This result was 

driven primarily by the Innovation Dyads relative to Efficiency Dyads; χ(1) = 5.6, p 

= .018, rather than by Individuals; χ(1) = .92, p = .337.   

 

Table 7 
Degree of Negative Transfer 
 Number of Negative Transfers Innovation Efficiency 

Zero to One  13 10 Individuals 
Two to Four 7 10 
Zero to One 14 7 Those who studied 

in Dyads Two to Four 4 11 
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While negative transfer provided a measure of whether participants understood 

the chi-square formula well enough to know when or how it did not apply, it did not 

indicate whether participants understood the material well enough to know how to adapt 

it to difficult transfer problems.  Adapting a formula to a new type of problem suggests a 

deep level of understanding.  I would not expect most participants to achieve this within 

less than an hour of study.  The surprising finding here is that some participants did.  In 

particular, the Innovation participants, especially the dyads, adapted their prior 

knowledge of the chi-square formula to make an adequate measure of inter-rater 

reliability.   

Before describing how such adaptation was scored, the Far Transfer problems will 

be described in greater detail.  These two problems followed the preparation for future 

learning (PFL) design: 1) a resource problem was given, then 2) a related but more 

difficult target transfer problem (Bransford & Schwartz, 1999; Schwartz & Bransford, 

1998; Schwartz & Martin, 2004).  For each, participants had to calculate how much two 

raters agreed beyond chance.  To do this successfully, participants had to transfer and 

adapt their knowledge of the chi-square procedure.   

The first question was a resource question because it gave participants three tools 

to help them construct their answer, and these tools could also be used to help solve the 

target problem if participants recognized its similarity.  The three tools were: 1) how 

many times the raters agreed, 2) a 3x3 reliability matrix (i.e. one that showed agreements 

along the diagonal), and 3) a prompt to calculate how much the raters should agree by 

chance alone before calculating how much they agreed beyond chance.   

The second question was a target transfer problem because participants had to go 

beyond what they did in the resource problem.  This time, they had to count how many 

agreements there were between two raters, transform raw data into a 5x5 reliability 

matrix or another representation for finding the expected values, and make the connection 

between expected agreements versus actual agreements.  In other words, this problem 

lacked the resources of the former problem.   

In order to solve these challenging problems adequately, participants had to 

calculate the expected number of agreements (or disagreements) and subtract this from 

the number of observed agreements (or disagreements).  If they did this, they would 
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receive one point.  If they also normalized the difference by dividing by the expected 

number of agreements (or disagreements) or the grand total, they would receive a second 

point.  Thus, a key factor in solving these PFL problems adequately was whether 

participants used the expected value formula they learned for the chi-square and applied 

it selectively to the agreement cells (or disagreement cells).  If they applied it to all of the 

cells and then calculated the chi-square (as they had learned to do previously), they 

would show negative transfer and would not have an adequate answer.   

As described above, participants could score from zero to two points on each PFL 

problem.  These scores were then transformed into a percent.  A repeated-measures 

MANOVA revealed three marginally significant effects: 1) Innovation participants 

tended to score higher than Efficiency participants; F(1, 72) = 3.15, MS = .422, p = .080; 

2) members of dyads tended to outperform individuals on the target question while doing 

less well on the resource question; Wilks’ Lambda = .963, F(1, 72) = 2.79, p = .099; and 

3) Innovation dyads scored higher than Innovation individuals on the target problem 

despite scoring lower on the resource problem while Efficiency dyads scored slightly 

higher on both than Efficiency individuals.  This third difference was a 3-way interaction 

between question-type (resource vs. target), task-type (Innovation vs. Efficiency), and 

context (individual vs. dyad); Wilks’ Lambda = .959, F(1, 72) = 3.11, p = .082.   

These results can be seen in Figure 20.  The Innovation dyads were the only 

condition to show improvement from resource problem to target problem.  Notably, the 

two Innovation-dyad participants who answered the target problem well without having 

answered the resource problem well had partners who answered both problems well.  For 

the rest of the participants, only those who did well on the resource problem did well on 

the target problem.  Very few of them made that transfer successfully (5 of 10 for 

Innovation and 2 of 5 for Efficiency).  Unlike participants in Efficiency, those in 

Innovation who made the transfer were not just students who aced the posttest.  

Innovation participants averaged .86 standard deviations above the mean on the posttest 

while those in Efficiency averaged 1.44 standard deviations above the mean.  Thus, the 

target question built from the resource, as expected, and success on it was not limited to 

the tail-end of the distribution for Innovation participants.  As will be discussed further 

below, this PFL measure showed the greatest benefits of Innovation on dyadic learning.   
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Figure 20. Participants in Innovation dyads were the only ones that gained from the resource problem to the 
target problem.  Innovation scored marginally higher than Efficiency across the two far transfer problems. 
 

Dyads’ Success: Nominal versus Real Group Comparisons on the PFL Measures 

 As mentioned in the introduction, most comparisons between groups and 

individuals involve comparing averages—the average group to the average individual.  

Often this shows benefits of groups.  The most stringent comparison involves comparing 

real groups to nominal groups or mathematically “grouped” individuals under truth-wins 

assumptions.  As quick review, truth-wins means that if one member of the “group” 

answered the question correctly, everyone in that group would be assumed to answer it 

correctly.  In other words, the right answer is always accepted by the group, or the truth 

always wins.  In reference to these results, I will use “nominal dyads” and “truth-wins 

dyads” interchangeably.  See the footnote below if interested in a more detailed 

explanation of the truth-wins calculations.14  The value of using a comparison between 

                                                 

 

14 The truth-wins to real dyads comparison was calculated as follows.  The average score of each individual 
in a dyad was compared to the average score of each individual in a truth-wins dyad.  The scores for the 
combined PFL measures and the target measure were calculated in similar fashion, so I will explain the 
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real dyads versus truth-wins dyads is that if real dyads exceed truth-wins dyads we know 

they have shown process gain.  In other words, something in their interaction has allowed 

them to move beyond what they could have done as individuals, even with perfect 

knowledge sharing.  As a result of interaction, they would have constructed some new 

understanding that neither one had before. 

