
213 
 

TINKERPLOTSTM MODEL CONSTRUCTION APPROACHES 
FOR COMPARING TWO GROUPS: STUDENT 

PERSPECTIVES1 
 

JENNIFER NOLL 
Portland State University 

noll@pdx.edu 
 

DANA KIRIN 
Portland State University 

dhasbach@pdx.edu 
 

ABSTRACT 
 

Teaching introductory statistics using curricula focused on modeling and 
simulation is becoming increasingly common in introductory statistics courses and 
touted as a more beneficial approach for fostering students’ statistical thinking. Yet, 
surprisingly little research has been conducted to study the impact of modeling and 
simulation curricula on student thinking, nor is there much research on how students 
make sense of the computer models they construct. The work presented here utilizes a 
framework developed by Biehler, Frischemeier, and Podworny (2015) for comparing 
two groups problems via a modeling and simulation approach using TinkerPlotsTM. 
Our work makes a contribution to the field by delving deeper into student reasoning as 
students create TinkerPlotsTM models to solve a comparing two groups problem. 
 
Keywords: Statistics education research; Modeling and simulation; TinkerPlotsTM 

technology 
 

1. INTRODUCTION 
 
Models are used in many fields as a way to make sense of and find solutions to 

problems. For example, statisticians use technology to construct models and generate data, 
which allow them to make quantitatively based inferences about the likelihood of particular 
events. Models are important concepts in statistics and key components of learning to think 
statistically; yet, “little explicit attention is paid to the use of models in most introductory 
courses” (Garfield & Ben-Zvi, 2008, p. 145). However, over the past decade, statistics 
educators have begun looking at modeling as an approach to support student learning of 
statistics, as well as to situate curricula with the practice of doing statistics (e.g., Garfield 
& Ben-Zvi, 2008; Garfield, delMas, & Zieffler, 2012). The epistemological stance 
surrounding the integration of modeling into statistics curricula is that by aligning curricula 
with the practice of statistics, students are more likely to learn fundamental ideas and 
develop the ability to apply those ideas in new contexts.  

Many statistics educators have argued that technology is a necessary component of 
developing a modeling approach to teaching statistics. For example, Cobb (2007) argued 
that computer technology offers statistics educators opportunities to place more emphasis 
on the key concepts of inference (i.e., chance models and determining statistical 
unusualness) and less emphasis on procedures (i.e., formulaic hypothesis tests like z- and 
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t-tests). While learning new software can sometimes be a hindrance for those without much 
computing experience, technologies also provide opportunities for those without a formal 
probability background to access probabilistic ideas to make informal statistical inferences. 
By informal we mean using empirical sampling distributions to describe unusual events 
(i.e., events that might cause one to question the assumed claim) as those in the tails of the 
distribution.  

Software such as TinkerPlotsTM 2.2 (Konold & Miller, 2015) has dynamic visualization 
aspects that support and structure students’ ways of visualizing statistical models. Konold 
and Lehrer (2008, p. 65) argued that  

the objects that students build with this tool, and the inscriptions they create to organize 
and explore the output, are dynamic forms of mathematical expression which give rise 
to and facilitate their thinking about the domain, and that these ideas would not be 
readily available to them if they were restricted to purely written symbolic forms of 
mathematics. 
With the right curriculum, the software has the potential to structure and reinforce 

students’ ability to translate statistical problems into TinkerPlotsTM models, generate data 
using those models, and answer statistical problems based on data produced from a 
TinkerPlotsTM model. Yet, despite the promise of technology to facilitate student learning 
of how to create statistical models and how technology might be used to simulate data and 
answer statistical inference questions there is little research studying the impact this 
approach has on student learning.  

Some research has begun to characterize correct and incorrect models students 
construct, thereby indicating typical student mistakes; however, identifying student 
difficulties constructing TinkerPlotsTM models is only half the story. Such research 
provides insight into the models students are likely to create in TinkerPlotsTM but often 
does not provide detailed accounts of why such models are constructed. We need research 
that focuses on how students conceptualize the statistical models they build with 
TinkerPlotsTM technology to answer a statistical problem, how they make sense of these 
models, and what their models mean to them. In this paper we begin to address this apparent 
gap in the statistics education literature by analyzing data collected as pairs of students 
work through a comparing two groups problem with TinkerPlotsTM. While students do 
construct problematic models and we identify problems with student models, our primary 
interest is in the ways student-generated models make sense to them. In particular, our 
research questions are:  

1. How do students connect the null hypothesis with the TinkerPlotsTM model they 
create? 

2. How do students select or design TinkerPlotsTM models with the sampler tool when 
given a comparing two groups problem?  

a. What type of device(s) do students select? How do they label their 
attributes and why? How do students justify the Draw value?  How do they 
determine how to populate their samplers?  

b. How do students determine what to set Repeat to?  
c. What are their reasons for setting their devices to with or without 

replacement?  
 

2. LITERATURE AND BACKGROUND 
 

2.1.  MODELS AND MODELING IN MATHEMATICS EDUCATION 
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According to Doerr and Pratt (2008), “nearly all research on learning through 
mathematical modeling is grounded in some variation of an epistemological perspective 
that begins with the examination of the relationship between an experienced or ‘real’ world 
and the model world” (p. 260). From this perspective, a mathematical model can be defined 
as a conceptual system used to construct, describe, or explain the structural characteristics 
of a specific phenomenon of interest (Lesh & Doerr, 2003) and mathematical modeling 
may be conceived of as a purposeful, iterative examination of relationships between the 
experienced world of the phenomenon and the separate mathematical world of the model.  

Doerr and Pratt (2008) distinguished between two types of modeling activities learners 
can engage in within an instructional setting: exploratory modeling (i.e., using pre-built 
models) and expressive modeling (i.e., building models). When students engage in 
exploratory modeling, learning is typically a consequence of using an expert-constructed 
model to explore and explain the consequences of varying their actions within the confines 
of that model (e.g., testing a conjecture by varying the parameters of the pre-constructed 
model). By using pre-built models to test and refine their own conceptions, students have 
the opportunity to refine their own knowledge, theoretically converging toward that of the 
expert. In contrast to exploratory modeling, when the learner engages in model 
construction, learning is a result of “the iterative process of representing their ideas, 
selecting objects, defining relationships among objects, operating on those relationships, 
and interpreting and validating outcomes” (Doerr & Pratt, 2008, p. 265). By engaging in 
iteratively developing more adequate and productive models, students may not only refine 
their own mathematical thinking, they may become enculturated in the practice of doing 
mathematics. In statistics, learning how to construct appropriate models is an important 
component to the practice of doing statistics. Thus, if we are truly to align statistics 
instruction with modern statistical practices, we argue that expressive modeling should 
serve as content in and of itself in statistics classrooms.  

Research has shown that students who engage in mathematical modeling activities can 
have substantial learning gains, increased preparation to solve “real world” problems, and 
greater flexibility and creativity when thinking about unfamiliar situations (English, 2006; 
Lesh & Doerr, 2003; Lesh, Hoover, Hole, Kelly, & Post, 2000). However, students who 
are unable to actively engage in the modeling process might not realize these affordances. 
According to Blum and Leiss (2007) when engaging in modeling activities “reading a text 
and understanding both the situation and problem is a cognitive barrier for students” (p. 
228). Galbraith and Stillman (2001) noted that this is especially true when students are 
unfamiliar with the problem context. Research has also suggested that students experience 
cognitive difficulty when transitioning between the “real” world and that of the 
mathematical model (Blum & Leiss, 2007; Crouch & Haines, 2004). Taken together, past 
research suggests that more effort is needed by the research community to understand ways 
of supporting students as they transition from novice to experienced modelers and also as 
they transition between the “real” and mathematical world within the modeling process.  
 
2.2.  TECHNOLOGY, EXPRESSIVE MODELING, AND STATISTICS 

EDUCATION 
 

Over the last decade, curriculum development projects have created entire introductory 
statistics courses that leverage technology, using modeling and simulation to center 
instruction around the core concepts of inference (e.g., Lock, Lock Morgan, Lock, & Lock, 
2013; Tintle et al., 2016; Zieffler & Catalysts for Change, 2015). With the development of 
these new curricula, research studying curricular materials focused on statistical modeling 
has started to emerge. In particular, preliminary research has highlighted modest learning 
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gains (Garfield et al., 2012; Tintle, VanderStoep, Holmes, Quisenberry, & Swanson, 2011) 
and increased retention (Tintle, Topliff, VanderStoep, Holmes, & Swanson, 2012). Less 
prominent in the research literature are studies investigating how these curricular 
approaches and the technology they utilize impact students’ thinking and reasoning when 
engaging with expressive modeling activities. In this section, we highlight some of this 
literature, specifically as it pertains to the ways students engage with technology to create 
statistical models.  

Since the literature on models revealed many possible interpretations of the term 
“model,” we define how this research talks about statistical models. Garfield and Ben-Zvi 
(2008, p. 145) described two primary uses of statistical models, one of those was:  

Select or design and use appropriate models to simulate data to answer a research 
question. Sometimes, the model is as simple as a random device…used to generate data 
to determine if a particular sample result would be surprising if due to chance.  
Their description is consistent with how we think about models in our research. For us, 

the random device(s) is the TinkerPlotsTM sampler tool and serves as a model students use 
to generate data. The device students create as well as their descriptions of their device and 
what the device does when it is run represent the student’s statistical model.  

