
DESIGNING GAMES FOR UNDERSTANDING IN A DATA ANALYSIS ENVIRONMENT

Tim Erickson
Lick-Wilmerding High School
Epistemological Engineering

755 Ocean Avenue
San Francisco, CA 94112
eepsmedia@gmail.com

This paper describes design issues surrounding “Data Games,” small-scale, short web-based 
games that generate data for analysis in mathematics or statistics classes. The games are 
embedded in a data analysis environment. We discuss design for the games themselves as well as 
some curriculum and assessment issues. 

Ordinarily, when a student plays a game on a computer, a great deal of data is generated, 
but that data is never used. Data Games is a project funded by the US National Science Foundation 
for which we have been developing web-based games embedded in a data-analysis environment.  
As students play, the system collects the data, and students can analyze it. We have designed the 
games so that data analysis is rewarding, that is, it’s the best way to improve your performance.

Data Games do not need to be about  statistics. Rather, we believe that they are an engaging 
environment  in which “regular” math is useful. That  is, the skills and habits of mind we associate 
with data science offer another approach to mathematical understanding—and another perspective 
is always good. A data-rich approach like this can reinforce understanding; help students see how 
principles apply in many contexts; and for some students, it  may unlock math topics that  have 
eluded them in the past.

But  to accomplish this, you need the right games. This paper will address questions about 
designing these games for learning, and will reflect  on my use of Data Games materials in a 
statistics class in a high school in San Francisco, California. I will then attempt to draw some 
conclusions and suggestions for further development and investigation.

THE BIG ISSUES OF DATA GAME DESIGN
Here is the vision: Students want to do well in games, so if data analysis helps them do 

better, they will want  to learn how to analyze the game data. We hope this experience in data 
analysis transfers to data analysis outside the game context. This leads to some important 
requirements:

• Data analysis has to be useful in the game, so that analysis really improves your performance.  
• Furthermore, data analysis has to be easy. If it’s hard, it won’t  be worth the effort  just  to do 

well in the game. 
• The games themselves have to be quick. We’re in a classroom, after all; whatever we do—the 

play and the data analysis—has to happen in minutes, not hours of play.
• The games have to integrate easily into classroom life. 

Note how these requirements imply that  the games are small-scale by nature. We can 
imagine many larger, richer settings where students can be data scientists, ranging from real-life 
projects to analyses of complex games to MMPORPGs where data analysis plays a central role. 
But  that’s not what we’re about. It  should be easy for many teachers to use Data Games without  a 
lot of preparation, and when they do, almost all students will learn and succeed. 

Making data analysis useful is the hardest of these requirements; it’s where the “art” is in 
the game design. But  the games do not  stand alone. The games are embedded in a web-based data-
analysis environment (currently called “DG”) so that  the data collection is automatic and so that  it 
is easy to make graphs and do calculations. Also, the activities themselves—the student 
instructions, for example—are designed and presented separate from the games. That is, the games 
do not teach data analysis: they are an environment in which data analysis is useful.

This will become clearer with an example. But first, a few words about  whether the games 
are for teaching mathematics in general, or statistics in particular.



STATS OR MATH?
The Data Games project  itself, at  the high-school level, is really about incorporating data 

science into the mathematics curriculum. That is, it’s related to statistics through data, but  it 
addresses issues that do not appear in (i.e., are beneath) traditional statistics curricula. 

Yet  they are appropriate in my particular course. Regular Statistics at  Lick-Wilmerding 
High School in San Francisco, California is taken by students in the last  two years of their high 
school careers. Students in this class have generally not had great success in secondary 
mathematics. Since it  has no prerequisites, any student who does not  score high enough to move on 
is likely to take this course.

As a consequence, we need to spend substantial time in the course reinforcing important 
mathematical concepts and skills, for example, fractions, formulas, direct  proportion, linear 
relationships, and reading graphs (Ben-Zvi and Garfield 2004). Although these are not traditional 
topics in a statistics course, they are the foundation for many basic statistical ideas as well as 
essential understandings for secondary mathematics. On a more fundamental level, these students 
need concrete experience finding meaning in graphs and understanding how multiple 
representations of data correspond to one another. 

So in this paper, we will begin by focusing on topics like these, partly because they are so 
useful for these students, but also because they show how we can teach in a data-rich manner to 
students in other classes. 