Figure 21 shows the performance of real dyads and nominal dyads under each 

task-type on the combined PFL measures described above.  The nominal dyads’ scores 

were modeled based on the scores of the participants in the individual conditions.  Thus, 

Innovation nominal dyads were modeled on Innovation individuals’ scores while 

Efficiency nominal dyads were modeled on Efficiency individuals’ scores.   

Although the Innovation dyads did not exceed the truth-wins Innovation dyads, 

they nearly doubled the success of the truth-wins Efficiency dyads.  Notably, the real 

Efficiency dyads performed nearly as well as the nominal ones, suggesting that PFL 

                                                                                                                                                 
more complex one (the combined) first.  For the Innovation individuals, 20 participants can be combined 
into 190 distinct dyads (“20 choose 2” = 20C2 = 20!/(20-2)!*2!).  One way to think of this is that the top 
individual can combine with 19 other individuals to make 19 dyads.  The next participant can combine with 
the remaining 18 individuals to make 18 dyads.  The next can join the remaining 17 and so on.   
    The score for each truth-wins dyad then consisted of their joint performance on the four measures (each 
scored 0 or 1) on the combined PFL measures.  If either one of the members got the correct answer on a 
measure, they would be scored as getting that measure correct.  For instance, did one or both members of 
the dyad subtract expected agreements from observed agreements on the resource problem?  If so, that pair 
would receive credit on the first of the four measures.  Did one or both normalize adequately on the 
resource problem?  Did either succeed on the similar measures on the target problem?  Under the truth-wins 
assumptions if either member got credit for an item, the “dyad” would receive credit for that item.   
    The top performing individual in Innovation scored perfectly on the combined measure (4 points out of 
4).  This meant that all 19 dyads this person could participate in would receive a score of 4 out of 4, or 
100%.  The next best individual (who scored 2 out of 4) combined to make a score of 3 out of 4 with one 
other individual.  With the 17 remaining individuals, he made a score of 2 out of 4, or 50%.  The third best 
individual performed the same, so that person combined with the one to make 3 of 4 and with the 16 
remaining to make 2 of 4.  Of these first 54 possible dyads (out of 190), 19 scored 100%, two scored 75%, 
and 33 scored 50%.  After computing the scores for the remaining 136 nominal dyads, all 190 scores were 
averaged.  That process yielded the 27.5% shown in the figure.  This same process was applied to the two 
items on the “target” measure, and for the individuals in the Efficiency condition. 
    For those who might be concerned that this process results in a comparison between the average 
performance of individuals who studied in dyads to nominal dyads, altering the computation to count the 
nominal dyads as “individuals who studied in nominal dyads” produced similar results (slightly worse 
performance for the nominal conditions, actually).  The way this altering of the computation can be done is 
as follows.  For the first individual (of 20), they can participate in 19 dyads, effectively teaching all 19 how 
to do the problem.  That means 20 “nominal individuals” would score four points (rather than 19 dyads, as 
before).  For the next individual, they could interact with 18 dyads, so 19 individuals overall would have 
their knowledge.  Continuing in similar fashion, this process is equivalent to averaging the score of “21 
choose 2” combinations of people, and it yields 210 “nominal individuals.”  Because the “nominal dyads” 
calculation gave the more stringent comparison, I chose it for these analyses. 
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measures reveal differences in learning that are not usually found with traditional 

measures both for individuals and especially for dyads.  Figure 22 shows performance 

only on the target problem.  Here the real Innovation dyads outperformed all others.   
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Figure 21.  On the combined PFL measures, real 
Innovation dyads nearly double the performance of 
truth-wins Efficiency dyads. 
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Figure 22.  On the target question, real Innovation 
dyads exceed all others. 

 

Re-analyzing the Results: The Necessity of Efficiency for Innovation 

 A certain amount of efficient knowledge may be necessary for innovation 

activities to be educationally beneficial.  Pursuing this notion, we can re-analyze the data 

after removing participants who failed to show or acquire that efficient knowledge.  In 

this study, the efficient knowledge was of how to compute the chi-square formula (i.e. the 

calculation questions).  We can see in Figure 23 that a few students in each condition did 

not learn how to calculate the chi-square formula well.  In particular, every condition 

showed a gap between participants scoring at or above 50% versus those scoring below 

50% on the calculation questions.   
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Figure 23. Scoring less than 50% suggests a failure to acquire 
the most basic understanding.   

 

If it is the case that a certain amount of efficient knowledge is necessary to benefit 

from Innovation, then removing participants without that knowledge should reveal 

greater benefits of Innovation activity for learning.  Below is a re-analysis of previous 

results separating from the rest those participants who scored below 50% on the 

calculation problems.  This re-analysis strongly supports the conjecture.   

In Figures 24, we can see that Innovation participants that failed to learn the 

calculation showed limited success on all of the other problems.  More importantly, the 

pattern in Figure 25 suggests that learning the basic calculation allowed for significant 

benefits from Innovation.  Innovation showed greater performance relative to Efficiency 

once only those who acquired the efficient knowledge were compared.  This gain was 

particularly noticeable for the Innovation dyads relative to Efficiency dyads.  Thus, 

Innovation did not cause a tradeoff between learning the basic material and learning the 

advanced material; instead, it appears to have built upon the basic material to help 

students deepen their understanding.   
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Figure 24. Innovation participants who failed to learn the basic calculation (i.e. scored 
below 50% on the calculation measures) showed low scores on all measures.   
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Figure 25. Innovation participants who acquired the relevant efficient knowledge (i.e. 
scored 50% or higher on the calculation measures) showed significant benefits to learning.