Maxara and Biehler (2007) studied how students constructed models and simulations 
of stochastic phenomena using Fathom. They hypothesized that there are three steps for 
students as they work on simulations in Fathom – setting up a model, writing the plan of 
simulation, and putting the plan into action in Fathom (p. 764). They noted that students 
did experience difficulty in modeling statistical problems and that certain probabilistic 
misconceptions continued to exist despite the outcome of a simulation showing evidence 
to the contrary. In particular, problems arose in transforming the model into a correct 
simulation in Fathom because students picked the wrong simulation, selected an incorrect 
number of cases (trials of the experiment), or used an incorrect formula for running the 
simulation.  

Noll and Kirin (2016) studied how students reasoned about the models they constructed 
for a one-population inference problem within the TinkerPlotsTM environment. The authors 
observed that when given the freedom to construct their own models in TinkerPlotsTM 
students created a variety of both productive and unproductive models that reflected their 
individual understanding of the statistical inference problem as well as their understanding 
of the modeling process in general. For example, even though the given inference problem 
could be accurately modeled by constructing a single random generating device in 
TinkerPlotsTM, several students constructed linked device models (i.e., a TinkerPlotsTM 
sampler that contains two random generating devices) because it provided them with “a 
more concrete conceptualization of the TinkerPlotsTM model to the actual problem” (p. 16). 
While the majority of the students in their study were able to adequately model the given 
task using the TinkerPlotsTM sampler and adequately justify their model construction by 
relating the elements of the sampler they constructed to the context of the task, Noll and 
Kirin observed challenges around some students’ justifications of their model construction 
and in some students’ ability to translate the null hypothesis into a TinkerPlotsTM sampler. 
In particular, they observed that even when students were able to accurately construct a 
model of the null hypothesis in TinkerPlotsTM several of the students did not provide 
justification or provided justification that contradicted the model they constructed when 
discussing issues of replacement. In addition, a small number of students were challenged 
by (1) teasing apart the TinkerPlotsTM model of the null hypothesis from one that models 
the observed data, or (2) teasing apart a TinkerPlotsTM model of a null hypothesis of “no 
difference” from an equally likely (50%) model. Noll, Gebresenbet, and Glover (2016) 
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observed similar challenges when students in their study attempted to model different one-
population inference problems. 

Biehler et al. (2015) examined how pre-service teachers reasoned as they conducted a 
randomization test using TinkerPlotsTM. Their work provides additional evidence that 
translating the null hypothesis into an adequate model in TinkerPlotsTM is difficult for many 
students, even after students have engaged with the technology to model and simulate 
statistical inference problems for a significant amount of time. They observed that 
difficulty persisted even when students were able to formulate an appropriate null 
hypothesis for the randomization test from the problem context. Biehler et al. suggested 
that these difficulties arose when the pre-service teachers were asked to make decisions 
about whether to set the sampler to with or without replacement (“mistake 1” when students 
used with replacement) and when deciding how to populate the sampler in a way that would 
mimic the original sample given in the problem (“mistake 2” when students used 50-50). 
They asserted that when modeling a randomization test with TinkerPlotsTM “the crucial 
point seems to be the transition between the statistical and the software level, particularly 
the construction of the null model” (p. 158).  

We agree with Biehler et al. (2015) that this transition is a “crucial point” in the 
modeling process and argue that more work needs to be done to understand students’ 
reasoning during this transition. We also note that while Biehler et al. presented data on the 
types of models students construct, they did not present data that might explain student 
reasoning related to the “mistaken” models. Their work provides us with some indication 
of the mistakes or problems students may have when constructing a model for a comparing 
two groups problem, but leaves open the question of what these alternative models meant 
to the students that created them and why they might have seemed reasonable to those 
students. In an attempt to contribute to Biehler et al.’s initial work, the work presented here 
provides an empirical investigation of the ways students make sense of the TinkerPlotsTM 
models they construct to answer a comparing two groups problem.   

  
3. CONTEXT, DATA, AND METHODS 

 
3.1.  THE CATALST CURRICULUM 

 
The Change Agents for Teaching and Learning Statistics (CATALST) curriculum is 

one approach to teaching introductory statistics using modeling and simulation (Garfield 
et al., 2012). The curriculum provides a unique departure from the consensus introductory 
statistics curriculum in both content and pedagogy (Garfield et al., 2012; Zieffler, delMas, 
Garfield, & Brown, 2014). As Zieffler et al. describe,  

Rather than build up to inference via a sequence of common “foundational” topics, 
CATALST immerses students in the nuts-and-bolts of statistical inference from the 
first day of the curriculum using activities designed to emphasize the core logic of 
inference through a focus on modeling and the use of simulations (p. 1).  
The course continues to develop the core logic of inference as students progress 

through the three instructional units, initially starting with activities designed to develop a 
more informal understanding of inference and then using this foundation as a springboard 
for introducing simulation-based methods of formal statistical inference later on in the 
course. In particular, the three units are: (1) modeling and simulation; (2) comparing 
groups; and (3) sampling and estimation (Garfield et al., 2012; Zieffler et al., 2014). The 
first unit, modeling and simulation, lays the foundation for following units by familiarizing 
students with TinkerPlotsTM and informally introducing ideas of statistical inference. 
Throughout the unit students engage in activities designed to introduce them to 
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fundamental concepts associated with modeling and simulating statistical inference 
problems (i.e., creating null models in TinkerPlotsTM to simulate data, collecting summary 
statistics to generate an empirical sampling distribution, building informal intuition to 
determine whether observed data are likely to have occurred by chance). In the second unit, 
comparing groups, students learn to model variation due to random assignment under the 
assumption of no group difference. In addition, students are introduced to more formal 
components of statistical inference such as p-values. Lastly, in the sampling and estimation 
unit, students are introduced to methods for quantifying sampling variability, and in turn, 
how to use that measure to create interval estimates. 

There are several activities in each unit that guide students through key statistical ideas 
(e.g., randomness, chance/null model, etc.). In the activities students “make and test 
conjectures, work in groups while using technology-tools, and engage in whole class and 
small group discussions” (Garfield et al., 2012, p. 885). Garfield et al. (2012) used 
TinkerPlotsTM because of “the unique visual capabilities it has, allowing students to see the 
devices they select (e.g., sampler, spinner) and to easily use these models to simulate and 
collect data…” (p. 886). Where other technologies (Excel, statistical applets, etc.) contain 
ready-made representations, which subsequently do not give students an opportunity to 
construct their own representations and thus their own meaning, TinkerPlotsTM requires 
students to determine how to organize, represent and summarize data, as well as set up 
models. As such, TinkerPlotsTM is a key feature of the course and used in order to achieve 
the pedagogical goals of having students develop models, conduct simulations, and 
construct their own knowledge. 
 
3.2.  DATA COLLECTION AND PARTICIPANTS 

 
The work presented here is part of a five-year study investigating student learning using 

the CATALST modeling and simulation curriculum. Thus far, data have been collected in 
four introductory statistics classrooms at a large urban university in the Northwest region 
of the United States. In each of these classrooms we implemented the CATALST 
curriculum, though some modifications have been made to the original materials. For 
example, we have removed the modeling instructions in some of the activities so that 
students must construct their own models using the software. This modification allows us 
to carefully study the models students construct and which models are meaningful to them 
and why. While we recognize removing the instructions for creating the TinkerPlotsTM 
sampler creates new challenges for the student, we also believe it increases the cognitive 
demand of the tasks.  

The data presented in this paper are from one of these introductory statistics classes, a 
ten-week course designed for students prior to entering our traditional introductory 
statistics sequence (descriptive statistics, probability, inferential statistics). Students enroll 
in this course as a prerequisite for the traditional sequence or to satisfy the required math 
elective needed to graduate. The data in this study come from students’ final group 
assessment at the end of the course. There were two problems on this final assessment - a 
comparing two groups problem and a one-population problem. We share data from the 
comparing two groups problem, titled the Dolphin Therapy Problem (see Figure 1). The 
Dolphin Therapy activity is situated within the second unit of the CATALST curriculum.  
Prior to taking the final assessment, students in this class had two weeks of experience with 
bootstrapping and randomization tests. In particular, during these two weeks the students 
participated in a Model Eliciting Activity (see Lesh et al., 2000) designed to motivate 
fundamental concepts in the second unit as well as hands-on simulations. Additionally, 
these students had worked through three different comparing two groups activities in 
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TinkerPlotsTM (see Zieffler & Catalysts for Change, 2015 for examples of comparing two 
groups activities) prior to seeing the Dolphin Therapy Problem.  
 