These games are also useful for teaching more clearly statistical topics as well, for 
example, coping with variability. We will return to that prospect late in the paper.

EXAMPLE GAME: PROXIMITY
In Proximity, students try to propel a white ball to the middle of an orange target.  The 

closer you get to the center of the target, the higher your score. A “bullseye” is worth 100 points. 
You get 6 balls per game, and the target moves after each shot. There is a tool to measure distances 
on the screen.



Students learn to “drive” the interface quickly, and seem 
to intuit  the object  of the game. If you ask, “how did you know 
how hard to push the ball?” they know that to go farther you have 
to push harder. But their understanding is not  quantitative. So we 
encourage them to make a graph. With the click of a button, they 
make a scatter plot like the one at right.

They can easily put  a movable line on the graph (and 
even lock its intercept to go through the origin if they have that 
insight) and find its slope. They measure the distance before they 
shoot, and divide by the slope, to figure out  how hard to push the 
ball. 

Just playing “by feel” you can get scores over 250 
without  much trouble. Using data analysis, students can beat 450 
reliably.

So: data analysis improves your performance. It’s easy because the data are automatically 
collected in the DG environment. It’s a quick game, short learning curve, six balls and you’re done. 
You can get to a computer lab, play many games, analyze, debrief, and be back in an hour. 

The astute reader might object  that what I have described does not  require very much 
mathematical understanding. True. Let’s address that issue as we discuss the game design.

PROXIMITY DESIGN DISCUSSION
Let’s look at some game-design issues as they relate to Proximity and to some other games.
But  first, we must  report a potentially important observation worthy of further study, or at 

least attention in design: In general, students are ingenious at avoiding math. They’re not being 
contrary or lazy; it’s just  that  when they’re playing a game, even riveted by one, most  fail to use the 
tools we have built. For example, they will write down—on paper—the data they need when the 
screen shows every move in a data table. They won’t  use a graph to help them determine what to 
calculate even when the line—and its equation—are right there on the screen. 

Here are two conjectures for why: First, it’s math class and they’re used to writing down 
numbers and looking for patterns. Second, there is an “activation energy” to using a tool like a 
graph; if they have a familiar technique (looking for patterns in a table of numbers) they’ll prefer to 
use it even if the new one (a graph) would save them time, confusion, and agony.

How do you design a game so that students actually use math, and its tools, on purpose? 
Let’s look at one approach; we’ll see how field-testing positively impacted the specifics of 
Proximity’s design.

Making the Data Essential
It  is hard to design a game where data analysis is useful. If students can succeed in the 

game just playing it “by feel,” it has failed as a data game. 
In the first  level of Proximity (“Doc”), students learn from the graph (or from a table) that 

the distance you travel is always close to 10 times the “push” you give the ball. When students 
succeed, we know they can measure distance and divide by 10—but with experience (or class 
chatter) everyone can do well without  really using data to determine a strategy. That  is, “Doc” is a 
good introduction, but we don’t really know if students can come up with a winning procedure 
from scratch. 

For that, we need a second level (called “Sneezy”). In the Sneezy level, this slope—the 
coefficient  in the distance-push relationship—changes every game, that  is, every set  of six balls. 
You can’t simply divide by 10; you have to look at each game anew and deal with its data.

Making this work is not  trivial, however. It  took repeated classroom field-test sessions to 
see what  students actually do. Simply making the slope vary was not enough; at  first, students 
reverted to playing by feel, so we implemented a system of requirements—you had to get  a 
particular score on a level to move up to the next. That way, an activity could have as its goal to 
pass through Sneezy and get to the next level (“Dopey”).

This was too onerous; too frequently, the ball would get  caught  near an edge, and it was too 
hard to hit  the target. Students tried to use the data but became discouraged. Lowering the required 
score, however, invited playing by feel again. So we changed the game so that  the interesting and 
challenging edge shots (alas) no longer appeared—and raised the score requirement.



Still, some students would get lucky, and by chance the slope they had to figure out was 
near what it  had been before; or they just guessed well. So getting a high score was mechanical: 
measure the distance, divide by some number. They didn’t need to look critically at  their data. So 
we changed the game again: now you had to beat  a score (425) twice in a row to advance, and the 
software guaranteed that the slopes would be substantially different from 10 and from one another.