 

Discussion 

 The second study was designed to test the effects of Innovation versus Efficiency 

tasks on dyads’ and individuals’ learning.  The general hypothesis was that as questions 
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went from basic calculations to conceptual understanding the benefits of Innovation for 

learning, especially in dyads, would become more apparent.  This hypothesis was tested 

with a posttest that included three types of questions: 1) Calculation, 2) Comprehension, 

and 3) Far transfer.  The far transfer questions followed the preparation for future 

learning (PFL) design in which a resource problem introduces new material, and a more 

difficult target problem builds upon it (Bransford & Schwartz, 1999; Schwartz & 

Bransford, 1998; and Schwartz & Martin, 2004).  They examined how well participants 

were able to adapt their understanding of the chi-square formula to questions about inter-

rater reliability.  It was expected that all conditions would do well on calculations, 

Innovation would outperform Efficiency on comprehension questions, and Innovation 

would show the greatest advantage on the far transfer measures, especially Innovation 

dyads.  As reviewed below, many of these hypotheses were supported. 

Except where noted, the following results were in line with hypotheses.  

Participants in all conditions learned to calculate the chi-square statistic, averaging near 

70% correct on the calculation measures.  From these measures, Innovation did not 

appear any worse at the efficient application of knowledge even though they spent an 

equal time on the learning materials.  This result goes against others’ findings that tasks 

permitting greater exploration take longer to achieve the same educational outcomes 

(Anderson et al., 1989; Tennyson et al. 1985).  

Innovation and Efficiency participants scored equally on the comprehension 

questions.  Results for dyads on these questions were unexpected.  Dyads performed 

significantly worse than individuals on these questions, regardless of condition.  Video 

analyses should provide insight on this result in future work.  For now, a tentative 

explanation comes from a post-hoc analysis of participants’ time-on-task.  The amount of 

time dyads spent reading the three Lessons pages was significantly less than the time 

individuals spent; 7.8 minutes versus 9.5 minutes.15  Casual observation suggested that 

dyads were more intent on understanding, computing, and checking the calculations than 

reading the text carefully (perhaps because they were afraid to seem slow or because they 

did not want to lean over the text to study it closely and block the view of their partner).   
                                                 
15 t(71) = 2.36, p = .021.  The degrees of freedom here are less than previous analyses because times were 
not recorded in three instances due to experimenter error. 
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 The transfer measures were hypothesized to show the greatest differences 

between conditions, and they did.  Innovation showed less negative transfer than 

Efficiency, and this result was driven by dyads.  Innovation dyads showed the least 

negative transfer while Efficiency dyads showed the most.  This helps block one possible 

interpretation of the results.  This interpretation is that the dyads did better on the 

problems requiring adapting the chi-square formula merely because they were more 

likely to slop around or try different things.  

On the PFL target transfer problem, Innovation participants showed marginally 

greater ability to adapt their knowledge of the chi-square formula to make an adequate 

measure of inter-rater reliability.  Innovation dyads also improved their performance from 

the resource problem to the target problem.  This suggests the Innovation dyad condition 

best prepared students to continue learning.  Taken together, the negative and positive 

transfer results support the notion that Innovation participants who worked together were 

the most flexible and adaptable with their knowledge and better understood its limits.  

Comparisons between real groups and nominal groups provided the strongest 

support for the hypothesis that Innovation benefits learning most when done in groups.  

On the target transfer question, real Innovation dyads averaged 22.2% and Innovation 

nominal dyads averaged 14.7% under truth-wins assumptions.  Real Efficiency dyads 

averaged 5.0% and Efficiency nominal dyads averaged 5.6%.  Only one study that I am 

aware of has shown a task on which real groups outperformed nominal groups under 

truth-wins assumptions.  Schwartz’s (1995) study involved problem solving.  I believe 

this dissertation study is the first to have found such an effect on learning.   

 

The Benefits of Efficient Knowledge for Learning from Innovation Activities 

While considerable support for the hypotheses was obtained, one pattern in the 

data ran counter to expectation.  On every measure involving computation except the 

transfer measures, Innovation dyads performed worse than Innovation individuals while 

Efficiency dyads performed better than Efficiency individuals.  This is important in 

conjunction with the finding that Innovation dyads did better on the transfer measures 

than Innovation individuals.  It can clarify prevailing theories that suggest either 

Efficiency or Innovation tasks should be best for collaborative learning. 
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 For example, some theorists like Steiner (1972) have suggested that highly 

demonstrable tasks should yield optimal results for groups relative to individuals.  Others 

like Cohen (1994) have stated that ill-structured tasks should show the greatest 

advantages for groups.  A simple answer to this paradox is that it depends on the 

measures.  For basic procedural understanding, the Efficiency task appeared best for 

groups (and possibly individuals), while for deeper conceptual understanding, the 

Innovation task appeared best. 

 A better answer is possible, however; one that does not pit Innovation against 

Efficiency.  In short, a certain amount of efficient knowledge is necessary to benefit from 

Innovative instruction, especially if working collaboratively.  For instance, one can 

imagine that working well in a dyad requires some attention to coordinating activity with 

a partner.  If the material is difficult for a given individual, then trying to coordinate with 

a partner may yield no benefit, or even worse, it may lead to errors and hinder learning.  