Swimming with dolphins can certainly be fun, but is it also therapeutic for patients suffering  
from clinical depression? To investigate this possibility, researchers recruited 30 subjects aged 
18-65 with a clinical diagnosis of mild to moderate depression. Subjects were required to 
discontinue use of any antidepressant drugs or psychotherapy four weeks prior to the experiment, 
and throughout the experiment. These 30 subjects went to an island off the coast of Honduras, 
where they were randomly assigned to one of two treatment groups. Both groups engaged in the 
same amount of swimming and snorkeling each day, but one group (the animal care program) 
did so in the presence of bottlenose dolphins and the other group (outdoor nature program) did 
not. At the end of two weeks, each subject’s level of depression was evaluated, as it had been at 
the beginning of the study, and it was determined whether they showed substantial improvement 
(reducing their level of depression) by the end of the study (Antonioli and Reveley, 2005). 
Research Question: Is swimming with dolphins therapeutic for patients suffering from clinical 
depression? The researchers found that 10 of 15 subjects in the dolphin therapy group showed 
substantial improvement, compared to 3 of 15 subjects in the control group.  
 
The above descriptive analysis tells us what we have learned about the 30 subjects in the study. 
But can we make any inferences beyond what happened in this study? Does the higher 
improvement rate in the dolphin group provide convincing evidence that the dolphin therapy is 
effective? Is it possible that there is no difference between the two treatments and that the 
difference observed could have arisen just from the random nature of putting the 30 subjects into 
groups (i.e., the luck of the draw)? We can’t expect the random assignment to always create 
perfectly equal groups, but is it reasonable to believe the random assignment alone could have 
led to this large of a difference?  
The key statistical question is: If there really is no difference between the therapeutic and 
control conditions in their effects of improvement, how unlikely is it to see a result as extreme or 
more extreme than the one you observed in the data just because of the random assignment 
process alone?  

 
Figure 1. The Dolphin Therapy problem 

 
As the groups of students worked through the final assessment, their verbal 

communication and computer work were recorded using screen capture software and audio 
recording. Additionally, their written work was collected upon completing the group 
assessment. There were eleven students who completed the entire course and ten of these 
eleven consented to the use of their written work and screen capture in this study. These 
students were in five groups - four groups containing two students and one group 
containing three students. The group containing three students was omitted from this study 
because it contained the non-consenting student. Thus the data presented in this paper are 
drawn from the final assessment work of four groups of two students. Throughout this 
paper we refer to these eight students using the pseudonyms Selma, Zach, Michael, Will, 
Kate, Joe, Jack, and Jamie. 

 
3.3.  A FRAMEWORK FOR RANDOMIZATION TESTS WITH TINKERPLOTSTM 

 
Biehler et al. (2015) provided a useful framework for describing a randomization test 

with TinkerPlotsTM (see Figure 2). They suggested that when students use TinkerPlotsTM to 
investigate a statistical inference problem they must reason within three worlds: “[t]he 
contextual world, the statistical world, and the world of software, each of which is 
embedded within the other” (p.138). We see this framework as an idealized progression of 
how students conduct randomization tests with TinkerPlotsTM. To further familiarize the 
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reader with the Dolphin Therapy Problem and the framework we begin this section by 
outlining each of the parts in the framework, sharing an idealized student solution to the 
Dolphin Therapy Problem - how we want students to reason.  

 
 

 
 

Figure 2. Framework for randomization tests with TinkerPlotsTM (Biehler et al., 2015, p. 
139) 

 
Students begin in the context world by considering a given problem. For the Dolphin 

Therapy problem, the context provides the student with the real problem, namely: Is 
swimming with dolphins therapeutic for patients suffering from clinical depression?. 
Students then transition into the statistical world by generating a null hypothesis. Here the 
appropriate null hypothesis would be: There is no difference between dolphin therapy and 
control therapy in their effects on depression. Students further reason within the statistical 
world by selecting an appropriate statistical test. Since the Dolphin Therapy Problem 
describes the random assignment of patients into treatment groups, an appropriate 
statistical test would be a randomization test. The null model serves as a link between the 
statistical and the software world as students use the null hypothesis to construct an 
appropriate sampler in TinkerPlotsTM and simulate data to answer the research question. A 
TinkerPlotsTM sampler can be constructed similar to the sampler shown in Figure 3 (or one 
isomorphic to it). This sampler can be used to generate data and to create an empirical 
sampling distribution of the difference in the percentage of patients that improve between 
the two groups (see Figure 4). Using the observed difference in the percentage of patients 
that improve between the two groups, 46.7%, a p-value of 1% can be found using the 
divider feature in TinkerPlotsTM (as indicated by the shaded region in Figure 4). Once 
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students obtain the results of the simulation, they transition back to the statistical world by 
making a statistical inference. In this case, a p-value of .01 constitutes strong evidence 
against the null hypothesis of “no difference in treatments.” Lastly, the student interprets 
the statistical inference within the context of the problem as they come back to the context 
world. For the Dolphin Therapy Problem, the student would conclude that swimming with 
dolphins was therapeutic for these patients suffering from clinical depression, while at the 
same time being careful not to generalize back to some larger population of depressed 
people since the sample was not randomly selected. 

 

 
 

Figure 3. An example of an appropriately constructed TinkerPlotsTM sampler for 
modeling the Dolphin Therapy Problem  

 

 
 

Figure 4. An example of an empirical sampling distribution of the difference in the 
percentage of patients that improve between the two groups 

 
Biehler et al. (2015) provided a list of statistical steps and a list of TinkerPlotsTM steps 

that students must reason through when conducting a randomization test in TinkerPlotsTM 
(see their work for more detail). As our research questions pertain to how and why students 
construct the TinkerPlotsTM models they do, we focus on the steps of their lists that 
correspond to moving from the statistical world (the statistical problem and statement of 
the null hypothesis) to the software world (simulation with TinkerPlotsTM and the null 
model). Table 1 provides a description of these steps and situates them within the context 
of the Dolphin Therapy Problem. In particular, we narrow in on Biehler et al.’s first three 
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TinkerPlotsTM steps. We conjecture that these first three steps are crucial to really 
understanding statistical inference from a modeling and simulation perspective. We also 
consider how students’ interpretations of the null hypothesis given in the Dolphin Therapy 
problem influenced their reasoning when translating the null hypothesis into a simulation 
model in TinkerPlotsTM (translation from null hypothesis to null model is the third 
statistical step in Biehler et. al). In translating the null hypothesis into a null model in 
TinkerPlotsTM, determining what to select as the ratio of the two outcomes in the sampler 
device and whether to set the device to with or without replacement are not trivial problems. 
Solutions require an understanding of what is happening in TinkerPlotsTM when the 
simulation runs, what assumptions can be made about the groups, and whether the 
inferences can be drawn with respect to some larger population or if inferences are causal. 
  

Table 1. Selected steps for conducting a randomization test as described by Biehler et 
al. (2015, p. 147). The third column describes the Dolphin Therapy Problem in terms 

of these steps. 
 

Steps 
Described 
by Biehler 
et al. (2015) Description of Steps Dolphin Therapy Problem 

Statistical 
Step – 
Describing 
the Null 
Model 

“The null hypothesis then has 
to be translated into a 
simulation model in 
TinkerPlotsTM. The simulation 
model needs to include a 
sampler device for each 
attribute” (p. 144). This step 
represents a transition from the 
statistical world to the 
computer world. 

Null Hypothesis: There is no difference between 
dolphin therapy and control therapy in their effects 
on depression.  
 
Translation to Null Model: A linked device 
containing two samplers. Each sampler device 
should contain a total of 30 elements (people). The 
first sampler attribute labeled “Group,” contains 
two outcomes titled “Dolphin” and “Control” (15 
for each outcome). The second sampler attribute 
labeled “Response,” contains two outcomes titled 
“Improve” (13) and “No Improve” (17). Both 
devices set to without replacement. 
 
We want to think of the sampler devices as 
randomly allocating a person from one of the 
therapy groups to a result of improved or not 
improved and repeating this process until all 30 
patients have been allocated a result at random. 
This random shuffling of group to outcome allows 
us to see if chance alone could produce the 
outcomes reported in the original experiment. 

TinkerPlots 

Step 1 
(TP1) 

Populating the mixers with the 
correct labels/values to mimic 
the original sample (p.148). 

In the Dolphin Therapy Problem that would mean 
constructing two linked devices that can be set to 
with or without replacement. One device is for the 
“Group” attribute (15 “Dolphin” and 15 “Control”) 
and one device is the “Response” attribute (13 
“Improved” and 17 “Not Improved”). Draw is 
automatically set to 2 since we draw one element 
from the “Group” attribute and assign it at random 
to an element drawn from the “Response” attribute.  

TinkerPlots
Step 2 
(TP2) 

Setting the number of 
repetitions (how many cases 
should be randomly selected 

Biehler et al. suggest this step is about how to set 
the Repeat. For the Dolphin Therapy problem this 
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from each mixer) to the 
original sample size (p. 148). 

would mean setting Repeat to 30 since there are 30 
patients in the study.  

TinkerPlots
Step 3 
(TP3) 

Setting the number of 
repetitions (how many cases 
should be randomly selected 
from each mixer) to the 
original sample size (p. 148). 