(Why 425? You need the first  ball to determine the slope; if that  gives you no points, you 
need an average of 85 on each remaining ball to make the goal. That  seems the right level of 
difficulty.)

This whole dance may seem obvious in retrospect, but it  points out  the vital importance of 
field test.

Skill and Luck
Now consider the balance between skill and luck. Of course, we lean towards demanding 

(mathematical) skill, but  luck plays two important roles. The first  is when the mathematical lesson 
is about  probability. One of the games, Wheel, is a roulette-like game designed to teach students 
about the law of large numbers and expected value. So some students will be lucky, and that’s part 
of the point. But  luck also creates interest; if you don’t know exactly what’s going to happen, 
you’re more likely to pay attention. Some more advanced students can be frustrated that  despite 
understanding everything perfectly, they cannot  get a perfect  score, but they are the exception—and 
not the population of our greatest concern.

Luck comes with variability. If everything is completely determined, it’s uninteresting. 
Furthermore, we want  students to learn to cope with variability. But variability comes in many 
forms in a data game. In Proximity, for example, there are several sources:

• At higher levels, the relationship between push and distance has a little randomness in it. 
• Not all “push” values are possible. As you prepare a shot, the mouse pointer’s position is 

quantized to the nearest  pixel; the internal relationship between those pixels and the push 
means that  the value jumps in discrete steps. You can always get  close, but you seldom get the 
precise value you want.

• There is variability in how you fit a model to the data, so calculations based on models will 
give varying results.

• There is variability in how well players aim at  the target; if you’re off by a few degrees, you’ll 
miss the center of the target and cannot get the highest possible score.

This last  source is particularly interesting. It  has at least two drawbacks, though: first, it 
rewards game-playing experience, something we are loath to do (likewise, none of our games have 
a “twitch factor” that  rewards fast reactions). Second, and more subtly, if students got a lower score 
simply because of poor aim, we would have to lower the threshold for success. Once we do that, 
it’s easier for someone who does not really understand the mathematical model to succeed. 

So in the case of Proximity, based on field test experience, we changed the game so that if 
you point close to the direction of the target, it  automatically points the right  direction. Now a 
student  who makes a good model and understands it  can get a vey high score—subject  to the pixel-
quantization problem we mentioned earlier. 

This is an example of a long-standing tension in designing technology for learning: when 
do you make the student  do things themselves, and when do you step in and do it  for them? In this 
case, aiming perfectly is not an important learning outcome, so we take care of it—in a way that 
many users will not even notice.

GENERAL DESIGN CONSIDERATIONS
The lessons of design in Proximity apply to other games. Let’s look at more. 

Topics
It’s not clear which topics are really amenable to treatment through a data game, but  as we 

have gotten more experience, we are finding more approaches. 
There is also another tension here: which comes first, the topic or the game? We’d like to 

think that the math topics drive the need for games, but  realistically, it works both ways: 
sometimes, a great game idea is irresistible, and works to pull the associated topic into the light.



Simplify, Simplify
When we start to design a game, our tendency (and yours, we bet) will be to make it too 

complicated. Overcomplication takes two forms:

• The context may be too complex: To make a plausible context, we might invent  a situation that 
takes too long to understand—so long that many students will be behind, or lost—or bored. 
Why are we trying to get the white ball in the gold blob? Is the white ball an antidote to a 
spreading poison? Whom are we trying to save? It’s too much: a good context is wonderful, but 
sometimes it’s OK simply to try to get a high score.

• The math may be too complex: To get at  the meat of some realistic and interesting curricular 
topic, we might have to use more math than students can handle in a short amount of time. The 
original design for Proximity was more like miniature golf, where you had to bounce the ball to 
get around corners. Fun, but adding the math of bouncing (and the tools to measure angles) 
made things too complicated. So for this game, we stuck with direct proportion.

Our experience in classes and early field tests is clear: it  is almost  always best to remove 
complication and detail. The simpler the game, the better. To be sure, it’s good to have something 
attractive in the game—in Proximity, the orange blob animates as you get close—but you don’t 
need much. 