By contrast, for individuals who are comfortable with the material, coordinating activity 

with a partner can provide opportunities to see new approaches, make one’s thinking 

visible through teaching, and thereby arrive at a deeper understanding.  It seems likely 

that Efficiency tasks would make coordinating activity easier than Innovation activity 

because participants are given the common ground from which to work.  Thus, for 

struggling students, Efficiency tasks might provide easier access to a most basic level of 

understanding and thereby an opportunity to benefit from working in a group.  Innovation 

tasks (that are not supported by a teacher), by contrast, might simply overwhelm them. 

 According to these hypotheses, we would expect two additional results.  First, the 

Innovation conditions should have more participants that failed to learn the most basic 

material (the calculations).  Second, removing individuals that failed to acquire the 

efficient knowledge and re-analyzing the data would yield amplified benefits for 

Innovation because only those students with enough efficient background knowledge to 

gain from the Innovation experience would remain.  Both of these predictions were 

supported.  Ten Innovation participants, five individuals and five who studied in dyads, 

failed to score above 50% on the calculations.  Only six Efficiency participants did 

likewise.  The re-analysis of the data revealed that Innovation scores showed significant 

improvement relative to Efficiency scores after removing these individuals.   
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Given these results, an appropriate future experiment could present the chi-square 

materials as part of a high school or college statistics class to see whether and how these 

results might generalize from the laboratory.  For example, participants could be 

randomly assigned to work in small groups or alone, and they could again be randomly 

assigned to Innovation or Efficiency conditions.  To help ensure that all students had an 

opportunity to acquire the most basic understanding while avoiding potential 

experimenter effects, they could observe a pre-recorded lecture on the material after 

completing the course packet.   

 Finally, we gained two generative insights from this second study.  First, the 

Innovation and Efficiency framework is not only useful for characterizing the transfer 

literature; it also appears to offer a tool for determining when different types of 

collaborative tasks are appropriate and what the benefits of each might be for learning.  

For example, efficiency tasks in groups might be particularly appropriate for students just 

beginning to gain exposure to a domain so that they can have a common ground from 

which to establish some understanding of basic tools with which to construct their future 

understanding.  Innovation tasks, by contrast, seem appropriate for students who already 

have some efficient knowledge and need to be prepared for unknown tasks that build 

upon that knowledge.   

These findings would not have been possible if appropriate measures were not 

available.  Specifically, the second insight was that measures of deep understanding, 

especially the PFL measures, were sensitive to benefits of collaboration.  For example, on 

the negative transfer measures, Innovation dyads did best while Efficiency dyads did 

worst across all four conditions.  This suggests that perhaps Innovation encourages 

students to reflect on their solution as they proceed while Efficiency encourages them to 

proceed automatically.  As a second example, the PFL measures revealed strong benefits 

of collaboration.  On the target transfer problem, the real Innovation dyads exceeded the 

nominal ones (and scored four times higher than the Efficiency conditions).  Surprisingly, 

with this measure, even the real Efficiency dyads outperformed the nominal Efficiency 

dyads (though this should be interpreted with caution, given the small sample from 

Efficiency that succeeded on the task).  Perhaps previous studies of collaboration would 

show greater benefits for learning if they used PFL measures to assess their impact.  
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These unique results suggest that not only did Innovation support deep understanding for 

dyads; measures of deep understanding revealed otherwise hidden benefits of Innovation 

and collaboration.  
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CHAPTER 4: GENERAL DISCUSSION 

 

This dissertation began with the question of what makes a good collaborative task 

for learning. Borrowing from recent developments in the transfer literature, two 

experiments with college students tested the effects of Innovation versus Efficiency tasks 

on participants’ learning and collaboration.  It was hypothesized that tasks with an 

Innovation component would naturally afford productive collaborations for learning 

whereas those with an Efficiency focus would not.  Both studies provided support for this 

hypothesis while also revealing some surprising results.  In addition, they highlighted 

methods of analysis that may have important roles in future studies of collaboration.  

Below, I will review these findings and then connect them to larger educational concerns, 

including how they relate to the development of adaptive expertise. 

The first study examined dyadic interaction patterns resulting from Innovation 

and Efficiency versions of a concept-mapping task.  While minimal learning differences 

were found between conditions, dyadic interactions looked quite different.  As expected, 

the Efficiency version of the task led to partitioning of the task where one student became 

a reader and the other a scribe.  The Innovation version led to greater turn-taking, 

explaining, and knowledge sharing during the map-making phase of the study.  

Interestingly, the concept-mapping teachable agent, Betty’s Brain, may have prompted 

greater discussion and explaining by the Efficiency dyads during a map checking phase.  

This is possible because it had a feature that allowed participants to ask it to trace through 

the map and describe how different concepts in the map were related.  This may have 

minimized some of the learning differences between conditions.   

Using a novel method of analysis that allowed a fine-grained coupling of 

moment-to-moment interaction and learning, it was possible to see what types of 

behaviors were associated with successful recall initially and after a re-learning 

opportunity.  Amount of turn-taking during map-making was not associated with learning 

for either condition.  However, for Efficiency dyads, more turn-taking while questioning 

the teachable agent about their map was positively correlated with performance after the 

re-learning opportunity.  Perhaps the most surprising finding was that explanations were 

associated with better recall for Efficiency participants but not for Innovation participants.  
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The greatest difference on explained versus unexplained links was observed on the initial 

recall test.  The only measure that predicted performance after the re-learning opportunity 

for both conditions was the amount of agreement between partners on the first recall test 

(done alone).  Greater agreement was associated with greater gains after re-learning.   