Biehler et al. suggest this step is different than TP 
2 and relates to whether the devices are set to with 
or without replacement. Both devices are set to 
without replacement. We want to keep the numbers 
of those in the “Dolphin” and “Control” groups the 
same with each run of the simulation (exactly 15 
for each group) and we want to keep the overall 
patients that improved and did not improve in the 
same ratio of 13 to 17. This allows us to create the 
random allocation of “Group” to “Response.”  

TinkerPlots
Step 4-7  
(TP4-TP7) 

Plotting the randomized 
sample and depicting the 
measure of deviation  
Collecting the chosen measure 
from many different re-
randomizations  
Plotting the collected statistics  
Computing the p-value 

Running the TinkerPlotsTM model. Plotting the 
outcomes “Dolphin”/”Control” and 
“Improve”/”No Improve.” From here the 
percentage difference in patients that improved 
between Dolphin Therapy and Control group can 
be calculated. Collecting statistics and creating a 
sampling distribution on the percentage difference.  

 
3.4.  DATA ANALYSIS 

 
We view the framework and subsequent statistical and TinkerPlotsTM steps outlined 

by Biehler et al. (2015) as a concrete approach that suggests a way to operationalize 
modeling and simulation problems with TinkerPlotsTM. By breaking down the Dolphin 
Therapy Problem into discrete statistical and software steps, we have both a way to share 
a normative approach to the problem as well as a method for assessing student work. Their 
framework and steps also provided us with an approach to data analysis in our research.  

Our analysis was multifaceted. Both authors independently reviewed the video and 
transcripts from the video sessions of the four consenting groups, focusing on students’ 
reasoning. We honed in on the models students created and how they discussed the various 
features (i.e., Draw, Repeat, with or without replacement, attribute labels, as well as how 
they were populating their samplers) of their models. While independently reviewing the 
video tapes, each author took notes and highlighted what they saw as important aspects of 
each group’s model construction. We then came together to discuss our initial notes and 
summaries. We looked for areas of agreement and disagreement, discussing any 
disagreements until we reached consensus.  

The steps of Biehler et al. (2015) helped us pinpoint places in student transcripts for 
further investigation by identifying which steps students tended to struggle with. We 
reviewed the qualitative aspects of student responses, their justifications for the various 
features of their models, to better understand why students set their models up the way they 
did. We also noted any places in students’ discussions where they explicitly attempted to 
relate their null hypothesis to their TinkerPlotsTM model. Biehler et al. discussed this as the 
null model and indicated that it is an important transition from the statistical world to the 
software world. This helped us identify places where students appeared to be explicit about 
the translation from the statistical world to the software world. Through this iterative 
process of independent review followed by discussion and consensus seeking, as well as 
applying the framework of Biehler et al. as a way to organize our data analysis efforts, we 
identified important parts of students’ discussions where they addressed the various 
features of their TinkerPlotsTM models and where they made explicit connections between 
the null hypothesis and their models. We highlight these places in our results section and 
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offer some characterizations of student thinking during the TinkerPlotsTM model 
construction phase.  
 

4. RESULTS 
 

In this section we share the results of four groups of two students (Selma and Zach – 
Group 1; Michael and Will – Group 2; Kate and Joe – Group 3; Jack and Jamie – Group 
4). Excerpts presented here are organized around the research questions presented at the 
beginning of the paper. The reader may notice that there is considerable overlap between 
students’ responses when connecting the null hypothesis to the TinkerPlotsTM model (i.e., 
Research Question 1) and when describing specific aspects of the TinkerPlotsTM model 
(i.e., Research Question 2). From our perspective this overlap is expected since students 
consider these aspects of the TinkerPlotsTM model when attempting to articulate their null 
hypothesis into a model in TinkerPlotsTM.  

Primarily results pertain only to students’ work setting up and reasoning about their 
models. In some instances, excerpts of a group’s work after their TinkerPlotsTM model set-
up are shared. These instances highlight cases where the output from running their model 
caused them to go back and make changes to their original model. We add italics to places 
in the transcripts where the evidence of students attempting to justify features of their 
models or relate them back to the null hypothesis appears particularly strong.  
 
4.1.  RESEARCH QUESTION 1 (CONNECTING THE NULL HYPOTHESIS TO 

THE TINKERPLOTSTM MODEL) 
 
Selma and Zach (Group 1) did not change their model over the course of their work 

(see Figure 5).  
 

 
 

Figure 5. Group 1’s TinkerPlotsTM model for the Dolphin Therapy Problem 
 

They constructed a linked device model. The first device contained the “Treatment” 
attribute (15“Dolphin”/15“Control”). This device was set to without replacement. The 
second device contained the “Response” attribute (13“Improve”/17“Not Improve”). This 
“Response” device was set to with replacement. Draw was set to 2 and Repeat was set to 
30.  

Zach summed up the relationship between the null hypothesis and their TinkerPlotsTM 
model.  
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Zach: Our model represents that because, we should get an equal distribution of 
improvement in both the control and the – with this model we should get an equal 
amount of improvement in both the dolphin and control group.  

 
Mike and Will (Group 2) constructed a model isomorphic to that of Selma and Zach. 

See Figure 6 for a visual representation of their TinkerPlotsTM model.   
 

 
 

Figure 6. Group 2’s TinkerPlotsTM model for the Dolphin Therapy Problem 
 

Mike and Will also did not change their model over the course of their work. The 
excerpts below show their consideration of two types of statistical tests, randomization or 
bootstrap, as they initially set up their model.  
 

Will: Okay. What kind of model do you think we should use to do these? We’ve got the 
randomization and the bootstrap.  

Mike: Randomization test.  
Will: Well bootstrapping I believe is when you have – when you don’t have as many results 

versus the populous.  
Mike: Mmm, okay. Yeah, yeah, yeah.  
Will: And if we are talking about the population being people who suffer from clinical 

depression… that’s a pretty significant population.  
Mike: Yeah.  
Will: So we might want to do bootstrapping. Which I think, if I remember the only 

difference from that is that you, umm, the potential results versus depressed and not 
depressed can be re-selected.  

 
Will steered his groupmate toward the bootstrap in this discussion. In particular, he 

discussed wanting to relate any results back to a larger population of all depressed people 
and that by re-selecting or using the bootstrap they may be able to say something more 
about the general population. After this initial conversation the instructor came over to 
check on this group’s progress. During the conversation with the group the instructor 
inquired as to whether the study was experimental or observational, to which Will 
responded, “This is an experiment...So you would suggest using the randomization?” 
While the instructor did not provide Will with a response to this question, she did ask some 
additional questions about what kinds of inferences could be drawn in this study and what 
a significant result might indicate. The students’ initial inclination to generalize to the 
population persisted throughout this discussion and ultimately they concluded that a 
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bootstrap would allow them to make comparisons to the larger population of depressed 
people.  
 

Will: I think that the bootstrap is okay because we are comparing it to the whole population 
of people who have clinical depression.  

Mike: Mhmm.  
Will: And the bootstrap allows a greater variance for potential variability.  
Mike: Yeah.  
Will: Uh, as opposed to just permuting what we got in the study itself. 

 
Whereas Group 1 discussed the equal distribution between groups when relating their 

TinkerPlotsTM model back to the null hypothesis, Group 2 appeared to relate results back 
to a larger population of depressed people rather than “just permuting what we got in the 
study itself.” This statement indicated that they saw the difference between a bootstrap and 
randomization test. In addition, an earlier comment suggested they knew that 
randomization tests can be used with experiments - when the instructor asked them if the 
study was an observation or experiment.  

Groups 3 and 4 share some similarities in the approaches they took and the struggles 
they had. Kate and Joe (Group 3) created two different models over the course of their 
work on the Dolphin Therapy Problem. Their first model is the correct model (see Figure 
7). They set up a linked device model where the first device contained the attribute 
“Groups” and the second device contained the attribute “Improvement.” They set both 
devices to without replacement. In addition, both devices were populated with the correct 
values from the original sample.  
 

 
 

Figure 7. Group 3’s first TinkerPlotsTM model for the Dolphin Therapy Problem 
 

Kate and Joe did not keep the first model they created for very long. After they set up 
the model in Figure 7, Kate ran a single trial and began to plot the results of “Improve” and 
“Not Improve.” Immediately she re-read the problem and suggested changing their model 
to a 50/50 model (see excerpt below). The group changed their model in the following way: 
they changed the values in the “Improvement” attribute so that there were equal numbers 
for the “Improve” and “Not Improve” outcomes (15/15), see Figure 8 for their second 
model.  
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Figure 8. Group 3’s second TinkerPlotsTM model for the Dolphin Therapy Problem 
 

The excerpt below is the discussion that lead them to modify their model.  
 

Kate: Hold on. So it says [she re-reads the problem out loud] if there really is no difference 
between therapy treatment how likely it is that you would see a result as extreme or 
more extreme than the one you observed in the data... So it should be fifty-fifty 
[Improved/Not improved]. This should be fifty-fifty. 

Joe: The improvement.  
Kate: Yeah.   
Joe: Why?  
Kate: Because this model is supposed to represent the null hypothesis. 
Joe: Okay.  
Kate: This model is supposed to represent the conception that there is no difference. 