Speed and Suspense
A non-math issue, but  important: a computer game can, in principle, give your results 

almost instantly. But should it? No.
First of all, there is a game-aesthetic principle of creating suspense. This does not  have to 

be very sophisticated to be effective; in Proximity, the ball moves towards the target, slowing as it 
goes. Will it  make it  to the target? Will it overshoot? We could have moved the ball immediately, 
but it would not be nearly as fun or engaging. Moving and taking time creates interest.

There is another reason to slow down: students easily fall into a pattern of pressing keys—
filling in numbers and pressing return—as rapidly as possible. The (un)reasoning seems to be: if 
you can get a high score by playing five games mindlessly in the same time it  would take you to 
play one game thoughtfully, you should go for it. We therefore deliberately slow the games down, 
so there is a greater benefit to thoughtfulness.

This is also one of the motivators for automation, addressed in the next section.

THREE PHASES OF A DG ACTIVITY
A lesson based on a game must  be more than simply playing the game. We have found that 

lessons that seem to work best  have three phases: an introduction, a time for play and basic data 
analysis, and then some sort of consolidation phase. 

For the introduction, it  is usually sufficient to tell the students to play. If the game is well-
designed, they will learn the game mechanics automatically, uncovering the few subtleties with a 
little practice and exploration. We have also created short  instructional videos, one to introduce 
each game. This introductory phase also gives students a chance to get some of the initial 
distraction of play out of their system. 

This phase can take place in the classroom, or can be assigned as homework. In Proximity, 
this might involve getting a score of 300 or better, or unlocking the second level; in order to do 
that, they have to have learned how to shoot the ball at the target and possibly to measure distances. 

In the second phase, we challenge students to use data analysis to improve their 
performance. Put another way, they transition from simply playing the game to using math as they 
play. Students do not generally do this on their own; this requires some direction from the teacher 
or the video, and some help using graphs and other analysis tools. In Proximity, for example, some 
students need to be prodded to look at the graph and figure out an appropriate push based on the 
equation of the line. Often a question like, “how did you decide to use that  amount of push?” will 
help students move in the right direction. 

In the classroom, this generally takes the form of students working in pairs to accomplish 
some goal such as unlocking a higher level. We often write hard-copy or online worksheets to 
accompany the play, asking questions that probe both the basics of the game mechanics (“What’s 
the maximum score you can get  in this game?”) and more sophisticated issues (“Describe how you 
use the graph to help you know how hard to push the ball?”).



After students have done this, they need to consolidate and solidify their learning. This is 
the third phase, which can take several forms. Although you can help students consolidate their 
learning by asking them to reflect, or write about what they learned, we like the option of a more 
performance-based approach, and ask, what  could students do to make their learning more explicit 
and apparent?

One intriguing answer made possible by technology is to have students automate the 
process of playing the game. That is, teach a “bot” to play and win. This has two plusses:

• It  takes the students out of simply playing and forces them to be explicit  about their strategies. 
Furthermore, this often involves encoding their ideas in symbolic mathematics.

• It  relieves the tedium of an artificially-slow game. We speed up automated play, which seems 
to be a reward to students.

There are design challenges here: how do you get  students to teach a bot  to play without 
programming? We’re working on that; one answer is to restrict  the types of strategies students can 
employ. In low levels of Proximity, for example, where the results are deterministic—there is no 
variability—we could stipulate that  the first push is a small fixed value, which you can use to 
completely determine the slope. Then on balls 2 through 6, you use the that slope, and the distance 
to the current  goal, to determine the push value for each ball. This requires students to enter a  
single formula rather than writing a more general program. (In one field test, a pair of ingenious 
year-7 students decided to start every game with a “push” of 1.)

We have implemented player strategies most successfully in the game Markov—a version 
of rock-paper-scissors—where there are only three choices available for every move, so students 
simply push buttons to specify their choices for each of the 9 possible game situations.

ASSESSMENT AND DATA GAMES: THE LOGS
If students play some games, how do you know they learn anything? Ordinary assessment 

practices work fine; for example, you can give students tasks ranging from proximal to distal 
(Ruiz-Primo et  al., 2002) to see what  they understand about the math topics in the game. But in this 
short paper I want to focus on game logs. 

Because the games are played on the Web, we can, in principle, record everything the 
students do. Taking advantage of this opportunity, we have the games and the DG environment 
“log” certain student actions. We see their every move, their games and scores; when they unlock 
new levels; when they make graphs. We can see the equations of the lines they put  on graphs and 
the calculations they make with the in-game calculator. 