The second experiment compared individuals’ and dyads’ learning of the chi-

square formula.  It found strong evidence for learning benefits of Innovation for 

individuals and especially for dyads.  To my knowledge this is the only experiment to 

find evidence of real dyads surpassing nominal dyads modeled under truth-wins 

assumptions on a learning task.  This effect was not caused by Innovation participants 

doing more random activity; they showed less negative transfer of the chi-square 

procedure than the Efficiency participants, especially the dyads.   

These were the strongest results in favor of the hypothesis that Innovation tasks 

should naturally support productive collaboration.  Interestingly, they would not have 

been found without the use of a preparation for future learning (PFL) assessment.  The 

PFL assessment also revealed benefits of collaboration for Efficiency dyads compared to 

nominal dyads in that condition (although these results must be viewed with caution 

given that the numbers were very small).  This suggests that studies of collaboration may 

have underestimated collaborative learning benefits by not assessing students’ readiness 

to continue learning.   

One surprising result from this second study was that Innovation dyads looked 

worse on non-PFL measures involving computation than their individual counterparts 

while Efficiency dyads looked better than their individual peers on these measures.  By 

some accounts this would suggest that Innovation activities are best for dyads only when 

deep understanding is the goal.  When procedural mastery is the goal, Efficiency 

activities might be best for dyads.  These distinct outcomes could be reconciled in a better 

way, however.  If we assume that a certain amount of efficient knowledge is necessary 

for productive innovation, then the dichotomy between deep understanding and mastery 

disappears.  Removing those participants scoring below 50% on the efficient calculation 

measures, the benefits of Innovation were much stronger in general, and for Innovation 

dyads in particular.   
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This is an important point because it supports and extends previous theorizing 

about the use of the Innovation and Efficiency dimensions for promoting optimal learning.  

Specifically, Schwartz, Bransford, and Sears (2005) hypothesized that a combination of 

Innovation and Efficiency activities should place students on an optimal trajectory toward 

adaptive expertise (Hatano & Inagaki, 1986).  Adaptive expertise might be considered the 

hallmark of a successful education.  It moves beyond rapid execution of well-practiced 

procedures to include flexible adaptation of them to new contexts.  It can also include 

changing the context to fit the tool.  In other words, adaptive expertise is characterized by 

thorough understanding of both the problem and its solution, such that adaptations on 

either end can be made when desired.  As an example, the NASA team and flight crew 

for the Apollo 13 mission that created a square peg for a round hole out of basic parts like 

tape and cardboard showed the ability to adapt different tools to an old problem 

(http://www.hq.nasa.gov/office/pao/History/SP-350/ch-13-4.html).   

The studies in this dissertation add to the Innovation and Efficiency framework by 

indicating its relevance to collaborative learning.  In particular, they suggested that 

Innovation tasks can promote productive collaborative behaviors.  They also suggested a 

means by which these behaviors might be translated into learning benefits.  I will address 

each of these points in turn.   

First, why would Innovation tasks promote more collaboration?  Without having 

the answer provided, participants must work together if they want to construct agreed-

upon solutions.  This would entail defining what constitutes an appropriate answer as 

well as how to reach it.  For example, when asked to indicate which die is most fair, 

participants might first examine the distribution of data to see if they can estimate which 

die seems most fair.  Then they could try to decide whether a high or low number for 

their solution should indicate greater fairness.  Then they would need to try to find a 

formula that produces an acceptable result.  In other words, at least two major elements, 

the outcome and the procedure, must be defined for Innovation tasks.  This implies a 

need for considerable knowledge sharing.  For efficiency tasks, the solution is given, so 

students only have to agree on whether they implemented it correctly or not.  This allows 

for considerable variance in how much they decide to partition a task versus how much 

they decide to work together to make sure they understand how it works. 
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In addition to more knowledge sharing, how do Innovation tasks further promote 

learning for dyads compared to individuals?  How could collaboration enhance 

Efficiency dyads’ understanding of the basic material while promoting Innovation dyads’ 

understanding of the more difficult concepts?  Dyadic conditions should promote 

noticing of incommensurables.  They could do this by each partner developing a different 

understanding of the material, and these would need to be reconciled.  They could also 

notice the incommensurables in the contrasting cases more often than individuals because 

they would have twice as many people examining them.  Innovation dyads should be 

more likely to notice the incommensurables built into the contrasting cases than 

Efficiency dyads because they work from the data rather than from the solution.  These 

incommensurables are designed to highlight the key concepts in the solutions.  Thus, 

dyads should notice incommensurables built into the materials more frequently, and they 

should generate and notice incommensurables dyad-members generate with respect to 

each other.   

This analysis suggests a unit of analysis for future video coding.  Perhaps through 

video analyses, the number of incommensurables that are noticed and reconciled between 

the Efficiency and Innovation dyads could be compared.  I would expect the Innovation 

dyads to notice and reconcile more of the incommensurables built into the materials plus 

more incommensurables in their own perspectives.  I would also expect that partners that 

worked to reconcile differences in perspective might also show more shared knowledge 

as revealed by more similar responses on the posttest.  If this were the case, it might help 

explain why dyads with more shared knowledge in Study 1 showed greater gains on the 

second map re-drawing test.  In essence, they would be the groups that worked to 

reconcile more incommensurables and had a more elaborated and stable schema to assist 

their recall. 

Returning to the paradoxical performances of Innovation versus Efficiency dyads 

on the basic measures of understanding versus advanced measures, if we consider the role 

of efficient knowledge, we can reconcile these learning outcomes.  If members of a dyad 

have acquired the relevant efficient knowledge and are willing to share it, then they 

should be more able to reconcile the incommensurables and come to a deeper 

understanding.  If they do not have the efficient knowledge, then they might simply 
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confuse each other (e.g. by sharing misconceptions).  The Innovation task does not 

provide a solution to work from; therefore, participants are more likely to fail to acquire 

the efficient knowledge, especially if a teacher is not available to help. 