 
This was a pivotal point in this group’s model development. As Kate re-read the 

problem and attempted to connect their TinkerPlotsTM model to the null hypothesis she 
focused on constructing a model that represented a null hypothesis of “no difference.” 
However, she interpreted “no difference” at the person level - as a person it is just as likely 
to improve as not improve.  

Finally, Kate shared her thinking with her partner about the connection between the 
null hypothesis and the TinkerPlotsTM model.  
 

Kate: We used stacks to represent therapy groups and possible outcome of choices. The 
model represents the null hypothesis in that it gives equal chance for each patient to 
either receive an improvement or no improvement outcome which assumes there is no 
difference between the effectiveness of the therapies. 

 
Kate wanted to give each patient an equally likely chance of improving or not 

improving and she appeared to equate or connect this with the idea of equal improvement 
at the group level because she went on to say that this assumes “no difference between the 
effectiveness of the therapies.” Without instructor intervention it is likely that this group 
would have kept this 50/50 model as their final model for the Dolphin Therapy Problem. 
The next excerpt shows the conversation between the instructor and the students.  
 

Instructor: Is saying there is no difference between the two therapies the same as saying 
equally likely? 

Kate: Okay so we should have described it the way we did before?  
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... 
Instructor: …tell me what is the difference setting both groups up as fifteen-fifteen for 

dolphins and fifteen-fifteen for improve/no improve versus the seventeen-thirteen 
no improve/improve. … Can you articulate to me the difference? 

...  
Kate: Okay so this is like the smoker thing [referring to a previous comparing two groups 

activity that used randomization techniques called Social Fibbing (see Zieffler & 
Catalysts for Change, 2015, p. 203)]. In this, the way we have it now (50/50 model) 
is like having the spinner set at fifty-fifty so assuming no differences between the 
therapies. That the Dolphin therapy is just as effective or ineffective as being in 
nature without dolphins. But if we set to seventeen-thirteen that would be when we 
simulated if it’s as equally likely as the no dolphins to be as effective. Because it 
would randomly match it, right? So it could be potentially as no dolphins could be 
as effective as dolphins. 

 
The instructor questioned Kate’s connection between 50/50 for the outcomes 

“Improve” and “Not Improve” and the null hypothesis of no difference between the two 
therapies. But it’s unclear from Kate’s response that she saw a distinction, only that she 
responded to the instructor’s questioning by assuming her group’s current model must be 
wrong. The discussion continued with the instructor attempting to get the group to 
articulate the differences between the two models they created. Kate attempted to articulate 
the differences suggesting that a fifty-fifty spinner is “assuming no difference between the 
therapies” and that seventeen-thirteen is simulating “if it’s (Dolphin Therapy) equally 
likely as the no dolphins to be as effective.” Her responses appeared to be equivalent, 
suggesting that the distinction between the two models is not entirely clear to her.  

Group 3 did change back to their original model (see Figure 7) but there was no further 
discussion and no evidence to suggest that they understood the random assignment in their 
model or how it related to the null hypothesis. What does seem clear from their discussion 
was that to them setting the “Improvement” sampler to 15/15 for the outcomes “Improve” 
and “Not Improve” translated to a null hypothesis of no difference between the two 
therapies. That is, they did not appear to see a true distinction between a statement of no 
difference between the two therapies and a statement that a person is just as likely to 
improve or not improve.  

Group 4’s confusion was similar to that of Group 3. They both created models that gave 
an equally likely chance for a patient to improve or not improve. The next excerpt shares 
Group 4’s initial thinking as they attempted to create a TinkerPlotsTM null model to model 
the null hypothesis. 

 
Jack: So the null model assumes that... 
Jack and Jamie: There is no difference. 
Jack: I guess for this model should we do two samplers that are showing like 

improvement versus no improvement or should we just do one sampler that... 
the percentage of improvement between the two. 

Jamie: Okay so the null model would say that there is no difference in improvement. 
Well there's no diff - dolphins won't help compared to other….So we would 
need fifteen and fifteen. Yeah. 

...  
Jack: Should they be equal? 
Jamie: They should be equal because um each person would have an equ... 
...  
Jamie: Like the null model would say that each person has a, just as likely a chance 

of improving or not improving no matter what group they are assigned to. 
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Jack: Okay so why don't we just do spinners, I guess. …Like there's a fifty-fifty 
percent chance that they'll improve if they want to improve. 

 
In this excerpt Jack and Jamie worked to create a TinkerPlotsTM model based on their 

null hypothesis. Initially they talked through what that assumption was – “no difference,” 
they both stated this simultaneously. Jack suggested the null model means there’s no 
difference in improvement “between the two,” and Jamie said if there’s no difference than 
“dolphins won’t help compared to the other.” Jamie also stated that “each person has just 
as likely a chance of improving or not no matter what group they’re assigned to.” Jamie’s 
excerpts seem to suggest that she has conflated “no difference” at the individual level, for 
example where she suggested each person has just as likely a chance of improving, with 
no difference at the group level, for example where she suggested it does not matter what 
group they are in. The dialogue in these excerpts suggested a struggle to understand where 
“no difference” should figure into the model. The model they created was also consistent 
with a null hypothesis where no difference in improvement is at the individual level. That 
is, a person has an equally likely chance of improving or not improving.  

This group created two linked spinners. The first spinner’s attribute was labeled 
“Control Group.” The second spinner’s attribute was labeled “Dolphin Therapy Group.” 
Each spinner was split into two equal parts with one part labeled “Improvement” and the 
other part labeled “No Improvement.” Their TinkerPlotsTM model is shown in Figure 9. 
 

 
 

Figure 9. Group 4’s first TinkerPlotsTM model for the Dolphin Therapy Problem 
 
It is likely that this would have been the final model for this group except that the 

instructor intervened and asked them about their model.  
 

Jack: So we just chose to do a spinner with equal values since there would be no chance 
between the two.   

Jamie: The null methods would say that... 
Jack: There's no difference. 
Jamie: There's no difference between cont - Like the dolphins won't help. 
Instructor: Does saying that there's no difference between the control improving and the 

dolphin group improving, which you are saying is the null model, mean the same 
thing as saying they’re equally likely to have improvement? That everyone is 
equally likely to have improvement? 

Jack: I'm wondering now if we just needed one model, one spinner that had... 
Jamie: Improvement or not improvement?  
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The group’s response to the instructor’s initial question suggests they struggled with 
how to connect the statistical null hypothesis to the TinkerPlotsTM null model. The 
instructor then asked the group to think back to several of the activities on comparing two 
groups that were done in previous class work. After she asked them to reflect on these 
activities, the following discussion ensued.  
 

Jamie: I'm still not sure if we are simplifying it or over complicating it.  
Jack: I think we’re simplifying it too much. …we could have two stacks that's fifteen 

people from the dolphin therapy and fifteen from the control group and then have 
another stack that's how many people improved versus how many people didn't 
improve.  

Jamie: And pair them up?   
Jack: And seeing what the difference is. 
Jamie: So like one stack with 30 people getting paired up with whether... 
Jack: They improved or not. 
Instructor: So how does that represent the no difference model?  
Jack: Because that would show that they are equally likely to report or whether or not like 

based off the data that we have or not.  
 

In this last excerpt Jack and Jamie began to revise the group’s current model by creating 
one attribute for “Group” and the other attribute for “Response” (as opposed to having one 
attribute for “Dolphin” and one attribute for “Control” as their initial model contained). 
They appeared to go in this direction based on thinking back over previous classroom 
activities that utilized randomization tests. However, when the instructor asked how their 
description of this new model represented the “no difference” model, Jack struggled to 
adequately articulate the idea of randomization.   
 

Jack: So I was thinking based off that smoking thing [referring back to a prior comparing 
two groups problem that utilized a randomization test], if we had two stacks both with 
fifteen... 

Jamie: So one's dolphin and one’s control [changing the stacks device to 15/15 Dolphin/No 
Dolphin for the first attribute.] 

Jack: Then having this other stack... 
Jamie: Which would be seventeen and thirteen?  
Jack: Yeah. Thirteen people improved and seventeen people didn't improve and then doing 

without replacement and without replacement [on both devices] and then doing that 
thirty times. And seeing like so there's always an equally likely chance of that 
happening. I don't know though if. Yeah so I think that makes sense. I just can't explain 
it well enough.  

 
At the end of this excerpt Jack tried to explain the null hypothesis in terms of the model 

but still struggled to describe the idea of random assignment. The students did not appear 
able to describe the process that occurs when the sampler was run. Figure 10 shows the 
model they constructed based on the previous excerpts. 
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Figure 10. Group 4’s second TinkerPlotsTM model for the Dolphin Therapy Problem; the 
red circles were added to highlight that the group did not change the attribute names, 
and the red circle around Repeat is to highlight that they started with 30 but quickly 

switched to 15 
 

This group’s model, shown in Figure 10, was essentially correct except their attribute 
labels were incorrect. This will be discussed further in the next section when we address 
attribute labels. The group tried to discuss the connection to the null hypothesis by saying 
this model “gave both groups an equally likely chance of reporting whether or not they 
improved based off the data from the experiment,” but this description avoided actually 
discussing random assignment. They discussed “equally likely” instead of “no difference” 
and they suggested the “equally likely” is represented by using data from the experiment. 
Their description of connecting the null hypothesis to their TinkerPlotsTM model appeared 
more confused than it did when they described the connection to their first model (see 
Figure 9). The instructor came back to this group and pressed them on their reasoning once 
more. At this point the group revealed the fragility of their thinking about how the null 
hypothesis connected to the TinkerPlotsTM null model.  
 