Let’s look at an example of a prototype graph showing a student’s work on the game Cart 
Weight, with annotations. In this game, you guess the weights of five carts that have different 
numbers of bricks on them. In the first  level, “Iowa City,” the cart is weightless and each brick 
weighs 3 units. Most students see the pattern immediately. In the second level, “Ames,” the cart 
weighs 8 and each brick weighs 4, so students have to deal with the intercept.

In the “Davenport” level, however, the slope and intercept  change every game. This is a 
challenge, and requires dealing with your data efficiently. Here are extracts from one student’s log:



The student  masters “Iowa City” in two minutes. It takes two minutes more to master 
“Ames.” But  then there are many poor guesses as the student  puzzles out Davenport (minutes 5–10, 
making a few calculations). Finally, the student  makes a graph, and we can see that  they put a line 
on the graph and adjust  it repeatedly in minute 11. Just after that, they make their first  good guess 
in Davenport—but not enough to get a high score for the whole game. 

Between 12 and 14 minutes they make many calculations and adjustments, but make four 
bad guesses. Realizing they have a low score, they “rage quit” and start  a new game before that 
game ends. At minutes 15 and 16, they make the first  two guesses for the next  game—poor 
guesses, but thats OK: they needed two points to determine the line. At 16:30, they have made a 
line with the equation Weight = 1.82 * bricks + 20, and get a good score of 76 on the next  guess. 
They then adjust the line to Weight = 2 * bricks  + 17, and ace the last two carts, giving them a 
high score for the level.

This period of time—a scant  20 minutes—constitutes the first  phase and most  of the 
second of a plausible activity about linear relationships. Cart Weight has no “automation” mode 
yet, so the third, consolidation phase was a paper handout where, among other things, students 
wrote about the meaning of the numbers in the equation for the line (the slope is the weight  of a 
single brick; the intercept is the weight  of the cart) and wrote instructions for how to beat the 
Davenport level.

These logs give us an intriguing window into a student’s thinking. We can see early 
success, then struggle, then bringing tools to bear, and finally success on a more challenging task. 
We hope to connect  logs like this one with other artifacts and observations, and with logs from later 
sessions. This can even help us assess the elusive “habits of mind” we would like nascent data 
scientists to develop. For example, do students turn to graphs more quickly in subsequent sessions? 

DATA GAMES FOR STATISTICS
In this paper, we have been focusing on using Data Games for what is essentially 

mathematics instruction as opposed to statistics instruction. But you can use Data Games for stats 
as well. After all, the games are just  sources of data; all we have to do is come up with game 
situations in which understanding statistical ideas improves your performance in the game. 

We alluded above to Wheel, a wheel-of-fortune sort of game, where observing for long 
enough will reveal the biases in the wheel, and an understanding of expected value will show you 
the way to a moneymaking strategy. 

Even more of these have been created by the Data Games group in Amherst, MA, USA, 
especially for middle-grades students, and address issues such as understanding variability (e.g., 
Shaughnessy et al, 2004). These include Ship Odyssey, a treasure-hunt  game where you get 
imperfect information about  the location of a treasure. How much imperfect information do you 
need before you’re confident  that  your “hook”—which has a finite extent—will snag the treasure? 
In such games, players balance limited resources (in this case, samples against hooks) in order to 



maximize their “take”; it’s all about understanding how sample size affects how well you know the 
underlying population mean. 

Another game, Rock Roll, explores issues behind experimental design. One can imagine 
endless variations. We can make a game where stratified sampling, for example, gives better results 
than a SRS. The art will come in deciding exactly what the point  of such a game is, and tuning the 
game so that an understanding of sampling really does make a difference. 

Sources of Variability
At this point, I’d like to spend some time expanding, from a design point  of view, on the 

topic of luck and variability that  we discussed about three pages ago. Variability, from whatever 
source, can make a game more interesting. How does a game’s role in statistics education affect 
how we create variability?

Wheel is straightforward: it’s a gambling game, and there’s randomness. The variability is 
central and authentic.