As mentioned before, one should not take this to mean that Innovation promotes 

understanding of difficult concepts at the expense of the most basic material. We learned 

from the analyses of participants who did not fail the calculation measures that they 

showed greater benefits from Innovation.  If there were a tradeoff between learning the 

basic material and developing a more advanced understanding, then Innovation would 

show a decline or no gain.  Instead, they showed a substantial gain suggesting that the 

Innovation materials led to a deeper understanding that built upon the more basic 

concepts.  With teacher support, it should be possible for all students to benefit from 

those materials. 

Taken together, one might consider these results to be relatively strong effects for 

an experiment that simply switched the order of the lessons pages and problems pages.  

On the face of it, that was the key manipulation, and a very simple one.  Psychologically, 

however, the manipulation could promote vastly different views of the tasks.  For 

Efficiency participants, receiving the answer and then a chance to practice it should push 

for speed and accuracy.  This would be a very different mentality than the type of active 

sense-making we might expect from students receiving a page of contrasting cases and 

being told to try to find a solution that differentiates them in a way that matches intuition.   

In line with this interpretation, a number of students in the Efficiency condition 

asked, “You want us just to write the chi-square formula?” upon seeing the first page of 

problems where it said, “What is your formula?”  They seemed surprised, as if perhaps 

they had misinterpreted the task and were not simply meant to apply the formula they had 

just learned.  This question did not fit a “drill-and-practice” schema for the activity.  

Innovation participants by contrast were more likely to say, “Oh, I get the pattern now.  

Each time we try to figure it out, then you give us the answer.”  They seemed more 

engaged in trying to understand not only the contents of the material, but also how it was 

structured. 

In conclusion, the studies for this dissertation provided evidence that the 

combination of innovation activity with periodic efficient instruction (the lessons pages 
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and examples with solutions), led students to develop relatively thorough understanding 

of the chi-square formula in about 45 minutes.  In addition, students who failed to acquire 

the efficient knowledge of how to calculate the chi-square procedure showed little benefit 

from Innovation activity whereas those who acquired that knowledge showed 

considerable advantage.  An appropriate next step given this success on a single 

educational unit conducted in a laboratory is to consider how it might be applied in 

classrooms over extended periods of time.  Such a test would allow us to see whether 

extended exposure to Innovation-and-Efficiency based activities moved students toward 

adaptive expertise at a compounding rate, a constant rate, or a decreasing rate. 

An important point to consider leading up to this test would be what components 

are critical to a productive Innovation task.  Not all inventing tasks are necessarily good 

for promoting adaptive expertise.  From the first study to the second, we gained a better 

sense of what components might be important: 1) avoiding too many errors, 2) using 

contrasting cases to promote efforts to reconcile incommensurables, 3) choosing concepts 

for instruction that generalize, and 4) including PFL measures along with more standard 

ones.   

While inventing appeared to be a key factor, something was missing in the first 

study.  Periodic efficient instruction, corrective feedback, or other parameters were 

needed to keep participants from generating too many errors during the inventing phase.  

That is not to say that errors per se were harmful.  We saw that when Innovation 

participants in the first study both missed a given link, they were very likely to recall it 

correctly after feedback.  The danger of errors seems more likely to be due to the 

development of strong misconceptions or non-generative models that could interfere with 

subsequent instruction.  They could also be an indicator that students lack the efficient 

knowledge to make an Innovation task educationally productive. 

Providing contrasting cases that push students to notice and reconcile 

incommensurables seemed to promote learning benefits.  Previous research suggested 

that working to reconcile incommensurables might be critical to learning from Innovation 

tasks (Schwartz, et al., in press; Sears, in press).  This work extended these findings by 

showing their relevance in a collaborative context, as described above.   
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Finally, if a domain does not generalize, but is merely a list of disconnected facts, 

innovation seems unlikely to yield much benefit.  This third point is related to the fourth, 

which is that PFL measures should be most sensitive to the learning benefits of 

innovation activities.  For instance, if success on the calculation problems was the only 

outcome measure, the conditions would have appeared equivalent.  By including 

measures of students’ adaptability, we could see the benefits of Innovation.  Without a 

domain that generalizes, PFL measures would be impossible.   

Thus, the ability to create a PFL measure that clearly builds from component 

knowledge in the instructional unit and extends it to a new target domain could provide 

one litmus test for whether something has potential to be a productive innovation activity.  

For example, having instructed students in decimals and percentages, one could develop a 

resource problem that could lead students toward fractions or test their readiness to learn 

about them.  This could be a type of PFL measure for Moss and Case’s (1999) 

experimental math curriculum.   

Future work should be able to precisely define the key features necessary for 

productive Innovation-and-Efficiency tasks.  Through this knowledge, teachers should 

have one more resource for deciding when and how to use collaborative learning 

effectively in their classrooms.  The ideal result would be if this particular tool promoted 

collaboration easily and naturally and with compounding benefits to learning when 

implemented over time.   
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APPENDIX A: THE LEARNING PACKET 

 

Lesson 1 Practice Problems (page 1) 
 

A Loaded Die? 
Three dice are rolled, the first two were rolled 25 times, and the third was rolled 50 times.  
Find a number that ranks the dice in terms of how fair they are (or how much their 
distribution of scores differs from chance).  Make sure your numbers support your 
rankings. 
 