Instructor: When you say equally likely for someone to improve as not improve or that it’s 
equally likely… 

Jamie: That one person from a group is going to report improvement or not improvement. 
That it’s just as likely that someone from the control group is going to report 
improvement as someone from the dolphin group. … Set to without replacement 
because once an observation is picked we don't want it to go back in there and have 
possibility of getting picked again. 

Instructor: So why thirteen-seventeen versus fifteen-fifteen?  
Jamie: Because of the data they gave us.  
Jack: Because we would just get the same result. Because each time we'd always get 

fifteen people. Actually I don't know, maybe not. Maybe that would have been 
better?  

Jamie: The thirteen-seventeen is showing us a model where there is a difference and don't 
we want to try to model that there isn't a difference.  

 
When the teacher pressed this group about the null hypothesis of “no difference 

between therapies” and the relationship to the TinkerPlotsTM model, it revealed the fragility 
of their understanding. Initially Jamie suggested the new model shows it’s just as likely to 
report improvement from the control group as from the dolphin group. But then when asked 
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why 13/17 versus 15/15, Jack said that 15/15 may be a better option and Jamie suggested 
that 13/17 shows a model where there “is a difference.”  

 
4.2.  RESEARCH QUESTION 2A (ATTRIBUTES, DRAW, POPULATING THE 

SAMPLER) 
 

Students’ decisions on labeling attributes, their justifications for Draw and their choices 
for how to populate the sampler correspond to Biehler et al.’s (2015) TP Step 1. Students 
did not spend much time discussing attribute labels or what type of devices they wanted to 
use. Group 1 spent a bit more time than the other groups deciding on the labels for their 
attributes, going back to the problem context to re-read the language used, but we do not 
have evidence that labeling attributes was in any way problematic in and of itself. However, 
evidence from Group 4 suggests that poor labeling of attributes can create problems for 
other aspects of the modeling process. Group 4 changed their model (recall analysis in the 
previous section), but when they changed their model, they neglected to re-label their 
attributes (see Figure 10). This created challenges for how they determined their Repeat 
value. This issue is examined in the next section.  

Draw appeared to occupy very little time in terms of student discussion. In fact, because 
of the way TinkerPlotsTM is configured, Draw is already set at 2 for the students as soon 
as they create a linked device – one element is drawn from each device. Thus students did 
not have to decide on a value for Draw, rather they had to justify the reason why it was 2. 
We share a brief excerpt for Kate and Joe (Group 3), as this is very similar to how other 
groups justified a Draw value of 2.  

 
Joe: For draw we had two. What were the two groups called?  
Kate: One to pick from the two therapy groups and one to pick whether or not they 

improved. So each patient is matched with a result.  
 

Students’ choices for how to populate their samplers appeared to be inextricably linked 
to how they connected the null hypothesis to their TinkerPlotsTM models. Evidence from 
section 4.1 revealed how each group constructed their TinkerPlotsTM models. All four 
groups populated the “Group” attribute with 15 “Control” and 15 “Dolphin” Groups 1 and 
2 populated their second device with 13 “Improve” and 17 “No Improve” because they 
were either interested in maintaining the probability of “Improve” versus “No Improve” 
with each draw (Group 1) or because they wanted to draw conclusions back to a larger 
population of depressed people (Group 2). Groups 3 and 4 struggled to correctly populate 
their sampler devices because they confused “no difference” at the group level and no 
difference at the patient level.  
 
4.3.  RESEARCH QUESTION 2B (REPEAT) 
 

For three of the groups (Groups 1, 2, and 3) deciding what to set Repeat to and why 
appeared to be relatively straightforward. Mike’s response (from Group 2) is shown below. 
The responses from the first three groups suggest they attended to the 30 individuals from 
the study and attempted to replicate that. 
 

Mike: The repeat is set at thirty to simulate thirty individuals.  
 

Group 4 struggled with determining a value for Repeat. This group oscillated between 
a Repeat value of 15 and of 30. However, the reason for their struggle is complex and 
relates to how they connected their null hypothesis to the TinkerPlotsTM model they 



233 
 

constructed and how they labeled their attributes. Recall from the previous section that this 
group did not re-label the attributes they used from their first model (Figure 9) when they 
created their second model (Figure 10), resulting in attribute titles that no longer made 
sense with their new model. After they ran the simulation using their second model, Jamie 
and Jack lost focus on the relationship between the TinkerPlotsTM model and the null 
hypothesis and re-focused their thinking on Repeat. They ran the simulation on the model 
shown in Figure 10 and constructed a plot of “Improvement” versus “No Improvement” 
(see Figure 11). They became confused when they realized the counts for these two 
outcomes summed to 30 (recall that each group consisted of 15 individuals).  Since they 
did not re-label their sampler attributes, they saw these as counts for the “Dolphin Therapy 
Group” only. The second device’s attribute really represented “Responses” in their second 
model – total number of patients that improved and did not improve.  

 

 
 

Figure 11. Group 4’s plot of a single trial after running their new model. The red circles 
are meant to highlight the counts for both outcomes as well as the attribute name that the 

group previously did not correct. 
 
The following excerpt highlights the group’s confusion as they grappled to understand 

why they were seeing 30 patients in the “Dolphin Therapy Group.” 
 

Jack: Is this the right thing? It should have been fifteen? [Referring to Repeat]. Right? 
Jamie: No it should have been thirty?  
Jack: …Because it’s only supposed to be fifteen from each group? 
Jamie: But it should take one from here and one from here and match them [Referring to each 

stacks device]. 
Jack: Why is it not, why is it doing? …That's so weird, but I'm just wondering, like, why it’s 

showing that way [He makes a plot of improvement and not improvement for dolphin 
group and they count the totals and they see 30 total, see Figure 11]. 

Jack: It should only be fifteen from each trial because that will give us more results than we 
want. So maybe it [Repeat] should be fifteen. 

Jamie: Should it be fifteen?  
Jack: Yeah [he changes the Repeat to 15 and then plots again and sees 15 in the total for 

their graph counts].  
 

Neither Jack nor Jamie noticed the naming of the attribute issue and in order to get only 
15 in the counts for their plot (see Figure 11) they changed Repeat from 30 to 15 (changing 
the Repeat value in Figure 10 to 15). However, when the instructor came back and asked 
them to explain their thinking the group then realized the need to rename the attributes. 
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They re-labeled their attributes, “Group” and “Result.” Then they ran their model (see 
Figure 10, but with re-labeled attributes and with Repeat set to 15). Once they ran this 
model they revisited Repeat values of 15 versus 30 again. Finally, when they plotted 
“Results” after running a single trail, Jack noticed their new plot only contained 15 people 
and he wanted to know why they did not have 30 anymore. They quickly solved this by 
adjusting Repeat to 30. Group 4’s final model is shown in Figure 12. 

 

 
 

Figure 12. Group 4’s final TinkerPlotsTM model for the Dolphin Therapy Problem 
 
4.4.  RESEARCH QUESTION 2C (WITH OR WITHOUT REPLACEMENT) 
 

Group 1 set up the first device to without replacement and their second device set to 
with replacement (see Figure 5). Initially Zach suggested both devices should be without 
replacement, but Selma convinced him that the second device should be set to with 
replacement. 
 

Selma: We want to keep the probability so that’s (pointing to “Response” attribute) with 
replacement, right?  

Zach: Without. 
Selma: No cause if you keep it with replacement then it goes back into the bucket.  
Zach: Mmhmm.  
Selma: Does that make sense? So we have like one bucket with like one green candy and one 

red candy and we take out one red candy then your percent of getting green, it now 
changes. It’s no longer fifty it is now one hundred.  

Zach: You’re right.  
… 

Selma: So the first device for the type of treatment will be simulated without replacement.  
Zach: Right. So that um we get exactly fifteen in control and fifteen in dolphin group. And 

the second device is the response.  
Selma: The second device is the response attribute, which we’ll simulate with replacement to 

maintain the probability of improvement versus non-improvement within the 
experiment. 

 
Selma wanted the “Response” attribute to maintain the same probability after each 

draw (in order to keep the same ratio of 13 “Improved” to 17 “Not Improved”) and thus, 
they wanted to set the device to with replacement. She used two colors of candy in a jar to 
help clarify her idea to her partner.  
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While Groups 1 and 2 constructed isomorphic models (see Figure 5 and Figure 6, 
respectively), they appeared to have very different reasoning for setting their “Response” 
device to with replacement. Group 1 wanted to maintain the same probability of “Improve” 
and “Not Improve,” whereas Group 2 wanted to make generalizations back to a larger 
population of depressed people (recall work presented by Group 2 in section 4.1). In 
addition, Group 2’s final write up stated:  

The replacement for the group sampler is set at without replacement because we do not 
want each draw to replace the value. The replacement for the result group is set at with 
replacement. It is important to note that we conduct this model as a bootstrap in order 
to simulate the variability of the overall depression population. We want to simulate a 
greater degree of variability in the null model. 
Groups 3 and 4 set both of their devices to without replacement (see Figure 7 and Figure 

12, respectively). Both of these groups constructed their final models by recalling a 
previous randomization activity they had seen in class. But there is no evidence from either 
of these groups that they understood that setting their samplers up in this way created the 
random allocation of treatments to responses, rather they appeared to be relying on their 
memory of the sampler set up from the previous activity. 
 