In higher levels of Proximity, as we alluded to above, we add in a little noise to the distance 
a ball travels. Students have to cope with the notion that  the line may not  go through all the points 
as it did in lower levels (and as it  generally does in math textbooks). It also means that  the strategy 
of using the first point to compute the slope is insufficient; a data-aware strategy would be to 
recompute the slope each time to be the average distance divided by the average push.

In Ship Odyssey, there’s an underlying story: you send specially-trained rats down to find 
the treasure. After they find the treasure, they swim back to the surface. Alas, the turbulent waters 
force them off course in a random fashion, creating a distribution of rat-surfacing locations; you 
use those to decide where to drop your grappling hook. That  is, the “rat” feature in the story 
introduces noise. The advantage is that  it  makes the story is fun and engaging; the disadvantage is 
that the rat  narrative may get in the way of understanding the data—or at the least, it  takes time to 
explain.

Another game with statistics content is Floyd’s of Fargo. This is an insurance game; you’re 
insuring cars against  flat tires (like the rat  narrative, this takes some time to explain). Your job is to 
set the premium. A new tire costs $100. The lower the premium, the more people will buy your 
insurance—but the more you’ll have to pay out in claims. Your goal is to make as much money as 
possible.

There is an optimum price, and you can find it empirically. 
So where’s the variation? In the first version of Floyd’s, this was the situation:

• The relationship between premium price and the number of customers was linear: the number 
N of customers was N = 2000( 1 – P ), where P is the premium price in dollars. That is, if you 
give it  away, you’ll have 2000 customers, but  if you charged a dollar or more, no one would 
buy. (Left-hand graph, below.)

• The number of flats your customers had—which determined your costs—was calculated 
probabilistically: the chance that any one car would get a flat was 0.002. 

     



Thus while the number of customers was deterministic, the payout had variability that 
arose naturally. Students could “watch” cars to try to determine that  unknown probability. If they 
understood expected value and did some algebra, they could find the theoretical quadratic relating 
profit to premium price and find its vertex. 

But  if not—the usual case—the graphs they got would have interesting variability, and they 
could still fit  a curve to the data. Using sliders for the parameters (in the graph below right, they’re 
cust, a, and best, and the formula is in vertex form) they can do this visually without resorting to 
automatic fitting or to transformations (Erickson, 2008).

             

Students can therefore play this game on many levels. It can be a modeling game, where 
you find the appropriate graph, fit a parabola, and realize which parameter gives you the largest 
profit. Or it  can be a rich optimization problem. But you can also study the nature of the underlying 
probability model and see how the number of flats varies with the same number of customers. In 
addition, the game gives you a glimpse into other statistical issues, for example, heteroscedasticity.

We are now planning an easier level where the number of flats is (unrealistically) 
deterministic, and a harder level where the number of customers is governed by some stochastic 
model. Our model for the flats also assumes independence; breaking that assumption (suppose the 
flats come in clumps) could make for even more complicated analysis—but for now, we keep it 
simple. Students have enough to cope with just understanding what that graph with the parabola 
means. 

The lesson, though, is that statistical issues appear in these games in different ways, 
through the deliberate introduction of noise or through the choice of phenomena where sampling 
and combined events create variability naturally. All of these work, and all of them present students 
with data that vary, very much like data they will encounter in real life. 

I suggest that  one could develop Data Games purposefully to address specific topics in 
statistics education, for example, the seven areas of variability compiled and elucidated by Garfield 
and Ben-Zvi (2005); and we could use the learning analytics tools described above—instead of or 
in addition to test items—to assess student understanding of these in a “performance” context. 

CONCLUSION AND DIRECTION
Playing a Data Game (like most instruction) does not  create understanding. But  we have 

designed Data Games and the associated activities to be a good opportunity for developing and 
solidifying understanding of mathematical ideas. Likewise, success at a Data Game is not  ironclad 
evidence of understanding or of a well-engrained habit  of mind, but  it  can be a useful tool in a 
teacher’s assessment arsenal.

The logs are a particularly exciting windfall from this project. We have never before been 
able to see so many students’ progress in such detail. Could we get access to them in real time, and 
use them to make instructional decisions on the fly? That’s one direction for future work. 

Then there’s the question of the breadth of topics these small games might  encompass. We 
encourage your idea and participation as we come to understand what’s possible and move forward 
to design new games and activities.



Avid readers interested in the project should visit http://www.kcptech.com/datagames/.
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