Case 1: Rolling a 5-sided Die.  The number of times each result appears. 
“1” “2” “3” “4” “5” 
5 6 4 6 4 
Rank:  Most Fair Somewhat Fair Least Fair 
 
 
 
 
 
 
Case 2: Rolling a 5-sided Die.  The number of times each result appears.   
“1” “2” “3” “4” “5” 
4 4 10 3 4 
Rank:  Most Fair Somewhat Fair Least Fair 
 
 
 
 
 
 
Case 3: Rolling a 5-sided Die.  The number of times each result appears.   
“1” “2” “3” “4” “5” 
11 9 10 9 11 
Rank:  Most Fair Somewhat Fair Least Fair 

 
 
 
 
 

What is your formula? 
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Lesson 1: The Chi-square Formula 
 
People sometimes want to know whether two or more groups have different 
preferences, whether one drug is more effective than another at keeping people 
healthy, or whether a die is fair or not.  In all of these cases, a distribution of 
numbers in a frequency matrix is being examined to determine whether it differs 
significantly from chance (or expectation) or not.  A common formula used in 
statistics to address these questions is the chi-square formula.  The chi-square 
formula and its uses will be the focus of the three lessons in this packet. 
 
The Chi-square formula is: 
 

 χ2 = Σ (E – O)2/E 
E stands for the “expected value.” 
O stands for the “observed value.” 
 
We use the chi-square formula to determine how different a distribution is from chance.  
In cases of two (or more) variables, we use the chi-square to tell us if the variables are 
independent or if they interact.  The larger the chi-square statistic, the less likely the 
variables are independent or the distribution is random.   
 
EXAMPLE 
 
If we have 3 months, each with the same number of days, we might wonder whether 
babies are born equally frequently during each month or whether there is a deviation from 
chance. 
 
 April June September 
Births 50 20 20 
 
So, with this distribution, we can calculate the chi-square statistic. 
First, find E: 
We expect of the 90 births over the 3 months (i.e. 50 + 20 + 20 = 90), that each month 
would have 30 births if the distribution was random or fair.  Thus, E = 30 for each cell in 
this distribution. 
 
O = 50, 20, and 20 for each cell. 
 
Thus,  
χ2 = [(30 – 50) 2/ 30] + [(30 – 20) 2/ 30] + [(30 – 20) 2/ 30] = 600/30 = 20. 
If there had been 30 births per month, our chi-square statistic would have been 0.  In 
other words, larger values indicate distributions that are more different from chance. 
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Lesson 1 Practice Problem (page 2) 
 

In this next problem, we have two dice (pretending that 3-sided dice exist).  A casino 
owner rolls the dice and records how many times each combination of numbers appears 
because they want to see if the dice are fair or magnetized.   
 
Case 1: Please provide a number to indicate how fair or magnetized the dice are.   
 “1” “2” “3” 
“1” 14 2 5 
“2” 2 3 6 
“3” 6 7 9 
Circle one:  Magnetized Fair 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Your answer should be:  
E = 6 for each cell (b/c 1/3 chance if dice are fair). 
Chi-square = 64/6 + 16/6 + 1/6 + 16/6 + 9/6 + 0 + 0 + 1/6 + 9/6 = 116/6 = 19 and 1/3 
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Lesson 2 Practice Problem (page 1) 
 

Do children differ from adults more than pigs differ from horses!?!  Scientists recorded 
which food was chosen by each organism and their results are shown below.  In each case, 
please indicate whether you think the preferences are different or not, and provide a 
number to indicate how different the preferences are. 
 
 
Case 1: Sweets Preferences.  Do children and adults differ in the sweets preferences?   
 Candy Chocolate 
Children 6 14 
Adults 16 4 
Circle one:  Yes  No 
 
 
 
 
 
 
 
Case 2: Barnyard fare.  Do pigs and horses differ in their food preferences?  Yes or No? 
 Apples Oranges 
Pigs 14 6 
Horses 16 4 
Circle one:  Yes  No 
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Question: What happens if the Expected Value is not given to us by the 
variables in play? 

 
Lesson 2: Chi-Square when E must be estimated 

 
When E is not given by the variables in the problem (such as from fair dice where we 
would expect each number on a six-sided die to appear 1/6th of the time), then it must be 
estimated.  Also, the chi-square statistic measures interactions, not main effects, when 
two variables are involved.   
 
We use the following formula to estimate the expected value of a cell: 
 

E = (RowTotal * ColumnTotal)/GrandTotal 
 
This formula makes sense because we are computing probabilities and then multiplying 
by the grand total to get a value.  Specifically,  
 
E = (RowTotal/GrandTotal)*(ColumnTotal/GrandTotal)*GrandTotal 
 
In other words, the expected value of a given cell is estimated as the probability of being 
in that row and that column simultaneously (i.e. the probability of being in that cell) 
times the grand total (i.e. the number of observations). 
 
EXAMPLE 
 
Medical researchers might want to compare the effects of two drugs to see if one is better 
at keeping people healthy, so for each participant they recorded what drug they took and 
whether they stayed well or got sick. 
 