5. DISCUSSION 
 

The discussion section is also organized around the research questions posed at the 
beginning of the paper and relate this work back to the first three TinkerPlotsTM steps 
described by Biehler et al. (2015) and their framework for solving comparing two groups 
problems.  
 
5.1.  RESEARCH QUESTION 1: NULL HYPOTHESIS AND THE CONNECTION 

TO THE TINKERPLOTSTM MODEL 
 
The null model as described by Biehler et al. (2015) is the transition from a student’s 

statement of the null hypothesis (statistical world) to the TinkerPlotsTM model, the random 
device (computer world). Our students were essentially given the statement of the null 
hypothesis in the problem because they were asked if there really is no difference between 
the therapeutic and control conditions in their effects of improvement, how unlikely is it so 
see a result as extreme or more extreme than the one you observed in the data just because 
of the random assignment process alone? However, these groups created different models 
or had different reasoning about connections between their TinkerPlotsTM model and the 
null hypothesis. Group 1 seemed most able to articulate this distinction when Zach stated, 
“We should get an equal distribution of improvement in both the control and the – with this 
model we should get an equal amount of improvement in both the dolphin and control 
group.” Group 2 did not explicitly discuss the relationship between the null hypothesis of 
“no difference between groups” to their TinkerPlotsTM model, rather they focused on 
making generalizations back to a larger population. Groups 3 and 4 created models that 
included an additional assumption that a person was equally likely to “Improve” or “Not 
Improve.” These groups appeared confused between no difference at the group and 
individual levels. This suggests that the concept of no difference between two groups is 
difficult to operationalize into a TinkerPlotsTM model. For these groups it was more 
challenging to see the random assignment as creating “equal groups” or an “equal 
distribution of improved and not improved between the two groups,” rather than a model 
that creates the same likelihood that a patient improves or does not improve. It may also be 
a general confusion about the actual randomization process happening in TinkerPlotsTM 
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when the model is run. That is,  perhaps for these students the software acted as a black 
box in which they simply input information.  
 
5.2.  RESEARCH QUESTION 2A & TINKERPLOTSTM STEP 1 

 
TinkerPlotsTM Step 1 includes determining which devices to use (devices that can be 

set to with or without replacement), how to populate the devices (what values go into each 
outcome for each attribute) and how to label the attributes. In this section we discuss two 
key findings related to students’ reasoning with aspects of the TinkerPlotsTM model in Step 
1 - naming of the attributes and populating the devices.  

When describing TinkerPlotsTM Step 1, Biehler et al.  (2015) asserted that it is not 
necessary to rename the attributes on the sampler and that it was not essential to correctly 
modeling a comparing two groups problem using randomization. However, in our study 
we found that the naming of attributes was actually important for students. Specifically, 
Group 4 ran into problems when they changed their initial model but did not re-label their 
attributes to match the changes made to their model. Since their devices fundamentally 
changed from each device representing a “Group” to the first device representing the 
“Group” attribute and the second device representing the “Response” attribute, it was 
imperative for them to re-label or mentally track the interpretation of the attribute during 
their simulation. However, this group did not initially re-label their attributes and as a result 
they made errors in setting the value of Repeat. They thought their 30 outcomes of 
“Improve” and “Not Improve” were all results from one group, “Dolphin Therapy Group.” 
This error lead them to change their Repeat value to 15. We argue that the naming of the 
attributes is an important aspect of the modeling process. For example, the names students 
give to the attributes can serve as a bridge (or concrete component) between the context 
world they began in and the more abstract world of the computer within which they are 
trying to build their model. When they run their simulation and build plots, those attributes 
become the titles on the axes of their plots and give meaning to how they read and interpret 
those plots.  

Students’ choices for how they populated their devices varied. Two of our groups 
(Groups 3 and 4) made one of the “mistakes” identified by Biehler et al. (2015). Our work 
gives more insight into why students may be inclined to populate the “Response” attribute 
device with an equal number or ratio of “Improve”/“Not Improve.” Groups 3 and 4 both 
struggled with how to populate the “Response” attribute and had strong inclinations to 
create models that contained an equal number or ratio of  “Improve” and and “Not 
Improve.” Their reasoning for this choice was directly related to how they connected the 
null hypothesis to the TinkerPlotsTM model they were constructing. These two groups 
articulated a null hypothesis of “no difference between the two groups,” but their models 
suggested a null hypothesis that included the additional assumption that each person had 
an equally likely chance of improving or not. There needs to be a distinction in students’ 
minds between equal chance for improvement in patients versus an equal chance for 
improvement between the two therapies. When questioned by the instructor, these two 
groups struggled to tease apart a clear distinction between “no difference” at the group 
level and the patient level. We have four conjectures as to why this 50/50 model may be 
appealing to students.  

First, it is possible that Groups 3 and 4 lacked an understanding of the process of 
random assignment in this context and perhaps did not understand what a randomization 
model in TinkerPlotsTM does once Run was clicked. That is, there is no evidence that these 
students imagined the process of permuting “Group” to “Response”. They used the 
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language of “matching” patients with results.  We suspect more explicit discussion about 
how to interpret the process happening in TinkerPlotsTM when a model is run is necessary. 

Second, it is possible that Groups 3 and 4 either conflated or equated the idea of no 
difference between the therapy groups and the idea that a person is just as likely to improve 
or not improve. Their language throughout the excerpts blur these two ideas and a few 
times they simply used the phrase “no difference.” It is likely that both groups would have 
kept their first model without intervention from the instructor and they struggled to 
articulate distinctions between no difference at the group and patient levels in their models. 

Third, it is worth noting that at times the students from Groups 3 and 4 automatically 
shortened their statement about the null hypothesis to simply “no difference.”  On the one 
hand, the curriculum has clear statements with respect to the null hypothesis. For example, 
statements such as “assuming there is no difference between conditions in their effects…” 
(Zieffler & Catalysts for Change, 2015, p. 128, italics in the original). On the other hand, 
the materials emphasize “no difference.” The curriculum also emphasizes the model as the 
“just-by-chance model.” It seems clear that the emphasis on “no difference” (or “just-by-
chance”) in the null hypothesis statement is a pedagogical choice designed to help students 
by expressing a complicated idea in fewer words. However, it may also hinder students if 
they cannot explicitly see where the “no difference” or “just-by-chance” presents itself 
when translated into a TinkerPlotsTM model. Noll and Hancock (2015) explored how 
language can mediate students’ statistical problem solving activities and how expressing 
new ideas in fewer words can both help and hinder student learning. We conjecture that 
the emphasis on the shortened phrases of “no difference” or “just-by-chance” with respect 
to the null hypothesis may act in ways that hinder students’ ability to adequately relate 
where the “no difference” can be mapped to the TinkerPlotsTM model and may lead to 
possible confusion between “no difference” at the group or individual level. It would be 
worthy of future research to investigate these ideas.  

Fourth, a 50/50 model might appeal to students due to the influence of one-population 
problems on student thinking when they begin comparing two groups. In the first unit of 
the CATALST curriculum, students encounter problems in which the appropriate 
TinkerPlotsTM model is a 50/50 spinner (or stacks or mixer). For example, in one problem 
in the curriculum students are told about a study in which infants are observed selecting a 
“helper” toy or a “hinderer” toy. They are told that 14 out of 16 randomly selected infants 
chose the helper toy and asked if this result could be considered unusual if children really 
have no preference for toy type (For a closer look at the Helper or Hinderer Activity see 
Zieffler & Catalysts for Change, 2015, p. 61). The null hypothesis then is that infants have 
no preference for the helper or hinderer toy and the corresponding TinkerPlotsTM model 
should include a sampler device, such as a spinner, where 50% is assigned to “helper” and 
50% is assigned to “hinderer.” Students work through many problems like this during the 
first unit and a common initial “mistake” students make when modeling these one-
population problems is to use the observed data in the problem when constructing their 
TinkerPlotsTM model. For example, a student constructs a single device model with two 
outcomes “helper” and “hinderer” and assigns 14/16 to the “helper” outcome and 2/16 to 
the “hinderer” outcome (see Noll and Kirin, 2016 for additional examples). Thus, students 
may be confused when they move to comparing two groups because the modeling process 
looks very different from these one-population problems. 
 