 Drug A Drug B 
Stayed Well 24 6 
Got Sick 1 9 
 
Find E for each cell:  
E for the top left cell is: 30*25/40 = 18.75 
E for the top right cell is: 30*15/40 = 11.25 
E for the bottom left is: 25*10/40 = 6.25 
E for the bottom right is: 15*10/40 = 3.75 
 
Thus, the chi-square is: 
χ2 = [(18.75 – 24) 2/ 18.75] + [(11.25 – 6) 2/ 11.25] + [(6.25 – 1) 2/ 6.25] + [(3.75 – 9) 2/ 
3.75] 
 
In other words, the two drugs differed considerably in their effectiveness. 
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Lesson 2 Practice Problem (page 2) 
 
Case 1: Researchers wanted to determine if best and worst grade assignments differed by 
era. 
 1900’s 1920’s 1940’s 
Best 4 20 6 
Worst 6 5 9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Your answer should be:  
Chi-square = 4/6 + 25/15 + 9/9 + 4/4 + 25/10 + 9/6 = 8 and 1/3 
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Lesson 3 Practice Problem (page 1) 
 

On three tasks, people were surveyed to see whether those with high levels of experience 
had a different preference from those with low levels of experience.  On the second task, 
twice as many people answered the survey.  On the third task, many more people 
answered the survey.  Which task showed the greatest differentiation of people with high 
versus low levels of experience? 
 
On the first task, the data looked like this: 
Participant Experience Preference Participant Experience Preference 
1  High exp A 
2  High exp A 
3  High exp A 
4  High exp A 
5  High exp B 
6  High exp A 
7  High exp A 
8  High exp B 
9  High exp A 
10  High exp A 

11  Low exp B 
12  Low exp B 
13  Low exp A 
14  Low exp B 
15  Low exp B 
16  Low exp B 
17  Low exp B 
18  Low exp B 
19  Low exp B 
20  Low exp A 

 
Researchers sorted it into this matrix. 
Case 1: How much does experience affect preference of A versus B? 
 A B 
High 8 2 
Low 2 8 
Rank: Most Different  Somewhat Different  Least Different 
 
 
 
 
 
Case 2: Holding the E to O ratio constant. 
 A B 
High 16 4 
Low 4 16 
Rank: Most Different  Somewhat Different  Least Different 
 
 
 
 
Case 3: Holding the difference between E and O constant. 
 A B 
High 106 94 
Low 94 106 
Rank: Most Different  Somewhat Different  Least Different 
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Question: What happens to the chi-square statistic as the sample size 
changes? 

 
 

Lesson 3 
 

The chi-square formula can take different forms that are good for showing different 
aspects of it. 
 
For example,  
 

χ2 = Σ (E – O)2/E 
 
This form emphasizes that when the difference between the observed and expected is the 
same, the chi-square value decreases with increasing sample size. 
 
 
Algebraically, another form of the equation can be derived: 
 

χ2 = Σ E[1 – (O/E)]2 

 
This less common form of the chi-square formula is useful in highlighting that when the 
ratio of the observed to the expected is the same, the chi-square statistic increases as the 
sample size increases.   
 

EXAMPLE 

What is the effect of level of experience on preference for A or B? 

 A B 
High 24 6 
Low 6 24 
 
E = 15 for each cell.  
Thus, the chi-square is: 4*(81/15) = 4*3*(9/5) = 21.6 
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Lesson 3 Practice Problem (page 2) 
 
 

What is the effect of level of experience on preference for A or B? 
 A B 
High 315 285 
Low 285 315 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Your answer should be:  
Chi-square = 4*(15^2/300) = 3 
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APPENDIX B: THE POSTTEST 

Posttest 
 

Question 1: Drug test effectiveness. 
Test A and Test B differ substantially in how expensive they are, so doctors wanted to 
find out whether they differed in how accurately they diagnosed patients with a particular 
disease.  Do Test A and Test B differ significantly in their ability to predict who has the 
disease?   
 
 Yes No 
Test A 10 10
Test B 6 14

 
 
 
 
Question 2. Why do you divide by E in the chi-square formula? 
 
 
 
Question 3. How does the sample size affect the chi-square 
statistic? 
 
 
 
 
Question 4: Evaluating Mechanic’s Diagnoses 
Two mechanics looked at 50 cars and wrote down their diagnosis of the problem for each 
car.  They calculated their agreement on their diagnoses as 38 agreements.  From that, 
they reasoned that they matched on 38 of 50 cases, or 76%.  Can you help them develop a 
better formula for how much their diagnoses matched?  To do this, you should show: 1) 
how much they should match just from chance alone, and 2) how much they did match 
beyond chance?  
 
Car Mechanics’ diagnoses of car problems. 
  Mechanic 1: 
Mechanic 2: Engine Alternator Battery 
Engine 17 3 0
Alternator 2 12 6
Battery 1 0 9
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Question 5: Imagine you have two fair dice, one with 2 sides, 
the other with 3.  Do you think these dice magnetized, and 
why? 
 “1” “2” “3” 
“1” 6 18 6 
“2” 9 12 9 
 
Circle one:  Magnetized Not Magnetized 
 
 
 
 
 
 
Question 6: Evaluating a coding scheme  
A researcher would like a procedure for determining how well two raters agree.  
Specifically, find a formula to show how much beyond chance the raters agree.   
 
Chemists’ ratings of flame color for various unknown elements being burned.  
Element Rater 1 Rater 2 
1 Red Red 
2 Red Red 
3 Red Red 
4 Red Red 
5 Red Red 
6 Red Red 
7 Red Orange 
8 Orange Red 
9 Orange Red 
10 Orange Orange 
11 Orange Orange 
12 Orange Orange 
13 Orange Orange 
14 Orange Orange 
15 Green Green 

16 Green Orange 
17 Green Green 
18 Green Green 
19 Green Green 
20 Green Green 
21 Blue Green 
22 Blue Blue 
23 Blue Blue 
24 Blue Blue 
25 Blue Blue 
26 Yellow Yellow 
27 Yellow Yellow 
28 Yellow Yellow 
29 Yellow Yellow 
30 Yellow Yellow 
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Question 7. When should someone use the chi-square formula? 
 
 
 
  
 
 
 
 
 
 
 
END.  Thank You! 
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