 
 
5.3.  RESEARCH QUESTION 2B & TINKERPLOTSTM STEP 2 (REPEAT) 
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TinkerPlotsTM Step 2 relates to determining Repeat. Selecting the Repeat value 
appeared to be straightforward for students. Also, students appeared to view the Repeat 
value correctly, as a representation of how many people participated in the experiment – a 
total of 30. For example, Group 1 created two linked devices (which automatically sets 
Draw to 2) and suggested Repeat 30 so that they could “pick a therapy group and an 
outcome for all 30 patients in the study.” The only time this seemed to cause confusion was 
in Group 4 (Jack and Jamie) but this had more to do with the way they named their 
attributes, see discussion in section 5.2. 
 
5.4.  RESEARCH QUESTION 2C & TINKERPLOTSTM STEP 3 (WITH OR 

WITHOUT REPLACEMENT) 
 
TinkerPlotsTM Step 3 relates to determining whether to set the devices to with or without 

replacement. Setting the second device in a randomization test to with replacement is one 
of the “mistakes” that Biehler et al. (2015) noted in their work with pre-service teachers. 
Two of the groups in our study (Group 1 and 2) made this “mistake” and their discussions 
when constructing their models provide insight into possible reasons why students may be 
interested in setting up their sampler device with the “Response” attribute set to with 
replacement.  

In all four group’s final models the “Group” attribute device was set to without 
replacement and all appeared to justify this choice using similar arguments. For example, 
reasoning included: “because we want exactly 15 to go to the dolphins and 15 to go to 
control” (Group 4), or “without replacement because each patient could only receive one 
result” (Group 1). However, determining whether to set the “Response” device to with or 
without replacement proved more challenging for students. Groups 1 and 2 set their 
“Response” attribute to with replacement, but for different reasons. Group 2 clearly wanted 
to bootstrap and articulated that they wanted to be able to generalize back to a larger 
population of depressed people. This tendency to reason about sample-to-population 
inference even when given a problem about experiment-to-causation inference is consistent 
with findings from Pfannkuch, Budgett and Arnold (2015). Pfannkuch et al. suggest that 
one reason for this tendency may be that many statistics classrooms focus more time on 
sample-to-population problems. Perhaps it may be natural for humans to want to make 
inferences back to a larger population. We suspect that other students may reason similar 
to that of Group 2 when setting up a bootstrap in a randomization type situation, but more 
research needs to be done to investigate this conjecture. Group 1 also set their “Response” 
attribute to with replacement but their reasoning was different. This group articulated the 
desire to keep the probability the same with each draw – to keep the ratio of thirteen to 
seventeen consistent with each draw. Yet, we do not have insight into why this was 
important to this group. More research needs to focus on student reasoning for selecting 
with and without replacement in a TinkerPlotsTM device. For example, are there contexts 
for which students may naturally create models that focus on random allocation and other 
contexts in which students may naturally focus on re-sampling? 
 
5.5.  ADDITIONAL FINDINGS 

 
In addition to the two “mistakes” identified by Biehler et al. (2015), we also saw 

evidence of another developing approach to constructing a comparing two groups problem 
in TinkerPlotsTM. Group 4’s original model contained two fifty-fifty spinners with one 
device labeled as the “Dolphin Therapy Group” and one device as the “Control Group” 
(see Figure 10). The students justified their choice for having fifty-fifty spinners labeled 
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with “Improve”/ “Not Improve,” however, this group did not fully explain why  elected to 
have one device for “Dolphin” and one device for “Control.” This group investigated 
treatment groups separately, which, we conjecture, may stem from a desire to simplify a 
comparing two groups problem to a one-population problem. 

Our work also shows that the sampler tool appears to serve as a bridge between the 
statistical world (the null hypothesis) and the software world (a computer model that 
generates data under the assumption of the null hypothesis) with the context mediating. 
Students rarely followed any linear order in solving the Dolphin Therapy Problem and at 
times they moved back and forth between the three worlds identified by Biehler et al. 
(2015). Our research indicated that once students began working in the software world the 
context mediated any translating they did between the statistical world and software world. 
For example, students went back to the context to (1) consider how to name their attributes, 
(2) determine a value for Repeat – 30 patients, and (3) to determine with or without 
replacement. The context helped inform how they constructed parts of their TinkerPlotsTM 
model and there is a natural movement between each world throughout the problem solving 
process. Therefore, we would add bi-directional arrows as well as arrows that jump from 
the context world to the computer world to Biehler et al.’s framework (see Figure 2).  
 

6. CONCLUSION 
 
Biehler et al. (2015) rated pre-service teachers as “successful” or “not successful” for 

each of the 7 TinkerPlotsTM steps. Success on later steps was not contingent upon success 
on previous ones. Students’ performance was rated as “good” if TinkerPlotsTM Steps 2, 4, 
5, 6 and 7 (see Table 1) were correct and three of their statistical steps were correct 
(statistical steps 1, 2 and 6). They noted that most of their pre-service teachers were good 
at conducting simulations with TinkerPlotsTM. The successful performance rates of their 
pre-service teachers on TinkerPlotsTM Steps 2, 4, 5, 6 and 7 were 83% or higher (except 
Step 2 which was 72%). However, their pre-service teachers had an overall success rate of 
56% on Step 1 and 50% on Step 3, suggesting these steps were problematic for them. We 
argue that Steps 1 and 3 are not trivial and contain challenging statistical modeling content. 
The two “incorrect” models identified by Biehler et al. (2015) occurred in Steps 1 and 3. 
Some of the students who participated in our study also made these “mistakes.” While 
students might be rated as “good” at solving problems using TinkerPlotsTM , we argue that 
if students are not also successful with Steps 1 and 3 they may merely be good at following 
TinkerPlotsTM procedures without really understanding how to set up appropriate models 
to answer statistical problems.  

The first “mistake” Biehler et al. (2015) noted was that some of the pre-service teachers 
used 50/50 models. We also observed our students populating their “Response” attribute 
device with an equal number or ratio of “Improve”/“Not Improve” outcomes. We found 
that the groups that set up their TinkerPlotsTM models in this way were attempting to 
connect their conception of the null hypothesis of “no difference” to their TinkerPlotsTM 
model. We offered some conjectures as to why students may make this mistake. More 
research needs to be done to dispute or verify these conjectures. Yet, these findings have 
important implications for how teachers of statistics introduce modeling comparing two 
groups problems. Particularly with respect to the language teachers use and how explicit 
teachers are about the randomization process when a TinkerPlotsTM sampler is running. 

The second “mistake” Biehler et al. (2015) found was that some of the pre-service 
teachers in their study set one of the devices to with replacement (bootstrapped). We 
observed two groups who also bootstrapped. That is, these two groups set their “Response” 
attribute device to with replacement.  However, only one of the groups of students in our 
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study explicitly mentioned the desire to bootstrap for the purpose of making inferences to 
a larger population. The other group noted a desire to maintain a consistent ratio of 
“Improve” to “Not Improve,” though we do not know why. It may be quite natural for 
students to want to make claims back to some larger population and classroom instruction 
may need to focus more on causal inferences.  

We conclude that Steps 1 and 3 (determining how to populate the sampler and whether 
to set the sampler to with or without replacement) are not trivial steps. The pre-service 
teachers in Biehler et al.’s (2015) study often made “mistakes” on these two steps and our 
students made similar “mistakes.” We argue that these steps are crucial to becoming 
competent statistical modelers. In TinkerPlotsTM, the sampler device provides a visual tool 
for connecting the research question to the null hypothesis and then to the subsequent 
TinkerPlotsTM model. The sampler device students construct is a visual representation of a 
null model and their description of what that device does when it is run relates directly back 
to the null hypothesis. The sampler tool, we hypothesize, serves as a bridge between a 
concrete physical model for the simulation (such as dice or cards, or coins) and a 
TinkerPlotsTM random device that can be used to quickly simulate data to answer the 
research question. The sampler tool may also serve as a bridge between the statistical world 
(the null hypothesis) and the software world (a computer model that generates data under 
the assumption of the null hypothesis) with the context mediating.  

The models that students create in TinkerPlotsTM are key parts of the statistical content 
in courses that focus on modeling and simulation. We believe that a modeling and 
simulation approach using the CATALST materials and TinkerPlotsTM software has great 
potential in supporting students’ development into statistical thinkers and modelers. At the 
same time, we also see this work as in its infancy in that we need more research focused 
on why students create the models that they do and what the various features of the 
TinkerPlotsTM models they create mean to them. The work here is from a very small sample 
of students; thus, further research in needed. Additionally, we need research that focuses 
on how students conceptualize the process of the simulation when they run their model 
because this may provide insight into “mistaken” models. For example, if students see the 
randomness in the Dolphin Therapy problem as situated in creating equal values for 
“Improve” and “Not Improve” groups then it might suggest they are missing the random 
allocation of a person in one of the treatment groups to an outcome of “Improve” or “Not 
Improve” that happens when the sampler runs. We also need to better understand how 
students translate context (research question) to the statistical problem (null hypothesis) to 
the computer model (TinkerPlotsTM sampler). Modeling and simulation curricula and the 
use of technologies to model are relatively new to introductory statistics courses and if we 
are to develop good curricula and best practices for teaching with modeling and simulation 
curricula then we need research that further explores how new curricula and technologies 
impact students’ modeling approaches.  
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